
Chapter 1

Preliminaries

In this introductive chapter, we want to recall several basic definitions

and properties ([10], [64], [68], [77], [86]) that will be used in the subse-

quent chapters. A list of further notations can be found at the end of the

dissertation.

First of all, a Linear Programming problem (LP) consists in minimizing

or maximizing a linear function, called objective function, on a feasible

region defined by a series of linear constraints. An example of LP problem

in standard form looks like the following:

min cT x

s.t.

A x = b

x ≥ 0

(1.1)

where A is am×n real matrix with rankm, c is an n-dimensional vector, b an

m-dimensional vector and x an n-dimensional vector of decision variables.

2 Preliminaries

If the decision variables take only integer values, the problem:

min cT x

s.t.

A x = b

x ≥ 0

x ∈ Z
n

(1.2)

is an Integer Linear Programming (IP) problem. In particular, if all the

decision variables are restricted to 0−1 values, the problem is called Binary

Integer Programming (BIP).

If some, but not all the decision variables are integer, the problem:

min cT x+ dT y

s.t.

A x+By = b

x ≥ 0, y ≥ 0

x ∈ Z
n

(1.3)

is called Mixed Integer Programming (MIP) and B is a m × p matrix, d is

a p-dimensional vector and y is a p-dimensional vector of real variables.

1.1 Formulations

Definition 1.1.1. The feasible region of an LP problem (1.1) is the set

P = {x ∈ R
n
+ : Ax = b} which is a polyhedron, while the feasible region of

an IP problem (1.2) is the set S := P ∩Z
n. If the polyhedron P is bounded,

it is called polytope.

Preliminaries 3

Definition 1.1.2 (Relaxation of an IP problem). Given the IP problem

(1.2) with feasible region S, a problem of this type: min{cTx : x ∈ T ⊆ R
n}

is a relaxation of it if S ⊆ T .

Naturally, the optimal value of a relaxation of an IP problem is lower than

the optimal value of the IP problem and so it represents a lower bound for

the optimal value of the IP problem.

There are several possible relaxations of an IP problem, but in the fol-

lowing we will consider only the linear relaxation.

Definition 1.1.3 (Linear relaxation). The linear programming relax-

ation of an IP problem: min{cT x : x ∈ P ∩ Z
n} with formulation P =

{x ∈ R
n : Ax ≥ b} is the LP problem: min{cT x : x ∈ P}.

The linear programming relaxation can be, thus, obtained by eliminating

the restriction that the variables x need to be integer. For this reason, again,

the optimal value of the linear relaxation of an IP problem is a lower bound

of the optimal value of the IP problem itself.

Definition 1.1.4. Given two linear formulations P1 and P2 for an integer

problem:

(i) the formulation P1 is better than P2 if and only if P1 ⊂ P2,

(ii) the formulation P1 is equivalent to P2 if and only if P1 = P2,

(iii) if neither formulation is better than the other they are incomparable.

Definition 1.1.5 (Convex hull). Given a set S ⊆ R
n, the convex hull of S,

denoted by conv(S), is the set of all the possible finite convex combination

of elements of S, i.e. conv(S) := {x ∈ R
n : x =

∑k

i=1 αixi,
∑k

i=1 αi =

1, αi ≥ 0 ∀i ∈ {1, .., k}, for all {x1, .., xk} subsets of S}.

4 Preliminaries

Among all the possible linear relaxations of an integer programming prob-

lem, the best one is the convex hull of all its feasible points:

PI := conv(P ∩ Z
n) = conv({x ∈ R

n : Ax ≥ b, x integer}). (1.4)

Proposition 1.1.1. It holds that PI ⊆ P .

In Figure 1.1, the yellow polytope is the convex hull of a feasible set S

of integer points and it represents an ideal formulation for an IP problem

with feasible set S, while the polytope which is the union of the yellow and

green portions is a possible linear relaxation of the IP formulation.

Figure 1.1: The ideal formulation and a possible LP relaxation of an IP

problem

Definition 1.1.6 (Full–dimensional polyhedron). A polyhedron P =

{x ∈ R
n : Ax ≥ b} is full-dimensional if and only if dim(P) = n, where

dim(P) is the maximum number of affinely independent points of P minus

one.

In general, it is not trivial to give a complete description of the polyhe-

dron PI of an IP or MIP problem, so that it is interesting to strengthen

certain inequalities, in particular, to find facet defining inequalities.

