
Chapter 2

Minimum Power Multicast

problem

In this chapter, we take into account the Minimum Power Multicast prob-

lem (MPM) in wireless Ad-Hoc networks [52]. The chapter is organized as

follows: an introduction to the problem is given in section 2.1 and related

works are presented in section 2.2. A formal description of the modelling

aspects of the problem can be found in section 2.3, while the mathemati-

cal formulation of the MPM problem expressed in terms of a Set Covering

problem is discussed in section 2.4 together with its comparison with some

of the formulations that have been proposed in the literature. In section 2.5,

we show some logic inequalities, whereas in 2.6, we report how to modify

the graph associated with the Multicasting problem in wireless networks in

order to model it as a Steiner Arborescence problem in a wired network.

Section 2.7 is devoted to the description of two exact procedures for solving

the problem that include the reduction technique for the Set Covering prob-

lem to reduce the huge number of the model’s constraints. Finally, some

computational results are illustrated in section 2.8 and some concluding
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remarks are summarized in 2.9.

2.1 Introduction

Ad-Hoc networks are composed of a set of mobile devices with limited

resources, that communicate with each other by transmitting a radio signal

without using any fixed infrastructure or centralized administration. Nowa-

days, this kind of networks find their applications in several fields such as

exchanging messages in an area where natural disasters have destroyed the

existing infrastructure or in a battlefield. They are also used, for example,

to allow internet access or simply to exchange information in buildings or in

trains or to enable video-conferencing, etc. (see e.g. [66], [84]). The devices

of an Ad-Hoc network, called also nodes, are arbitrarily located in an area

where they are able to move, but at the time of the transmission all the

nodes are supposed to be stationary; all along this dissertation, we will con-

sider only static networks. Every terminal of the network is equipped with

an omnidirectional antenna in such a way that the signal is spread radially

from the nodes. A device may communicate with a single–hop, i.e. directly,

with any other terminal which is located within its transmission range. In

order to communicate with the terminals placed out of this range a multi–

hop communication has to be performed: it simply consists in making use

of intermediate devices, called routers, that retransmit the received message

to the directly unreachable terminals ([72], [84]). Those nodes that are not

reached by any signal are called isolated nodes.

The Multicast problem consists in connecting a specified device, called

“source”, with a set of target terminals, called “destinations”, with the

possibility of using any other device of the network as router. Since the

resources of the devices are limited (for example nodes are equipped with
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batteries) the source–destination connections should be obtained using the

minimum amount of power. This objective would also have the advantage

of reducing the interferences within the network and, consequently, of im-

proving the signal quality.

The Minimum Power Multicast problem consists in assigning a trans-

mission power to each node of the network in such a way that the source

is connected to all the destinations with the minimum total transmitting

power. We omit to consider interference problem in the model and we sup-

pose that there is no constraint on the maximum transmission power of the

nodes. Finally, we assume that the topology of the network and hence the

exact position of all the terminals is known in advance.

2.2 Related works

The MPM problem represents a generalization of the very well known

Minimum Power Broadcasting (MPB) problem. Indeed, if the set of des-

tinations coincides with all the nodes of the network, except the source,

the MPM problem reduces to the MPB problem (see e.g. Althaus et al. [1],

Altinkemer et al. [3], Das et al. [25], Montemanni et al. [60], Wieselthier

et al. [85], Yuang [88]). The MPM problem has been proved to be NP-

complete (Cagalj et al. [13], Clementi et al. [20], [21]) and thus difficult to

solve to optimality. Moreover, it is not simply a minimum Steiner Arbores-

cence ([25], [57], [84]) connecting the source with the destinations because

of the so called “broadcast property”. Indeed a transmitting node reaches

all the nodes of the network placed within its transmission range without

any additional power, so that the amount of power in the solution of the

MPM problem is not worse than the amount of power in the solution of the

minimum Steiner Arborescence on the same but wired network.
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While the MPB problem has attracted a wide attention in the scientific

literature, the MPM problem has been scarcely studied despite its applica-

tive importance. In fact, nowadays most of the MPM formulations available

represent somehow an adaptation of the MPB models to the multicasting

case. Interesting approaches to the problem are due to Wieselthier et al.

[84] and to Das et al. [25]. The first authors describe an algorithm, called

the Broadcast Incremental Power (BIP), and three greedy heuristics for the

Multicast Power problem. The Broadcast Incremental Power (BIP) [84] is

a modification of the Prim’s algorithm [70]. Indeed, starting with a node

s ∈ V source of the communication and a set L := {s}, at each iteration

the algorithm chooses a minimum-incremental power edge e = (u, v) ∈ E,

connecting a node u ∈ L to a node v ∈ Lc and updates the set L := L∪{v}.

This process is repeated until L = V . The increment of power is the dif-

ference between the power that has to be used by a node u ∈ L to reach a

node v ∈ Lc and the power already assigned to u.

