Appendix C

Some a priori estimates

The present appendix is devoted to the proof of some a priori estimates involving uniformly elliptic operators. More precisely, we derive a Schauder type parabolic estimate and an L^p elliptic estimate, by making use of classical methods suitably adapted for our purposes. Even though such estimates are well known, we have not found a proof for them exactly in the form we need.

C.1 A Schauder type parabolic estimate

Suppose we are given a second order differential operator

(C.1.1)
$$\Gamma = \sum_{i,j=1}^{N} a_{ij} D_{ij} + \sum_{i=1}^{N} b_i D_i + c_i$$

whose coefficients $a_{ij} = a_{ji}, b_i, c$ belong to $C^{\frac{\alpha}{2}, \alpha}(]0, T[\times \Omega)$, where $\alpha \in]0, 1[, \Omega \text{ is a bounded open subset of } \mathbb{R}^N$ with $C^{2+\alpha}$ boundary and $T < +\infty$. Assume also that

(C.1.2)
$$\sum_{i,j=1}^{N} a_{ij}\xi_i\xi_j \ge \nu |\xi|^2,$$

for some $\nu > 0$. Then the operator $L = D_t - \Gamma$ is uniformly parabolic in $]0, T[\times \Omega]$. Set

$$K = \max\left\{ \|a_{ij}\|_{C^{\frac{\alpha}{2},\alpha}(]0,T[\times\Omega)}, \|b_i\|_{C^{\frac{\alpha}{2},\alpha}(]0,T[\times\Omega)}, \|c\|_{C^{\frac{\alpha}{2},\alpha}(]0,T[\times\Omega)} \right\},\$$

where we recall that

$$\|v\|_{C^{\frac{\alpha}{2},\alpha}(]0,T[\times\Omega)} = \|v\|_{\infty} + [v]_{C^{\frac{\alpha}{2},\alpha}(]0,T[\times\Omega)}$$
$$[v]_{C^{\frac{\alpha}{2},\alpha}(]0,T[\times\Omega)} = \sup_{t\in]0,T[,x,y\in\Omega,x\neq y} \frac{|v(t,x) - v(t,y)|}{|x-y|^{\alpha}} + \sup_{t,s\in]0,T[,t\neq s,x\in\Omega} \frac{|v(t,x) - v(s,x)|}{|t-s|^{\frac{\alpha}{2}}}.$$

Classical parabolic interior Schauder estimates, (see [29, Section 8.11]), say that for every $\varepsilon > 0$ and $\Omega_1 \subset \subset \Omega_2 \subset \subset \Omega$ with $\operatorname{dist}(\Omega_1, \Omega \setminus \Omega_2) > 0$, there exists a constant C > 0, depending on $N, \alpha, \nu, K, \varepsilon$, $\operatorname{dist}(\Omega_1, \Omega \setminus \Omega_2)$, such that for every function $u \in C^{1+\frac{\alpha}{2}, 2+\alpha}(]0, T[\times \Omega_2)$ one has

$$\|u\|_{C^{1+\frac{\alpha}{2},2+\alpha}(]\varepsilon,T[\times\Omega_{1})} \leq C\Big(\|Lu\|_{C^{\frac{\alpha}{2},\alpha}(]0,T[\times\Omega_{2})} + \|u\|_{C(]0,T[\times\Omega_{2})}\Big),$$

where (we do not write explicitly the domain)

$$\begin{aligned} \|u\|_{1+\frac{\alpha}{2},2+\alpha} &= \|u\|_{1,2} + [u]_{1+\frac{\alpha}{2},2+\alpha} \\ \|u\|_{1,2} &= \|u\|_{\infty} + \|u_t\|_{\infty} + \|Du\|_{\infty} + \|D^2u\|_{\infty}, \\ [u]_{1+\frac{\alpha}{2},2+\alpha} &= [u_t]_{\frac{\alpha}{2},\alpha} + [D^2u]_{\frac{\alpha}{2},\alpha} \end{aligned}$$

(see [30, Theorem IV.10.1]). Here, we derive interior estimates only with respect to the time variable. More precisely, we set

$$\begin{array}{lll} Q &=& (-\infty,T)\times\Omega,\\ Q_{\varepsilon} &=& (\varepsilon,T)\times\Omega,\\ S_{\varepsilon} &=& (\varepsilon,T)\times\partial\Omega. \end{array}$$

Then, under the stated assumptions on Ω and Γ , the following theorem holds.