Preliminaries 5

Definition 1.1.7 (Valid inequalities). Let π ∈ Rn, π0 ∈ R and let

P ⊆ R
n be a polyhedron; the inequality πTx ≤ π0 is a valid inequality

for the polyhedron P if πTx ≤ π0 for all the points x ∈ P , that is if

P ⊆ {x ∈ R
n : πT x ≤ π0}.

Definition 1.1.8 (Facet defining inequalities). A valid inequality πTx ≤

π0 is a facet defining inequality for a polyhedron P if and only if the equality

πTx = π0 is verified for dim(P) affinely independent points of P .

Another definition we should give is the definition of the support of a

vector:

Definition 1.1.9 (Support). If x∗ is an n-dimensional vector its support

is the set:

Supp := {j ∈ {1, 2, .., n} : x∗j 6= 0}.

1.2 Set Covering problem

The Set Covering problem is a classical Combinatorial Optimization

problem of great theoretical and practical interest.

Definition 1.2.1 (Set Covering problem). Given a finite set I and a

family F = {Fj}j∈J of subsets of I, given a cost cj ∈ R
+ associated with

each element Fj of the family F . A subset J of the set J is a cover of I if

• I =
⋃

i∈J

Fi

and it has the minimum cost if

∑

j∈J

cj ≤
∑

j∈J ′

cj, ∀ J ′ ⊆ J, J ′ cover of I.

6 Preliminaries

The Set Covering problem consists, thus, in finding a subset J of J such

that

I =
⋃

j∈J

Fj

and the cost
∑

j∈J cj is the minimum of the costs of all the possible covers

of I.

The Set Covering problem has been shown to be NP-complete in 1972

[45]. This type of problem can be formulated as an optimization problem

introducing a 0− 1 matrix A ∈ R
n×m called incidence matrix whose generic

element aij is defined by:

aij =

{

1 if i ∈ Fj,

0 otherwise.

A formulation of the Set Covering problem can be, thus, the following:

min cT x

s.t.

Ax ≥ 1

x ∈ {0, 1}n

(1.5)

where c is a n-dimensional vector of costs.

There are several conditions for reducing the size of the incidence matrix

of the Set Covering problem. Indeed, denoting by aTi the ith row of A and

by Aj the jth column of A, the next proposition states some dominance

rules for rows and columns of A.

Proposition 1.2.1 (Dominance of rows and columns).

i) If the ith row is null, then the Set Covering problem is infeasible.

Preliminaries 7

ii) If the ith row has only one element equal to one in the kth column,

then set xk = 1 and erase not only the column Ak, but also all the

rows j such that ajk = 1.

iii) Let Ai and Aj be two columns such that aki ≥ akj for every row index

k. If the corresponding costs are such that ci ≤ cj, then erase the

column j.

iv) Let aTi and aTj be two rows such that aik ≥ ajk for every column index

k, then covering the jth row implies the covering of the ith row so that,

the ith row can be erased.

We denote by M the set of the row indices of the incidence matrix A and

by N the set of the column indices of A. The Set Covering polytope PI(A)

is:

PI(A) := conv
(

{x ∈ R
|N |
+ : Ax ≥ 1, x ≤ 1, x integer}

)

and the relaxed polytope P (A) is:

P (A) := {x ∈ R
|N |
+ : Ax ≥ 1, x ≤ 1}.

For each i ∈M , we denote by N i the set of the column indices j such that

the value of the element aij of the matrix A is one, i.e.,

N i := {j ∈ N : aij = 1}.

The Set Covering polytope has been widely studied (see e.g. [7], [8], [22],

[76]) and here we summarize some of its properties.

Proposition 1.2.2.

• PI(A) is full-dimensional if and only if |N i| ≥ 2 for all i ∈M ;

• if PI(A) is full-dimensional, then the inequality xi ≥ 0 defines a facet

of PI(A) if and only if |N i \ {j}| ≥ 2 for all i ∈M ;

8 Preliminaries

• if PI(A) is full-dimensional, then all the inequalities xj ≤ 1 for all

j ∈ N define facets of PI(A);

• if PI(A) is full-dimensional and π0 > 0, then all facet defining in-

equalities π x ≥ π0 for PI(A) have πj ≥ 0 for all j ∈ N .

Remark 1.2.1. The only facet defining inequalities for the Set Covering

polytope having right hand side equal to one are among the inequalities of

the system Ax ≥ 1.

1.3 Graphs

We report here several definitions about the graphs.

Definition 1.3.1 (Undirected and directed Graph). An undirected

graph G is a pair G = (V,E), where V is a finite set of nodes or vertices and

E is a family of subsets of V of cardinality two, called edges. Furthermore,

a directed graph D is a pair D = (V,A) where V is the set of vertices and

A is a set of ordered pairs of vertices, called arcs.