Three different integer programming models have been proposed in [25]

by Das et al.; these formulations for the MPM problem have been obtained

as a generalization of those constructed for the MPB problem. Some specific

studies for the multicast case have been considered in Guo et al. [36] and in

Leino [53]. In particular, a linear integer formulation for the MPM problem

has been presented in Leino [53] and a general scheme of a cutting plane

algorithm has been used for its solution, whereas a flow-based formulation

expressed in terms of a mixed integer programming has been suggested in

Guo et al. [36].
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2.3 Mathematical Models for the MPM

We shall model the MPM problem in terms of a graph, by considering

the devices of the network as nodes and the transmission links as arcs like

in Figure 2.1.

Figure 2.1: Example of a Multicast problem in a complete graph with 6

nodes

Let G = (V,A) be a directed complete graph, where V represents the

set of the terminals of the network and A is the set of directed arcs which

connect all the possible pairs (i, j), with i, j ∈ V and j 6= i. Each node

i ∈ V can receive data from any other node of the network and send data

to any node in its transmission range, which is not a priori constrained to

assume any fixed value. We select a particular node s ∈ V as the source

of the messages (the red antenna in Figure 2.1), and a subset of nodes

R ⊂ V whose elements are the destinations of the communication (the

green antennae in Figure 2.1). Nodes belonging to V \ (R ∪ {s}) may act

either as routers, i.e., they can be involved in forwarding the messages or

they may remain isolated without receiving or transmitting any signal (the

blue antennae in Figure 2.1).
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Let n and m be two integer numbers representing respectively the cardi-

nality of set V and that of R, with 1 ≤ m < n. We note that if m = 1 the

problem reduces to finding the Shortest Path from the source to the destina-

tion and if m = n− 1 the Multicasting problem reduces to a Broadcasting

problem. Despite some analogies with the Minimum Spanning Arbores-

cence problem, the MPB problem in wireless networks has been proved to

be NP-complete ([13], [20], [21]). We assume that the nodes are fixed since

we are considering static networks and, thus, all the distances dij between

each pair of nodes i and j in V are known in advance. This is an approx-

imation of the real world applications, but it is not too restrictive, as one

may think, especially, if we consider optimization over short time intervals

and assume that the devices move slowly in the area.

For simplicity, we consider here the case in which for any distinct nodes

i, k, l ∈ V , it holds: dik 6= dil.

With each arc (i, j) it is associated a cost pij that represents the minimum

amount of power required to establish a direct connection from node i to

node j. As usually assumed in literature in a simple signal propagation

model [72], the power pij is considered to be proportional to the power of

the distance dij with an environment-dependent exponent κ whose value is

typically in the interval [2,5]; therefore, pij := (dij)
κ. Notice that the results

presented in this dissertation remain valid also in case more complex signal

propagation models are considered.

Most of the already defined formulations of the problem ([53], [60], [84])

use, instead of the costs pij for the arcs, an incremental cost cij defined as

follows:

cij = pij − piaij ∀(i, j) ∈ A,

where, according to the definition given in [60], the node aij is the “ancestor”

of j with respect to i:
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aij :=











i if pij = min
k∈V
{pik},

argmax
k∈V

{pik|pik < pij} otherwise.
(2.1)

By introducing the so called range assignment function, which assigns to

each node i ∈ V its transmitting power r(i):

r : V → R
+, i 7→ r(i),

the MPM problem can be equivalently formulated defining such a function

in order to minimize the quantity
∑

i∈V r(i), while guaranteeing the connec-

tion among the source and all the destinations. Obviously, in any efficient

solution, r(i) must be zero or equal to pij for some j (i.e., node i does not

transmit or uses exactly the amount of power necessary to reach a target

node j), so we shall assume this to be the case. We want to stress here that

when we talk about connection among the source and all the destinations

in this chapter and in chapter 4 we do not mean necessarily a direct connec-

tion, but we do not also mean the existence of a path in the traditional sense

(see Definition 1.3.2) from the source to each destination. In fact, since the

nodes are equipped with omnidirectional antennae and the communication

is a radio transmission, any signal forwarded by node i ∈ V and directed to

node j ∈ V is also received by all the nodes that are not more distant than j

from i, i.e., if r(i) = pij, then every node k ∈ V such that pik ≤ pij receives

the signal (see Figure 2.2). This is the so called “broadcast property” ([60],

[84]) which is a peculiarity of this kind of networks. Several nodes can be,

therefore, covered and reached with a single transmission and, hence, using

a single transmission power.

Even though the MPM problem consists in assigning the transmission

power to the nodes, as suggested before, it is convenient to consider the

decision variables associated with the arcs ([25], [60]) in order to model the
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Figure 2.2: Broadcast property

link states. In particular, we want to model: (i) the event that node i is

transmitting to a target node j (that is, i uses exactly an amount pij of

power); (ii) the event that the transmission of node i is received by node j

(that is, the power assigned to node i is not smaller than pij); and (iii) the

event that arc (i, j) belongs to the underlying Steiner Arborescence which

connects s with every node in R. We introduce, thus, three sets of variables,

x, y and z to characterize each of the three above events.

The set of variables x describes which node transmits to whom; formally,

using the range assignment function:

xij :=

{

1 if r(i) = pij,

0 otherwise.

