Appendix C

Some a priori estimates

The present appendix is devoted to the proof of some a priori estimates involving uniformly elliptic operators. More precisely, we derive a Schauder type parabolic estimate and an L^{p} elliptic estimate, by making use of classical methods suitably adapted for our purposes. Even though such estimates are well known, we have not found a proof for them exactly in the form we need.

C. 1 A Schauder type parabolic estimate

Suppose we are given a second order differential operator

$$
\begin{equation*}
\Gamma=\sum_{i, j=1}^{N} a_{i j} D_{i j}+\sum_{i=1}^{N} b_{i} D_{i}+c \tag{C.1.1}
\end{equation*}
$$

whose coefficients $a_{i j}=a_{j i}, b_{i}, c$ belong to $C^{\frac{\alpha}{2}, \alpha}(] 0, T[\times \Omega)$, where $\left.\alpha \in\right] 0,1[, \Omega$ is a bounded open subset of \mathbb{R}^{N} with $C^{2+\alpha}$ boundary and $T<+\infty$. Assume also that

$$
\begin{equation*}
\sum_{i, j=1}^{N} a_{i j} \xi_{i} \xi_{j} \geq \nu|\xi|^{2} \tag{C.1.2}
\end{equation*}
$$

for some $\nu>0$. Then the operator $L=D_{t}-\Gamma$ is uniformly parabolic in $] 0, T[\times \Omega$. Set

$$
K=\max \left\{\left\|a_{i j}\right\|_{C^{\frac{\alpha}{2}, \alpha}(] 0, T[\times \Omega)},\left\|b_{i}\right\|_{C^{\frac{\alpha}{2}, \alpha}(] 0, T[\times \Omega)},\|c\|_{C^{\frac{\alpha}{2}, \alpha}(] 0, T[\times \Omega)}\right\}
$$

where we recall that

$$
\|v\|_{C^{\frac{\alpha}{2}, \alpha}(] 0, T[\times \Omega)}=\|v\|_{\infty}+[v]_{C^{\frac{\alpha}{2}, \alpha}(] 0, T[\times \Omega)}
$$

$$
[v]_{C^{\frac{\alpha}{2}, \alpha}(] 0, T[\times \Omega)}=\sup _{t \in] 0, T[, x, y \in \Omega, x \neq y} \frac{|v(t, x)-v(t, y)|}{|x-y|^{\alpha}}+\sup _{t, s \in] 0, T[, t \neq s, x \in \Omega} \frac{|v(t, x)-v(s, x)|}{|t-s|^{\frac{\alpha}{2}}}
$$

Classical parabolic interior Schauder estimates, (see [29, Section 8.11]), say that for every $\varepsilon>0$ and $\Omega_{1} \subset \subset \Omega_{2} \subset \subset \Omega$ with $\operatorname{dist}\left(\Omega_{1}, \Omega \backslash \Omega_{2}\right)>0$, there exists a constant $C>0$, depending on $N, \alpha, \nu, K, \varepsilon, \operatorname{dist}\left(\Omega_{1}, \Omega \backslash \Omega_{2}\right)$, such that for every function $u \in C^{1+\frac{\alpha}{2}, 2+\alpha}(] 0, T\left[\times \Omega_{2}\right)$ one has

$$
\|u\|_{C^{1+\frac{\alpha}{2}, 2+\alpha}(] \varepsilon, T\left[\times \Omega_{1}\right)} \leq C\left(\|L u\|_{C^{\frac{\alpha}{2}, \alpha}(] 0, T\left[\times \Omega_{2}\right)}+\|u\|_{C(] 0, T\left[\times \Omega_{2}\right)}\right),
$$

where (we do not write explicitly the domain)

$$
\begin{aligned}
& \|u\|_{1+\frac{\alpha}{2}, 2+\alpha}=\|u\|_{1,2}+[u]_{1+\frac{\alpha}{2}, 2+\alpha} \\
& \|u\|_{1,2}=\|u\|_{\infty}+\left\|u_{t}\right\|_{\infty}+\|D u\|_{\infty}+\left\|D^{2} u\right\|_{\infty} \\
& {[u]_{1+\frac{\alpha}{2}, 2+\alpha}=\left[u_{t}\right]_{\frac{\alpha}{2}, \alpha}+\left[D^{2} u\right]_{\frac{\alpha}{2}, \alpha}}
\end{aligned}
$$

(see [30, Theorem IV.10.1]). Here, we derive interior estimates only with respect to the time variable. More precisely, we set

$$
\begin{aligned}
Q & =(-\infty, T) \times \Omega \\
Q_{\varepsilon} & =(\varepsilon, T) \times \Omega, \\
S_{\varepsilon} & =(\varepsilon, T) \times \partial \Omega
\end{aligned}
$$