Theorem C.1.1 There exists C > 0 depending on $N, \alpha, \nu, K, \varepsilon, \Omega$ such that for every $u \in C^{1+\frac{\alpha}{2},2+\alpha}(Q_{\varepsilon})$ with normal derivative $\frac{\partial u}{\partial \eta}$ equal to 0 on $\partial\Omega$, one has

$$\|u\|_{C^{1+\frac{\alpha}{2},2+\alpha}(Q_{2\varepsilon})} \le C\Big(\|Lu\|_{C^{\frac{\alpha}{2},\alpha}(Q_{\varepsilon})} + \|u\|_{C(Q_{\varepsilon})}\Big).$$

The proof of the above theorem relies on the classical technique used to prove interior estimates, namely, the introduction of a sequence of suitable cut-off functions. In this case, we choose such functions depending only on t.

PROOF. We recall that, given a function $v \in C^{1+\frac{\alpha}{2},2+\alpha}(Q)$, the following interpolatory estimate holds (see [29, Lemma 10.2.1])

(C.1.3)
$$\|v_t\|_{\infty} + \|Dv\|_{\infty} + \|D^2v\|_{\infty} + [Dv]_{\frac{\alpha}{2},\alpha} + [v]_{\frac{\alpha}{2},\alpha} \le \theta \|v\|_{1+\frac{\alpha}{2},2+\alpha} + M\theta^{-\gamma} \|v\|_{\infty},$$

where γ and M are positive constants and $\theta > 0$ is arbitrarily small. Such an estimate can be deduced from the analogous one in \mathbb{R}^{N+1} by using suitable extension operators (which do exist thanks to the regularity of Ω). Moreover if v has normal derivative equal to zero on $\partial\Omega$ then

(C.1.4)
$$\|v\|_{C^{1+\frac{\alpha}{2},2+\alpha}(Q)} \le C\Big(\|Lv\|_{C^{\frac{\alpha}{2},\alpha}(Q)} + \|v\|_{C(Q)}\Big),$$

with $C = C(\alpha, \nu, N, K, \Omega) > 0$. Let us introduce the sequences

$$t_n = \sum_{j=0}^n 2^{-j}, \qquad s_n = \varepsilon (3 - t_n).$$

We observe that (s_n) is decreasing with $s_0 = 2\varepsilon$, $s_\infty = \varepsilon$ and $s_n - s_{n+1} = \varepsilon 2^{-n-1}$. Moreover, let ψ_n be a sequence of functions in $C^{\infty}(\mathbb{R})$ such that $\psi_n(t) = 1$ for $t \in (s_n, T)$, supp $\psi_n \subset (s_{n+1}, 2T)$, $0 \le \psi \le 1$ and

(C.1.5)
$$\|\psi'_n\|_{\infty} \le L2^n, \quad \|\psi''_n\| \le L4^n,$$

for some constant L > 0 depending also on ε . Hence, the function $\psi_n u$ is in $C^{1+\frac{\alpha}{2},2+\alpha}(Q)$ and

$$\frac{\partial(\psi_n u)}{\partial \eta} = \psi_n \frac{\partial u}{\partial \eta} = 0, \quad \text{on } \partial \Omega.$$

Applying estimate (C.1.4) we obtain

(C.1.6)
$$\|\psi_n u\|_{C^{1+\frac{\alpha}{2},2+\alpha}(Q)} \le C\Big(\|L(\psi_n u)\|_{C^{\frac{\alpha}{2},\alpha}(Q)} + \|\psi_n u\|_{C(Q)}\Big),$$

with C > 0 independent of n. One has $L(\psi_n u) = \psi_n L u + \psi'_n u$. Then, from (C.1.5) it follows that