Definition 1.3.2 (Path). Given a graph G = (V,E) a path is a sequence

[v1, v2, ..., vk] of nodes with k > 1, such that each pair of consecutive nodes

belongs to E and there is no repetition of nodes in the sequence.

Definition 1.3.3 (Cycle). Given a graph G = (V,E) a cycle is a sequence

[v1, v2, ..., vk] with k ≥ 1, such that each pair of consecutive nodes belongs

to E, the nodes v1, v2, ..., vk−1 are distinct and v1 = vk.

Definition 1.3.4 (Tree). A tree T = (V ′, E ′) is a connected graph with

no cycles.

Definition 1.3.5 (Cutset). Let G = (V,E) be an undirected graph, S be

a subset of V and Sc its complementary in V , a cutset is the set: δ(S) :=

Preliminaries 9

{e = {i, j} ∈ E : i ∈ S, j ∈ Sc}. If the graph G = (V,A) is a directed

graph, then for S ⊂ V two directed cuts can be defined:

δ+(S) := {(i, j) ∈ A : i ∈ S, j ∈ Sc}

is the set of the arcs outgoing from S and

δ−(S) := {(i, j) ∈ A : i ∈ Sc, j ∈ S}

is the set of the incoming arcs in S.

Definition 1.3.6 (degree). The degree of a node v ∈ V is the cardinality

of δ({v}). For simplicity it is common to use δ(v) instead of δ({v}). In

a directed graph, the set of the incoming arcs in v is denoted by δ−(v),

whereas the set of the outgoing arcs from v is denoted by δ+(v).

1.4 Shortest Path, Spanning Tree and Max-

imum Flow problems

Three well studied problems are defined in this section: the Shortest

Path problem, the Minimum Spanning Tree problem and the Maximum

Flow problem.

Definition 1.4.1 (The Shortest Path). Given a graph G = (V,E) with

nonnegative cost (or length) associated with each edge e ∈ E, the Shortest

Path (SP) problem consists in finding a path from a source node s to a

terminal node t with the minimum total cost (or length).

The Shortest Path problem is polynomially solvable and Dijkstra’s algo-

rithm is an efficient algorithm for solving it. This algorithm [27] starts with

the node s ∈ V and a set L := {s}; at each iteration the algorithm labels

10 Preliminaries

a node i ∈ Lc with the shortest length of a path from s to i with internal

nodes in L, updates the set L := L ∪ {i} and updates the distances from s

to the nodes in L. This process is repeated until t ∈ L.

Definition 1.4.2 (The Minimum Spanning tree). Let G = (V,E) be

a graph with nonnegative cost (or weight) associated with each edge e ∈ E,

the Minimum Spanning Tree problem consists in finding a tree with the

minimum total cost (or weight) that spans all the nodes of G.

The greedy process that underlies Dijkstra’s algorithm is similar to the

process used in Prim’s algorithm. Prim’s algorithm [70] is used to find the

Minimum Spanning Tree in a graph G = (V,E). Starting with a node s ∈ V

and a set L := {s}, at each iteration the algorithm chooses a minimum-cost

edge e = {u, v} ∈ E, connecting a node u ∈ L to a node v ∈ Lc and updates

the set L := L ∪ {v}. This process is repeated until L = V .

Definition 1.4.3 (Maximum Flow problem in capacitated graph).

Given a directed graph G = (V,A), two different nodes s and t belonging

to V and a nonnegative capacity uij for each arc (i, j) ∈ A, the Maximum

Flow problem consists in finding the maximum value of f such that a |A|-

dimensional nonnegative vector x satisfies the flow conservation constraints

∑

(i,j)∈A

xij −
∑

(j,i)∈A

xji =















f if i = s,

0 ∀ i ∈ V \ {s, t},

−f if i = t,

not exceeding the capacities on the arcs (0 ≤ xij ≤ uij, ∀(i, j) ∈ A).

Definition 1.4.4 (Cut and capacity of a cut). Given a directed graph

G = (V,A) with a nonnegative capacity uij for each arc (i, j) ∈ A and given

two different nodes s and t, an s − t cut is a partition (S, Sc) of the set V

Preliminaries 11

such that s ∈ S and t ∈ Sc. The capacity of this s− t cut is

C(S, Sc) :=
∑

(i, j) ∈ A

i ∈ S, j ∈ Sc

uij

Remark 1.4.1. The maximum flow value equals the total net flow across

any s− t cut (S, Sc):

f =
∑

(i, j) ∈ A

i ∈ S, j ∈ Sc

xij −
∑

(j, i) ∈ A

j ∈ Sc, i ∈ S

xji

Proposition 1.4.1 (Max-flow–Min-cut). The value of a Maximum Flow

problem equals the capacity of a Minimum cut [33].