Then, under the stated assumptions on Ω and Γ, the following theorem holds.
Theorem C.1.1 There exists $C>0$ depending on $N, \alpha, \nu, K, \varepsilon, \Omega$ such that for every $u \in$ $C^{1+\frac{\alpha}{2}, 2+\alpha}\left(Q_{\varepsilon}\right)$ with normal derivative $\frac{\partial u}{\partial \eta}$ equal to 0 on $\partial \Omega$, one has

$$
\|u\|_{C^{1+\frac{\alpha}{2}, 2+\alpha}\left(Q_{2 \varepsilon}\right)} \leq C\left(\|L u\|_{C^{\frac{\alpha}{2}, \alpha}\left(Q_{\varepsilon}\right)}+\|u\|_{C\left(Q_{\varepsilon}\right)}\right)
$$

The proof of the above theorem relies on the classical technique used to prove interior estimates, namely, the introduction of a sequence of suitable cut-off functions. In this case, we choose such functions depending only on t.

Proof. We recall that, given a function $v \in C^{1+\frac{\alpha}{2}, 2+\alpha}(Q)$, the following interpolatory estimate holds (see [29, Lemma 10.2.1])

$$
\begin{equation*}
\left\|v_{t}\right\|_{\infty}+\|D v\|_{\infty}+\left\|D^{2} v\right\|_{\infty}+[D v]_{\frac{\alpha}{2}, \alpha}+[v]_{\frac{\alpha}{2}, \alpha} \leq \theta\|v\|_{1+\frac{\alpha}{2}, 2+\alpha}+M \theta^{-\gamma}\|v\|_{\infty}, \tag{C.1.3}
\end{equation*}
$$

where γ and M are positive constants and $\theta>0$ is arbitrarily small. Such an estimate can be deduced from the analogous one in \mathbb{R}^{N+1} by using suitable extension operators (which do exist thanks to the regularity of Ω). Moreover if v has normal derivative equal to zero on $\partial \Omega$ then

$$
\begin{equation*}
\|v\|_{C^{1+\frac{\alpha}{2}, 2+\alpha}(Q)} \leq C\left(\|L v\|_{C^{\frac{\alpha}{2}, \alpha}(Q)}+\|v\|_{C(Q)}\right) \tag{C.1.4}
\end{equation*}
$$

with $C=C(\alpha, \nu, N, K, \Omega)>0$. Let us introduce the sequences

$$
t_{n}=\sum_{j=0}^{n} 2^{-j}, \quad s_{n}=\varepsilon\left(3-t_{n}\right)
$$

We observe that $\left(s_{n}\right)$ is decreasing with $s_{0}=2 \varepsilon, s_{\infty}=\varepsilon$ and $s_{n}-s_{n+1}=\varepsilon 2^{-n-1}$. Moreover, let ψ_{n} be a sequence of functions in $C^{\infty}(\mathbb{R})$ such that $\psi_{n}(t)=1$ for $t \in\left(s_{n}, T\right), \operatorname{supp} \psi_{n} \subset\left(s_{n+1}, 2 T\right)$, $0 \leq \psi \leq 1$ and

$$
\begin{equation*}
\left\|\psi_{n}^{\prime}\right\|_{\infty} \leq L 2^{n}, \quad\left\|\psi_{n}^{\prime \prime}\right\| \leq L 4^{n} \tag{C.1.5}
\end{equation*}
$$

for some constant $L>0$ depending also on ε. Hence, the function $\psi_{n} u$ is in $C^{1+\frac{\alpha}{2}, 2+\alpha}(Q)$ and

$$
\frac{\partial\left(\psi_{n} u\right)}{\partial \eta}=\psi_{n} \frac{\partial u}{\partial \eta}=0, \quad \text { on } \partial \Omega
$$

Applying estimate (C.1.4) we obtain

$$
\begin{equation*}
\left\|\psi_{n} u\right\|_{C^{1+\frac{\alpha}{2}, 2+\alpha}(Q)} \leq C\left(\left\|L\left(\psi_{n} u\right)\right\|_{C^{\frac{\alpha}{2}, \alpha}(Q)}+\left\|\psi_{n} u\right\|_{C(Q)}\right) \tag{C.1.6}
\end{equation*}
$$

with $C>0$ independent of n. One has $L\left(\psi_{n} u\right)=\psi_{n} L u+\psi_{n}^{\prime} u$. Then, from (C.1.5) it follows that