The set of variables y determines which nodes are in the transmission

range of other nodes, i.e. for all (i, j) ∈ A, yij = 1, if the node i transmits

and reaches node j, otherwise yij = 0. By expressing y variables using the

definition of the function r, we can write for all (i, j) ∈ A:

yij :=

{

1 if r(i) ≥ pij,

0 otherwise.
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Finally, the variables z define a Steiner Arborescence T , connecting s with

all the destinations in R: for all (i, j) ∈ A, if (i, j) ∈ T , then zij = 1 (that

is the node i is transmitting and the node j is reached by it), otherwise

zij = 0.

The ”broadcasting property” makes the difference between the Minimum

Steiner Arborescence problem and the Minimum Power Multicast problem

([25], [84]), indeed, if the objective function of the first problem in a wired

network can be expressed in this way:

min
∑

(i,j)∈A

pijzij,

the objective function for the Multicasting problem in a wireless network is

the following:

min
∑

i∈V

max
j∈V \{i}

pijzij.

For this reason, the cost of an optimal solution of the Multicasting problem

is a lower bound for the optimal Steiner Arborescence solution in the same

but wired graph.

Since we assign only one power value to each node i ∈ V , there will be

at most one intended target node j for i. Thus, as in [25]:

Remark 2.3.1. For any node i ∈ V the following relation holds

∑

j∈V \{i}

xij ≤ 1.

Furthermore, using the inequalities of the Remark 2.3.1, it is possible to

express a relation between variables y and x. Indeed, if variable xik = 1,

it means that node i transmits with the power necessary to reach k. Any

other node j which is not farther than k from i also receives the transmission,

therefore, yij = 1. We can, thus, derive:
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Remark 2.3.2. For all (i, j) ∈ A the following relation binds the y and x

variables:

yij =
∑

k∈V \{i}, dij≤dik

xik.

Moreover, we can notice that in any efficient solution, if variable xij = 1,

then also variable zij = 1, since the link (i,j) belongs to the underlying

Steiner Arborescence connecting the source to the destinations; on the other

hand, an arc (i, j) might belong to the Steiner Arborescence even if j is not

the target node of i, i.e., r(i) = pik > pij, with k ∈ V \ {i} and xij = 0 but

zij = 1.

On the basis of the definition of the variables and the above observations,

we have:

Remark 2.3.3. For all (i, j) ∈ A the following relations must hold

xij ≤ zij ≤ yij.

We describe now three formulations presented in literature. The first one

is a slight modification in terms of notation of the model proposed by Leino

[53]:

min
∑

(i,j)∈A

cijyij (2.2)

s.t.
∑

i∈S,j∈Sc

yij ≥ 1 ∀S ⊂ V, s ∈ S, R ∩ Sc 6= ∅ (2.3)

yij ≤ yiaij ∀ (i, j) ∈ A, aij 6= i (2.4)

yij ∈ {0, 1} ∀ (i, j) ∈ A. (2.5)
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The second one is an adaptation to the Multicasting problem of the MPB

formulation defined in Montemanni et al [60] (by omitting the symmetric

connectivity condition):

min
∑

(i,j)∈A

cijyij (2.6)

s.t.
∑

i∈S,j∈Sc

zij ≥ 1 ∀S ⊂ V, s ∈ S, R ∩ Sc 6= ∅ (2.7)

yij ≤ yiaij ∀ (i, j) ∈ A, aij 6= i (2.8)

zij ≤ yij ∀ (i, j) ∈ A (2.9)

yij, zij ∈ {0, 1} ∀ (i, j) ∈ A. (2.10)

Observe that, since variables zij do not appear in the objective function,

we can strengthen formulation (2.7) − (2.10) by substituting inequalities

(2.9) with the equations zij = yij without losing any optimal solution. By

doing so, it is easy to see that formulation (2.7) − (2.10) is, in fact, a

relaxation of formulation (2.3)− (2.5).

Finally, the last formulation is the multicasting version of the MPB for-

mulation presented in Altinkemer et al [3]. While the first two formulations

minimize the incremental cost, this model minimizes directly the power to
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be assigned to each arc:

min
∑

(i,j)∈A

pijxij (2.11)

s.t.
∑

i∈S,j∈Sc

zij ≥ 1 ∀S ⊂ V, s ∈ S, R ∩ Sc 6= ∅ (2.12)

zij ≤
∑

k∈V \{i},dij≤dik

xik ∀ (i, j) ∈ A (2.13)

xij, zij ∈ {0, 1} ∀(i, j) ∈ A. (2.14)

Constraints (2.3), (2.7) and (2.12) are the “connectivity constraints”,

that is, for each cut (S, Sc) with s ∈ S and Sc ∩ R 6= ∅, these constraints

enforce the existence of at least one arc outgoing from a node belonging

to S and incoming in a node of Sc; constraints (2.4) and (2.8) are the

“broadcast constraints”, enforcing the “broadcast property”; constraints

(2.9) and (2.13) represent the variable relations described in Remarks 2.3.2

and 2.3.3; and constraints (2.5), (2.10) and (2.14) are the domain definition

constraints.

2.4 The Set Covering Formulation

In this section, we will define our Set Covering–based model for the

MPM problem. We start by proposing a first formulation that we prove to

be at least as strong as the formulation (2.2) − (2.5). Then by exploiting

the topological properties of the problem, we introduce our Set Covering

model.