1.5 Steiner Tree problem

The Steiner Tree problem in a network is the problem of connecting a

set of required vertices with the minimum cost.

Definition 1.5.1 (The Steiner Tree Problem (ST)). Given an undi-

rected graph G = (V,E) with a cost (or weight) ce on each edge e ∈ E

and given a subset of the nodes R, called required nodes; the Steiner Tree

problem consists in finding a minimum cost subtree of G that spans all the

nodes in R with the possibility of including or not the nodes in V \R, which

are called Steiner nodes.

In general, the Steiner Tree problem is an NP-complete problem. Two

special versions of the problem are polynomially solvable: if |R| = 2, then

the problem reduces to the Shortest Path problem and if R = V , then the

problem is the minimum Spanning Tree problem.

12 Preliminaries

Definition 1.5.2 (Steiner Arborescence problem). The Steiner Ar-

borescence problem is the directed version of the ST problem; the graph G

is a directed weighted graph, a root node s, called source, is given and it is

required to find a directed path from s to every terminal nodes in R with

the minimum cost.

The cost or weight of a Steiner Tree T is indicated by c(T) and it is

defined as follows:

c(T) :=
∑

e∈T

ce.

1.5.1 Preprocessing

Preprocessing the graph is an important factor for solving the ST prob-

lem in a reasonable time. It is applied on the undirected graph G = (V,E)

and the goal of this process is to reduce the size of the problem contract-

ing or deleting nodes or edges in order to obtain an equivalent but reduced

graph G′ = (V ′, E ′) ([6], [9], [16], [47], [81]).

Definition 1.5.3 (Feasible reduction). Given a Steiner Tree problem on

the graph G = (V,E) with terminal set R and costs c, a feasible reduction

is a transformation of the problem into a Steiner Tree problem on the graph

G′ = (V ′, E ′), with terminal set R′, costs c′ and constant cost cr ∈ R+ with

the properties that:

(i) |V ′| ≤ |V |,

(ii) |E ′| ≤ |E|,

(iii) |R′| ≤ |R|,

Preliminaries 13

(iv) if S is a feasible solution for the original problem, then there exists a

feasible solution S ′ for the reduced problem with c(S) = c′(S ′) + cr.

Quite simple reduction tests for the Minimum Steiner Tree are the degree

tests applied recursively to each reduced graph until no more reduction can

be performed.

Proposition 1.5.1 (Degree Reductions). Given a Steiner Tree problem

on the graph G = (V,E), with terminal set R and vector of costs c:

(i) A Steiner node with degree less than or equal to one can be eliminated;

(ii) If a node i in R has degree one, its incident edge {i, j} is contained

in every feasible solution and can be contracted;

(iii) If a Steiner node i has degree two and {i, j} and {i, k} are its adia-

cent edges, then these edges can be replaced by the edge {j, k} whose

associated cost is c(j,k) = c(i,j) + c(i,k).

Remark 1.5.1. Contracting an edge {i, j} incident to a node i ∈ R means:

• if j ∈ R, identify node i with j, eliminate the edge {i, j}, reduce the

cardinality of R and store the cost c(i,j), that is, the costant cost cr of

the definition above is updated, i.e. cr := cr + c(i,j);

• if j ∈ V \ (R ∪ {s}), identify nodes i with j (that becomes a required

node) and update cr.

1.5.2 Reduced costs fixing

Definition 1.5.4 (Reduced costs). Given an LP problem of the form

(1.1), let B be an m×m nonsingular submatrix of A, x be a basic solution

14 Preliminaries

and cB be the vector of costs of the basic variables. For each j ∈ {1, .., n}

the reduced cost cj of the variable xj is defined according to the formula:

cj = cj − cTBB
−1Aj.

Let zLP be the optimal value of the linear relaxation of an IP problem

(see the problem (1.2)) and let zUB be the value of the best feasible solu-

tion known for the problem (an upper bound for the optimal value of the

problem).

Proposition 1.5.2 (Reduced costs fixing). [64] If a nonbasic variable

xj at its lower bound in the optimal solution of the linear relaxation of an

IP is such that zLP + cj ≥ zUB, then there exists an optimal solution of the

IP with xj at its lower bound. Similarly, if a nonbasic variable xk at its

upper bound in the optimal solution of the linear relaxation of an IP is such

that zLP − ck ≥ zUB, then there exists an optimal solution of the IP with xk

at its upper bound.