$$\begin{aligned} (C.1.7) \qquad & \|\psi_{n}Lu\|_{C^{\frac{\alpha}{2},\alpha}(Q)} &\leq & \|Lu\|_{C^{\frac{\alpha}{2},\alpha}(Q_{\varepsilon})} + \|Lu\|_{C(Q_{n+1})} \|\psi_{n}\|_{C^{\frac{\alpha}{2}}(I_{n+1})} \\ &\leq & \|Lu\|_{C^{\frac{\alpha}{2},\alpha}(Q_{\varepsilon})} + 2^{n}c(\varepsilon,K)\|u\|_{C^{1,2}(Q_{n+1})}, \\ &\leq & \|Lu\|_{C^{\frac{\alpha}{2},\alpha}(Q_{\varepsilon})} + 4^{n}c(\varepsilon,K)\|u\|_{C^{1,2}(Q_{n+1})}, \end{aligned}$$

where $I_{n+1} = (s_{n+1}, T)$ and $Q_{n+1} = I_{n+1} \times \Omega$. Analogously,

$$(C.1.8) \qquad \|\psi'_{n}u\|_{C^{\frac{\alpha}{2},\alpha}(Q)} \leq \|\psi'_{n}\|_{C(I_{n+1})}\|u\|_{C^{\frac{\alpha}{2},\alpha}(Q_{n+1})} + \|\psi'_{n}\|_{C^{\frac{\alpha}{2}}(I_{n+1})}\|u\|_{C(Q_{n+1})} \\ \leq 2^{n}L\|u\|_{C^{\frac{\alpha}{2},\alpha}(Q_{n+1})} + 4^{n}L\|u\|_{C(Q_{n+1})} \\ \leq 4^{n}L\|u\|_{C^{\frac{\alpha}{2},\alpha}(Q_{n+1})}.$$

Taking (C.1.7) and (C.1.8) into account, from (C.1.6) we infer (for a possibly different C)

$$\begin{aligned} \|\psi_{n}u\|_{C^{1+\frac{\alpha}{2},2+\alpha}(Q)} &\leq C\Big(\|Lu\|_{C^{\frac{\alpha}{2},\alpha}(Q_{\varepsilon})} + \|u\|_{C(Q_{\varepsilon})}\Big) \\ &+4^{n}c(K,\varepsilon)\Big(\|u\|_{C^{1,2}(Q_{n+1})} + \|u\|_{C^{\frac{\alpha}{2},\alpha}(Q_{n+1})}\Big) \\ &\leq C\Big(\|Lu\|_{C^{\frac{\alpha}{2},\alpha}(Q_{\varepsilon})} + \|u\|_{C(Q_{\varepsilon})}\Big) \\ &+4^{n}c(K,\varepsilon)\Big(\|\psi_{n+1}u\|_{C^{1,2}(Q)} + \|\psi_{n+1}u\|_{C^{\frac{\alpha}{2},\alpha}(Q)}\Big).\end{aligned}$$

where in the last inequality we have used the fact that $\psi_{n+1} = 1$ in Q_{n+1} . Using the interpolatory estimate (C.1.3) we find that for every $\theta > 0$

$$\|\psi_{n}u\|_{C^{1+\frac{\alpha}{2},2+\alpha}(Q)} \leq C\Big(\|Lu\|_{C^{\frac{\alpha}{2},\alpha}(Q_{\varepsilon})} + \|u\|_{C(Q_{\varepsilon})}\Big) + 4^{n}c(K,\varepsilon)\theta\|\psi_{n+1}u\|_{C^{1+\frac{\alpha}{2},2+\alpha}(Q)} + 4^{n}C(K,\varepsilon)\theta^{-\gamma}\|\psi_{n}u\|_{C(Q)}.$$

Let us consider $\xi = 4^n c(K, \varepsilon) \theta$, with ξ independent of n. Choosing a small θ we may assume that $\xi < 1$. Since $\theta^{-\gamma} = \left(\frac{\xi}{C(K,\varepsilon)}\right)^{-\gamma} 4^{n\gamma}$, the last estimate becomes

$$\begin{aligned} \|\psi_{n}u\|_{C^{1+\frac{\alpha}{2},2+\alpha}(Q)} &\leq C\Big(\|Lu\|_{C^{\frac{\alpha}{2},\alpha}(Q_{\varepsilon})} + \|u\|_{C(Q_{\varepsilon})}\Big) \\ &+ \xi \|\psi_{n+1}u\|_{C^{1+\frac{\alpha}{2},2+\alpha}(Q)} + c_{1}(K,\varepsilon,M,\gamma)4^{(\gamma+1)n}\|u\|_{C(Q)}. \end{aligned}$$