For convenience, we shall use the following notation: for each node i ∈ V ,

let vi be an array whose components are the nodes of the network ordered
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with respect to an increasing distance from node i. In other words, if j and

k are two indices in {1, . . . , n} with j ≤ k, then vij and vik are two nodes in

V whose distances from i are related by

divij ≤ divi
k
.

We refer to vi as a distance array.

Figure 2.3: Example for the distance arrays

Example 2.4.1. For the network in Figure 2.3 the distance arrays are the

following: vs = (s, 1, 2, 3, 4), v1 = (1, s, 2, 4, 3), v3 = (3, 2, s, 4, 1),

v4 = (4, 2, 1, 3, s).

By Remark 2.3.2, we have:

Remark 2.4.1. For all i ∈ V and j ∈ {2, . . . , n− 1} the following relations

must hold

xivij = yivij − yivij+1

and for j = n:

xivin = yivin .
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We propose now a first formulation which uses only the variables x:

min
∑

(i,j)∈A

pijxij (2.15)

s.t.
∑

i∈S,j∈Sc

∑

k∈V \{i}, dij≤dik

xik ≥ 1 ∀S ⊂ V, s ∈ S, R ∩ Sc 6= ∅

(2.16)
∑

j∈V \{i}

xij ≤ 1 ∀ i ∈ V (2.17)

xij ∈ {0, 1} ∀ (i, j) ∈ A. (2.18)

We notice that it is possible to use Remarks 2.3.2 and 2.4.1 to augment

formulation (2.2)− (2.5) with variables xij and formulation (2.15)− (2.18)

with variables yij, so that their linear relaxations can be compared. By

doing so, we can derive the following result.

Proposition 2.4.1. The linear relaxation of formulation (2.15)− (2.18) is

equivalent to the linear relaxation of formulation (2.2)− (2.5).

Proof. First of all, observe that, since vectors x and y are related as in

Remarks 2.3.2 and 2.4.1 the objective functions (2.2) and (2.15) express the

same quantity. In fact, by the definition of incremental costs, for any i ∈ V

and j ∈ {2, . . . , n} we have

pivij =

j
∑

k=2

civi
k
.

Hence, by using Remark 2.4.1, we have

n
∑

j=2

pivijxivij =
n−1
∑

j=2

j
∑

k=2

civi
k
(yivij − yivij+1

) +
n
∑

k=2

civi
k
yivin =
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n
∑

k=2

civi
k

n
∑

j=k

yivij −
n−1
∑

k=2

civi
k

n
∑

j=k+1

yivij =
n
∑

k=2

civi
k
yivi

k
.

Consequently, we have

∑

(i,j)∈A

pijxij =
∑

i∈V

n
∑

j=2

pivijxivij =
∑

i∈V

n
∑

k=2

civi
k
yivi

k
=

∑

(i,j)∈A

cijyij.

Assume now that x is a feasible solution of the relaxation of (2.15) −

(2.18), and that y is the corresponding vector of variables obtained in Re-

mark 2.3.2. We have to show that y is a feasible solution for the linear

relaxation of (2.2)− (2.5). Indeed, we have:

∑

i∈S,j∈Sc

yij =
∑

i∈S,j∈Sc

∑

k∈V \{i}, dij≤dik

xik ≥ 1.

Moreover, for any (i, j) ∈ A such that aij 6= i, since variables xij are not

negative, we have:

yij =
∑

k∈V \{i}, dij≤dik

xik ≤ xiaij +
∑

k∈V \{i}, dij≤dik

xik =
∑

k∈V \{i}, d
iai
j
≤dik

xik = yiaij

and, for any (i, j) ∈ A,

0 ≤ yij =
∑

k∈V \{i}, dij≤dik

xik ≤
∑

j∈V \{i}

xij ≤ 1.

On the other hand, let y be a feasible solution for the linear relaxation of

formulation (2.2)− (2.5) and let x be the corresponding vector of variables

obtained by Remark 2.4.1. We can show that x is a feasible solution for

the linear relaxation of (2.15) − (2.18). Indeed, by using Remark 2.3.2,
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constraints (2.16) are easily seen to be satisfied. Moreover, for any i ∈ V ,

by Remark 2.4.1 we have:

∑

j∈V \{i}

xij =
n
∑

j=2

xivij =
n−1
∑

j=2

(yivij − yivij+1
) + yivin = yivi2 ≤ 1,

which means that constraints (2.17) are also satisfied. Finally, by using

(2.4), we have:

0 ≤ yiaij − yij = xiaij ≤ 1.

By using similar arguments as those in the proof of Proposition 2.4.1 and

letting variables x and y be related according to Remarks 2.3.2 and 2.4.1,

it is easy to prove the following:

Remark 2.4.2. Any feasible solution to the linear relaxation of formulation

(2.6)− (2.5) is also feasible for the linear relaxation of formulation (2.15)−

(2.18).

We can notice that in constraints (2.16) the coefficients of some variables

xij could be greater than one. This suggests to strengthen the formulation

by reducing to one all the left-hand-side coefficients of constraints (2.16).

In order to describe the resulting constraints, we introduce the following

notation.

Let S be any proper subset of V . For every i ∈ S, we label with vik(S)

the first component in the distance array vi which is not an element of S.

Furthermore, we denote by K i(S) the subset of V \ {s} whose elements are

all the nodes of the network different from the source and having distance

from i greater than or equal to divi
k(S)

. For a better understanding of this

notation, we give an example.
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Figure 2.4: Example for constraints (2.20)

Example 2.4.2. Looking at Figure 2.4, V := {s, 1, 2, 3, 4}, R := {3, 4} and

S := {s, 2, 4}. The distance arrays are: vs = (s, 2, 4, 1, 3), v1 = (1, 2, 3, s, 4),

v2 = (2, s, 1, 4, 3), v3 = (3, 4, 1, 2, s), v4 = (4, 3, s, 2, 1); thus vsk(S) and v2
k(S)

are node 1, while v4
(k(S)) is node 3 and Ks(S) := {1, 3}, K2(S) := {1, 3, 4}

and K4(S) := {1, 2, 3}.

Now we are able to present the strengthened formulation of the MPM

problem:

min
∑

(i,j)∈A

pijxij (2.19)

s.t.
∑

i∈S

∑

j∈Ki(S)

xij ≥ 1 ∀S ⊂ V, s ∈ S, R ∩ Sc 6= ∅ (2.20)

∑

j∈V \{i}

xij ≤ 1 ∀ i ∈ V (2.21)

xij ∈ {0, 1} ∀ (i, j) ∈ A. (2.22)

The set of constraints (2.20) represents the connectivity requirements;

for every cut (S, Sc) with s ∈ S and R ∩ Sc 6= ∅ there should be a node
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i in S that transmits with a power sufficient to reach at least one node in

Sc. We remark that the “target” node j of node i (that is, the one such

that xij = 1) does not need to be in Sc, indeed, j can belong to S, but

the distance between i and j must be greater than the distance from i to

a node in Sc. For example, the presence of one of the arcs in Figure 2.4

would satisfy the constraint (2.20) relative to the choice of S = {s, 1, 4}.

Constraints (2.21) ensure that at most one power value is assigned to each

node and, finally, (2.22) are the binary restrictions on the variables.

We now show that constraints (2.21) in the last formulation are redun-

dant for defining any optimal solution of the linear relaxation of the formu-

lation as the objective value coefficients are non negative.

Proposition 2.4.2. Let x be an optimal solution of (2.19) satisfying con-

straints (2.20) and the linear relaxation of constraints (2.22). Then we have:

∑

j∈V \{i}

xij ≤ 1 ∀i ∈ V.

Proof. Assume that there exists h ∈ V such that

∑

j∈V \{h}

xhj > 1. (2.23)

Let l ∈ {1, ..., n} be the smallest index such that:

n
∑

j=l+1

x̄hvhj ≤ 1,

let R denote the set {vhl , v
h
l+1, . . . , v

h
n} and r = vhl . By setting, for all

j ∈ V \ {h},

x∗hj =



















xhj if j ∈ R \ {r},

1−
∑

j∈R\{r}

xhj if j = r,

0 otherwise,
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we have that: x∗hr = 1−
∑

j∈R\{r}

xhj < xhr and, thus,

∑

j∈V \{h}

phjx
∗
hj <

∑

j∈V \{h}

phjxhj.

Let, for any node i ∈ V \ {h} and for any node j ∈ V \ {i}, x∗ij = xij.

Then, the new solution x∗ is feasible, since constraints (19) are still satisfied.

Moreover, we have that:

∑

(i,j)∈A

pijx
∗
ij <

∑

(i,j)∈A

pijxij.

This leads to a contradiction, since x is by assumption an optimal solution.

By the above Proposition, we can remove constraints (2.21) from the for-

mulation. Moreover, since all the powers are positive values, we notice that,

in any optimal solution, no node is assigned the power to reach exactly the

source, so that all the incoming arcs of A in the source s can be eliminated

from the graph:

A := A \ {(i, j) ∈ A : i ∈ V, j = s}.

The final formulation of the problem, that we propose is a Set Covering

formulation:

min
∑

(i,j)∈A

pijxij (2.24)

s.t.
∑

i∈S

∑

j∈Ki(S)

xij ≥ 1 ∀S ⊂ V, s ∈ S, R ∩ Sc 6= ∅ (2.25)

xij ∈ {0, 1} ∀ (i, j) ∈ A. (2.26)



34 Chap. 2 Minimum Power Multicast problem

Table 2.1: Average gap for (2.3)-(2.5) and for (2.25)-(2.26)

(2.3)-(2.5) (2.25)-(2.26)

n m gap gap

5 1 0.21183 0

5 2 0.27884 0

5 3 0.19820 0

5 4 0.17085 0

10 1 0.36262 0

10 2 0.41995 0

10 3 0.34237 0

10 4 0.35768 0.00009

10 5 0.32836 0.00028

10 6 0.32093 0.00390

10 7 0.30090 0.00626

10 8 0.29403 0.00971

10 9 0.24807 0.00666

(2.3)-(2.5) (2.25)-(2.26)

n m gap gap

15 1 0.48164 0

15 2 0.49797 0

15 3 0.44208 0

15 4 0.40148 0.00002

15 5 0.38226 0.00002

15 6 0.35043 0.00708

15 7 0.33496 0.00952

15 8 0.28470 0.01015

15 9 0.29569 0.01280

15 10 0.28654 0.01123

15 11 0.27004 0.01793

15 12 0.26053 0.01835

15 13 0.24193 0.01835

15 14 0.23624 0.02104

Constraints (2.25) are the connectivity constraints and constraints (2.26)

are the domain definition constraints.