Taking, if necessary, a smaller ξ in order to have $4^{\gamma+1}\xi < 1$, by multiplying by ξ^n and summing from 0 to ∞ we obtain

$$\sum_{n=0}^{\infty} \xi^{n} \|\psi_{n}u\|_{C^{1+\frac{\alpha}{2},2+\alpha}(Q)} \leq \frac{C}{1-\xi} \Big(\|Lu\|_{C^{\frac{\alpha}{2},\alpha}(Q_{\varepsilon})} + \|u\|_{C(Q_{\varepsilon})} \Big) + \sum_{n=1}^{\infty} \xi^{n} \|\psi_{n}u\|_{C^{1+\frac{\alpha}{2},2+\alpha}(Q)} + C_{2} \|u\|_{C(Q)}.$$

Hence

$$\|\psi_0 u\|_{C^{1+\frac{\alpha}{2},2+\alpha}(Q)} \le \overline{C}(\|Lu\|_{C^{\frac{\alpha}{2},\alpha}(Q_{\varepsilon})} + \|u\|_{C(Q_{\varepsilon})}),$$

with $\overline{C} = \overline{C}(\varepsilon, K, N, \nu, \alpha, \Omega)$. Since $\psi_0 = 1$ in $Q_{2\varepsilon}$, the statement follows.

C.2 An L^p elliptic estimate

Let Γ be the operator defined in (C.1.1). Unlike the previous section, here it is sufficient to assume that the coefficients a_{ij} are uniformly continuous and bounded in Ω and that b_i, c belong to $L^{\infty}(\Omega)$, with Ω bounded open subset of \mathbb{R}^N of class C^2 . We also assume the ellipticity condition (C.1.2).

We present interior elliptic estimates, where the involved subdomains are not assumed to have compact closure in Ω , but are allowed to have a part of the boundary overlapped on $\partial\Omega$. Neumann boundary conditions are prescribed only on this part.

Theorem C.2.1 Let $1 and let <math>\Omega_0$ and Ω_1 be open subsets contained in Ω such that $\partial \Omega_0 \cap \partial \Omega \neq \emptyset$, $\partial \Omega_1 \cap \partial \Omega \neq \emptyset$ and dist $(\Omega_0, \Omega \setminus \Omega_1) > 0$. Assume also that Ω_1 is of class C^2 . Then there exists a constant C > 0, depending on $p, N, \nu, \Omega_0, \Omega_1$, the L^{∞} norms of all the coefficients and the modulus of continuity of a_{ij} , such that for every function $u \in W^{2,p}(\Omega_1)$ with $\frac{\partial u}{\partial \eta} = 0$ on $\partial \Omega_1 \cap \partial \Omega$, the estimate

$$|u||_{W^{2,p}(\Omega_0)} \le C(||\Gamma u||_{L^p(\Omega_1)} + ||u||_{L^p(\Omega_1)})$$

holds.

PROOF. Let us consider an increasing sequence of domains Ω_n such that $\Omega_{\infty} = \Omega_1$ and dist $(\Omega_n, \Omega \setminus \Omega_{n+1}) = O(2^{-n})$. Let θ_n be a function in $C^{\infty}(\mathbb{R}^N)$ such that $\theta_n = 1$ in Ω_n , $\theta_n = 0$ in an open set containing $\Omega \setminus \Omega_{n+1}$, $0 \le \theta \le 1$, $\frac{\partial \theta}{\partial \eta} = 0$ on $\partial \Omega$. We note that in the case where Ω is the halfspace $\{x_N > 0\}$, it is sufficient to take θ_n as an even reflection with respect to x_N in order to have $\frac{\theta_n}{\partial \eta} = 0$ when $x_N = 0$. For a regular bounded set, one can constructed such a function using the first step and local coordinates. Moreover, the first and second order derivatives of the functions θ_n satisfy the estimates

$$||D\theta_n||_{\infty} \le L2^n, \qquad ||D^2\theta_n||_{\infty} \le L4^n.$$

Since $\theta_n u \in W^{2,p}(\Omega_1)$ and

$$\frac{\partial(\theta_n u)}{\partial \eta} = \frac{\partial \theta_n}{\partial \eta} u + \frac{\partial u}{\partial \eta} \theta_n = 0, \quad \text{on } \partial \Omega_1$$

we may apply the classical global L^p estimate (see [32, Theorem 3.11(iii)]) and we find that