Since the number of constraints (2.25) is 2n−1 − 2n−m−1, the main dif-

ficulty of this problem, beyond the fact that it is an integer problem, is

caused by the huge number of such constraints. Moreover, it is evident

that the broadcasting version of this problem has the maximum number of

constraints of type (2.25). Notice, however, that in general many of the

constraints (2.25) are redundant and can be removed from the formulation

because they are dominated by other constraints in (2.25).

Remark 2.4.3. The optimal solution of the linear relaxation of the Set

Covering formulation provides a lower bound that is more effective than

the lower bound produced by the optimal solution of the linear relaxation

of the formulation (2.2)− (2.5).

In order to compare the two formulations we have done several experi-
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ments. In Table 2.1 each column reports the average value of the gap be-

tween the optimal value OPT of the integer problem and the optimal value

LB of the linear relaxation of the two formulations for 20 randomly gener-

ated problems for each combination of the number of nodes/destinations.

We indicate with gap the value (OPT−LB)/LB. From the results reported

in Table 2.1, it is highlighted firstly that the lower bound of the Set Cov-

ering formulation is much better than the lower bound of the formulation

(2.2)−(2.5), secondly that for problems with few nodes and few destinations

the optimal solution of the linear relaxation of our proposed formulation is

already an integer solution.

2.5 Logic inequalities

We present some inequalities that can be added to the problem and that

can be found just considering logic properties of the MPM problem.

Remark 2.5.1. The following inequalities:

(i) xij + xji ≤ 1 ∀ i ∈ V, j ∈ δ+(i);

(ii)
∑

i∈V \{j}

xij ≤ 1 ∀ j ∈ V ;

are inequalities that reduce the feasible region of the MPM problem but

they do not cut off any fractional optimal solution of the linear relaxation

of (2.24)− (2.26).

Remark 2.5.2. The number of the arcs of an optimal integer solution of

the MPM problem (that is the number of the transmissions in an optimal

solution) should be at most the number of arcs in an acyclic graph spanning

all the nodes of the network and hence
∑

(i,j)∈A xij ≤ n− 1. We can notice

that if the power assigned to the source is exactly the power necessary to
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reach its most distant destination, placed in the kth position of the array

vs, then all the destinations are reached by the signal generated by the

source and no other transmission must be performed in order to create the

connection. This remark can be expressed with the constraint:

∑

(i,j)∈A\{(s,vs
k
)}

xij ≤ (n− 1)(1− xsvs
k
). (2.27)

In an optimal solution, if the source s transmit to the node vsk then the right

hand side of (2.27) is zero and this force all the other variable xij to be zero

otherwise it holds:
∑

(i,j)∈A\{(s,vs
k
)}

xij ≤
∑

(i,j)∈A

xij ≤ n − 1 and the constraint

(2.27) is fulfilled.

Remark 2.5.3. The inequalities

∑

j∈δ−(i)

xji ≤
∑

j∈δ+(i)

xij ∀ i ∈ V \ (R ∪ {s}) (2.28)

are the flow-balance constraints (see e.g. [47]). If i is a router and i is

directly reached by a communication originated by a node j in the network,

constraint (2.28) forces node i to transmit. In no optimal integer solution a

router i is a leaf of the arborescence, indeed, if it exists j ∈ δ−(i) such that

xji = 1 and for each k ∈ δ+(i) the variables xik are all equal to zero, the

cost pji paid for this type of solution can be reduced making j transmit to

a node h closer to j than i without disconnecting any destination.

2.6 Multicasting problem andMinimum Steiner

Arborescence

Minimum Power Multicast problem on the directed graph G = (V,A) can

be reduced into a Minimum Steiner Arborescence problem ([14], [55]) on a
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directed graph G′ = (V ′, A′). The graph G′ = (V ′, A′) can be constructed

as follows: for each node i ∈ V , consider the set of the outgoing arcs from i

(see Definition 1.3.5), δ+(i). For each arc (i, j) ∈ δ+(i) \ {(i, vi2)} a node u

should be inserted into the graph and the arc (i, j) should be split into the

arcs (i, u) and (u, j). The cost of the arc (i, j) is assigned to the arc (i, u),

whereas a zero cost is assigned to (u, j). Furthermore, all the arcs (u, k)

with pik ≤ pij should be added to the graph with a zero cost.

Figure 2.5: The graph for a Multicast problem in wireless network and the

graph for the equivalent Steiner Arborescence problem

With this transformation (n− 2) + (n− 1)(n− 3) new nodes are added to

the original graph so that in total |V ′| = (n − 1)2, whereas the (n − 1)2

arcs of G are substituted by (n3 − n2 − 2n)/2, i.e. |A′| = (n3 − n2 − 2n)/2.

The cardinality of V ′ is O(n2) and the cardinality of A′ is O(n3); the size

of the problem, thus, grows very rapidly as the size of the original problem

increases.

Example 2.6.1. Figure 2.5 is a little example of a graph G = (V,A) for the

Multicasting problem with 4 nodes and of the graph G′ = (V ′, A′) on which
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the Steiner Arborescence problem has the same optimal solution value as

the optimal solution value of the Multicast problem. All the arcs in red are

arcs with strictly positive costs, while the arcs in black have costs zero.

2.7 Solution Methods

As discussed before, the main difficulty for the solution of the Set Cov-

ering formulation is represented by the set of constraints (2.25), but a con-

siderable help may be given by the structure of the formulation. Here, we

propose two solution methods that exploit such structure.

In the first procedure, we generate the whole constraint matrix, but we

take into account only a subset of its rows. Indeed, initially, we create a

submatrix by selecting n − 1 rows and we perform a preprocessing on this

submatrix in order to erase dominated rows and columns, then we solve the

integer problem and finally, we check whether violated constraints exist.

If all the constraints (2.25) of the problem are satisfied, the procedure is

interrupted since the optimal solution has been found, otherwise, we add at

most n2 violated rows at a time and we repeat the iterative process for the

new submatrix until an optimal solution is found.

We specify that among the first n − 1 rows of the initial submatrix,

we select the row corresponding to the inequality relative to the subset

S = {s} and all the rows corresponding to the inequalities relative the

subsets S such that |Sc| = 1. Moreover, whenever we find a row which is

dominated in the current submatrix, we label it and we do not admit the

possibility of reintroducing it in any subsequent matrix; only at the end of

the procedure, before electing the optimal solution we check whether all the

erased constraints are satisfied, otherwise we add the violated ones and the
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whole process is repeated.

In our second method, violated constraints are generated iteratively on

the basis of the current solution looking at its support (see Definition 1.1.9).

We start with the inequalities (2.25) generated by the sets S := {s} and

S := {s, vs2} and we solve the resulting linear relaxation of the problem. On

the basis of the optimal solution, we define the related variables y using the

equality in the Remark 2.3.2 and we construct the connected component

of the network starting with the source. The connected component of the

source is the set of the nodes of the graph such that there exists a directed

path from the source to these nodes using the arcs in which the values of

the variables y are not zero. While at least one destination is not connected

to the source, the cut (2.25), generated by the set S of the nodes belonging

to the connected component of the source, is added to the formulation and

the linear relaxation of the problem is solved again until all the destinations

are in the connected component of the source. At this point, if the current

solution is integer, then the procedure is interrupted, otherwise a maximum

flow problem from the source to each destination with the current y values as

capacities is solved (see Definition 1.4.3). If all the maximum flow values are

at least one and the current optimal solution is fractional, then the current

integer problem is solved and if all the destinations are connected to the

source the procedure is interrupted, otherwise the cut (2.25) generated by

the set S of the nodes connected to the source is generated and the integer

problem is solved again. If at least one maximum flow value is less than

one, then we define the set S corresponding to the cuts with minimum

capacity (see Proposition 1.4.1), we add these constraints to the current

formulation and we solve again the linear relaxation of the current problem.

Every time a set of rows is added to the current submatrix, we perform the

preprocessing (see Proposition 1.2.1). The procedure sketched above can

be formalized by means of the following procedure:
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Step 0: Let F be a formulation for problem MPM with only the constraints

generated by S = {s} and S = {s, vs2} among the constraints (2.25);

Step 1: Solve the linear relaxation of F , and let x be the optimal solution;

Step 2: Define variable y as in Remark 2.3.2 and find the connected component

of the source;

Step 3: If there is at least one destination that is not connected to the source,

define S, the set of the nodes connected to the source, add the con-

straint (2.25) relative to S to the current formulation, perform the

preprocessing of the constraint matrix and go to Step 1;

Step 4: If all the destinations are connected to the source and the current

solution is integer; Stop.

Step 5: If all the destinations are connected to the source and the current

solution is fractional go to Step 6;

Step 6: For each source-destination pair, solve the maximum flow problem

with the current y as capacities;

Step 7: If all the values of the maximum flow problems are greater than or

equal to 1, solve the integer problem, x is the optimal solution and go

to Step 2;

Step 8: If at least one value of the maximum flow problems is lower than 1;

define S corresponding to the minimum capacity cut; add the con-

straints (2.25) relative to S to the current formulation, perform the

preprocessing of the constraint matrix, solve the linear relaxation of

the problem and go to Step 6.

The preprocessing of the matrix, used in both methods, consists in finding

and erasing the dominated columns and rows. We take advantage of the
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fact that the matrix is composed by only ones and zeros and we use the com-

mon preprocessing techniques for the Set Covering problem (see Proposition

1.2.1). A dominated column is either a null column or a column whose cost

(power) is not smaller than that of another column which is, component-

wise, not greater, while a row is dominated if there exists another row of

the matrix which is, component-wise, not greater. The convergence of both

the procedures is guaranteed because the number of inequalities (2.25) is,

albeit huge, finite.