(C.2.1)
$$\|\theta_n u\|_{W^{2,p}(\Omega_1)} \le C(\|\Gamma(\theta_n u)\|_{L^p(\Omega_1)} + \|\theta_n u\|_{L^p(\Omega_1)}).$$

Now, it is readily seen that $\Gamma(\theta_n u) = \theta_n \Gamma u + B_n u$, where B_n is a first order differential operator, whose coefficients involve the coefficients of Γ , θ_n , $D\theta_n$ and $D^2\theta_n$. Therefore

$$\begin{aligned} \|B_{n}u\|_{L^{p}(\Omega_{1})} &\leq 4^{n}C\|u\|_{W^{1,p}(\Omega_{n+1})} \leq 4^{n}C\|\theta_{n+1}u\|_{W^{1,p}(\Omega_{1})} \\ &\leq 4^{n}C(\varepsilon\|\theta_{n+1}u\|_{W^{2,p}(\Omega_{1})} + \varepsilon^{-1}\|\theta_{n+1}u\|_{L^{p}(\Omega_{1})}) \end{aligned}$$

where we have used the interpolatory estimate $||v||_{W^{1,p}(\Omega_1)} \leq \varepsilon ||v||_{W^{2,p}(\Omega_1)} + c\varepsilon^{-1} ||v||_{L^p(\Omega_1)}$, which holds for every function $v \in W^{2,p}(\Omega_1)$ and every $\varepsilon > 0$. Besides, we have $||\theta_n \Gamma u||_{L^p(\Omega_1)} \leq ||\Gamma u||_{L^p(\Omega_1)}$. From (C.2.1) it follows that

$$\begin{aligned} \|\theta_n u\|_{W^{2,p}(\Omega_1)} &\leq C(\|\Gamma u\|_{L^p(\Omega_1)} + 4^n \varepsilon \|\theta_{n+1} u\|_{W^{2,p}(\Omega_1)} \\ &+ 4^n \varepsilon^{-1} \|\theta_{n+1} u\|_{L^p(\Omega_1)} + \|u\|_{L^p(\Omega_1)}). \end{aligned}$$

Set $\xi = C4^n \varepsilon$. We need ξ independent of n. Then $\varepsilon^{-1} = (\xi/C)^{-1}4^n$ and the last inequality becomes

 $\|\theta_n u\|_{W^{2,p}(\Omega_1)} \leq C(\|\Gamma u\|_{L^p(\Omega_1)} + \|u\|_{L^p(\Omega_1)}) + \xi \|\theta_{n+1} u\|_{W^{2,p}(\Omega_1)} + C_1 4^{2n} \|\theta_{n+1} u\|_{L^p(\Omega_1)}.$

Choose ε in such a way that $\xi < 1$ and $\xi 4^2 < 1$. Then multiplying by ξ^n and summing on n from 0 to $+\infty$ we obtain

$$\sum_{n=0}^{\infty} \xi^{n} \|\theta_{n}u\|_{W^{2,p}(\Omega_{1})} \leq \frac{C}{1-\xi} (\|\Gamma u\|_{L^{p}(\Omega_{1})} + \|u\|_{L^{p}(\Omega_{1})}) + \sum_{n=1}^{\infty} \xi^{n} \|\theta_{n}u\|_{W^{2,p}(\Omega_{1})} + C_{2} \|u\|_{L^{p}(\Omega_{1})}$$

which yields

$$\|\theta_0 u\|_{W^{2,p}(\Omega_1)} \le C(\|\Gamma u\|_{L^p(\Omega_1)} + \|u\|_{L^p(\Omega_1)}).$$

Since $\theta_0 = 1$ in Ω_0 we get

$$||u||_{W^{2,p}(\Omega_0)} \le C(||\Gamma u||_{L^p(\Omega_1)} + ||u||_{L^p(\Omega_1)}),$$

and the proof is concluded.