2.8 Experimental Results

We have implemented the solution algorithms in C and we have run the

codes on a Dual Intel Xeon 3.2GHz machine with 4 GB RAM memory using

the version 9.1 of Cplex as solver.

The experiments have been performed on a set of test problems with

increasing number of nodes and of possible destinations; for each problem

size, 20 different instances are generated. The nodes of the networks have

been uniformly generated on a grid of size 10000 × 10000 and the source

and the destinations have been randomly selected among the generated

nodes as well. To obtain the power values from the distances we have set

the coefficient κ to 2, while we have set to 3600 seconds the maximum

resolution time, after which the solution process is interrupted.

Our computational results have been summarized in Tables 2.2, 2.3 and

2.4 in which we indicate with Cplex 9.1 the solution by the integer cplex

solver of the entire problem (including all the constraints), withmethod I the

method of choosing violated inequalities among all the generated constraints

and with method II the method in which we generate violated constraints
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Table 2.2: Average computational times for randomly generated problems with

up to 15 nodes

Cplex 9.1 method I method II

n m T σ T σ It T σ It

5 1 0.0000 0.000 0.0005 0.000 2.1 0.001 0.002 2.8

5 2 0.0000 0.000 0.0002 0.000 2.2 0.002 0.004 3.6

5 3 0.0000 0.000 0.0002 0.000 2.4 0.001 0.003 4.1

5 4 0.0000 0.000 0.0002 0.000 2.6 0.002 0.004 4.5

10 1 0.010 0.005 0.000 0.000 2.7 0.003 0.006 5.5

10 2 0.016 0.005 0.003 0.004 2.8 0.008 0.009 8.0

10 5 0.025 0.004 0.002 0.012 2.9 0.015 0.718 12.3

10 9 0.022 0.004 0.004 0.005 3.0 0.024 0.014 15.3

15 1 1.207 0.171 0.073 0.047 3.4 0.015 0.022 10.1

15 5 3.849 0.522 0.127 0.046 4.1 0.079 0.054 28.5

15 10 4.859 2.217 0.134 0.077 3.6 0.127 0.054 36.7

15 14 5.171 2.615 0.115 0.061 5.7 0.143 0.058 38.5

on the basis of the nodes reachable by the signal spread by the source. All

the methods use Cplex to solve the resulting LP or IP problems.

In the Tables 2.2, 2.3 and 2.4, we report the number of nodes of the

network n, the number of destinations m, the average execution time T , its

standard deviation σ and the average number of iterations It required to

solve the problem. Moreover, in Table 2.4 we report the percentage NS%

of the not solved instances within the time limit.

The best solution average time among the solving procedures is high-

lighted with a bold character. The results in Table 2.2 are related to net-

works with 5, 10 and 15 nodes combined with all the possible numbers of

destinations. It is clear that for networks with 5 and 10 nodes, all the

procedures solve the MPM problem quite quickly; Cplex seems to be more

efficient only when n = 5, whereas the first method works better when

n = 10. When we increase the value of n the second method has the best
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Table 2.3: Average computational times for randomly generated problems with

20 nodes

method I method II

n m T σ It T σ It

20 1 2.628 1.606 5.8 0.057 0.059 19.1

20 5 4.923 2.030 6.4 0.306 0.228 45.4

20 10 4.828 2.086 5.4 0.694 0.392 62.0

20 15 4.207 1.684 4.9 0.779 0.412 65.0

20 19 4.034 1.328 4.1 0.904 0.678 66.6

Table 2.4: Average computational times for randomly generated problems with

30, 50 and 100 nodes

method II

n m T σ It NS%

30 1 1.288 1.315 61.4

30 10 8.930 6.086 111.7

30 15 7.789 4.609 108.4

30 29 9.077 5.325 106.4

50 1 6.647 7.588 74.7

50 10 512.223 401.593 294.2 10

50 25 640.236 889.187 248.0 30

50 49 712.714 646.270 214.5 10

100 1 348.916 375.378 143.0

100 5 927.537 606.565 212.8 60

performance. For networks with 15 nodes, the first method is the most

efficient when the number of destination is greater than 10 and so for the

broadcasting version of the problem.

In Table 2.3, we present the results for the MPM problem on networks

with 20 nodes; while it is not possible to solve any of these problems gener-

ating the whole matrix of constraints, the second method outperforms the

first method even when m = n− 1.
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A different situation is shown in Table 2.4. For the MPM problems

on networks with more than 30 nodes, the first method fails to solve the

problem because of the memory required to generate the whole constraint

matrix. On the contrary, the second method is still able to solve the MPM

problem on networks with up to 50 nodes, but presently there are still some

instances not solved within the time limit of an hour. Instances with 100

nodes have been solved, by now, for just a limited number of destination.

2.9 Concluding Remarks

We have proposed a Set Covering–based formulation for the Minimum

Power Multicasting problem in Ad-Hoc networks, and we presented two pos-

sible algorithms for its solution. We carried out an experimental study by

using a set of test problems randomly generated having a number of nodes

ranging from 5 to 100. While we think that the presented formulation rep-

resents an original and effective approach to the problem, we are conscious

that some improvements should be done. The theoretical and polyhedral

properties of the model may be investigated together with a better way of

generating violated constraints. In this direction goes the following chapter.