$$
\begin{align*}
\left\|\psi_{n} L u\right\|_{C^{\frac{\alpha}{2}, \alpha}(Q)} & \leq\|L u\|_{C^{\frac{\alpha}{2}, \alpha}\left(Q_{\varepsilon}\right)}+\|L u\|_{C\left(Q_{n+1}\right)}\left\|\psi_{n}\right\|_{C^{\frac{\alpha}{2}}\left(I_{n+1}\right)} \tag{C.1.7}\\
& \leq\|L u\|_{C^{\frac{\alpha}{2}, \alpha}\left(Q_{\varepsilon}\right)}+2^{n} c(\varepsilon, K)\|u\|_{C^{1,2}\left(Q_{n+1}\right)}, \\
& \leq\|L u\|_{C^{\frac{\alpha}{2}, \alpha}\left(Q_{\varepsilon}\right)}+4^{n} c(\varepsilon, K)\|u\|_{C^{1,2}\left(Q_{n+1}\right)},
\end{align*}
$$

where $I_{n+1}=\left(s_{n+1}, T\right)$ and $Q_{n+1}=I_{n+1} \times \Omega$. Analogously,
(C.1.8) $\quad\left\|\psi_{n}^{\prime} u\right\|_{C^{\frac{\alpha}{2}, \alpha}(Q)} \leq\left\|\psi_{n}^{\prime}\right\|_{C\left(I_{n+1}\right)}\|u\|_{C^{\frac{\alpha}{2}, \alpha}\left(Q_{n+1}\right)}+\left\|\psi_{n}^{\prime}\right\|_{C^{\frac{\alpha}{2}\left(I_{n+1}\right)}}\|u\|_{C\left(Q_{n+1}\right)}$
$\leq 2^{n} L\|u\|_{C^{\frac{\alpha}{2}, \alpha}\left(Q_{n+1}\right)}+4^{n} L\|u\|_{C\left(Q_{n+1}\right)}$
$\leq 4^{n} L\|u\|_{C^{\frac{\alpha}{2}, \alpha}\left(Q_{n+1}\right)}$.
Taking (C.1.7) and (C.1.8) into account, from (C.1.6) we infer (for a possibly different C)

$$
\begin{aligned}
\left\|\psi_{n} u\right\|_{C^{1+\frac{\alpha}{2}, 2+\alpha}(Q)} \leq & C\left(\|L u\|_{C^{\frac{\alpha}{2}, \alpha}\left(Q_{\varepsilon}\right)}+\|u\|_{C\left(Q_{\varepsilon}\right)}\right) \\
& +4^{n} c(K, \varepsilon)\left(\|u\|_{C^{1,2}\left(Q_{n+1}\right)}+\|u\|_{C^{\frac{\alpha}{2}, \alpha}\left(Q_{n+1}\right)}\right) \\
\leq & C\left(\|L u\|_{C^{\frac{\alpha}{2}, \alpha}\left(Q_{\varepsilon}\right)}+\|u\|_{C\left(Q_{\varepsilon}\right)}\right) \\
& +4^{n} c(K, \varepsilon)\left(\left\|\psi_{n+1} u\right\|_{C^{1,2}(Q)}+\left\|\psi_{n+1} u\right\|_{C^{\frac{\alpha}{2}, \alpha}(Q)}\right)
\end{aligned}
$$

where in the last inequality we have used the fact that $\psi_{n+1}=1$ in Q_{n+1}. Using the interpolatory estimate (C.1.3) we find that for every $\theta>0$

$$
\begin{aligned}
\left\|\psi_{n} u\right\|_{C^{1+\frac{\alpha}{2}, 2+\alpha}(Q)} \leq & C\left(\|L u\|_{C^{\frac{\alpha}{2}, \alpha}\left(Q_{\varepsilon}\right)}+\|u\|_{C\left(Q_{\varepsilon}\right)}\right)+4^{n} c(K, \varepsilon) \theta\left\|\psi_{n+1} u\right\|_{C^{1+\frac{\alpha}{2}, 2+\alpha}(Q)} \\
& +4^{n} C(K, \varepsilon) \theta^{-\gamma}\left\|\psi_{n} u\right\|_{C(Q)}
\end{aligned}
$$

Let us consider $\xi=4^{n} c(K, \varepsilon) \theta$, with ξ independent of n. Choosing a small θ we may assume that $\xi<1$. Since $\theta^{-\gamma}=\left(\frac{\xi}{C(K, \varepsilon)}\right)^{-\gamma} 4^{n \gamma}$, the last estimate becomes

$$
\begin{aligned}
\left\|\psi_{n} u\right\|_{C^{1+\frac{\alpha}{2}, 2+\alpha}(Q)} \leq & C\left(\|L u\|_{C^{\frac{\alpha}{2}, \alpha}\left(Q_{\varepsilon}\right)}+\|u\|_{C\left(Q_{\varepsilon}\right)}\right) \\
& +\xi\left\|\psi_{n+1} u\right\|_{C^{1+\frac{\alpha}{2}, 2+\alpha}(Q)}+c_{1}(K, \varepsilon, M, \gamma) 4^{(\gamma+1) n}\|u\|_{C(Q)} .
\end{aligned}
$$

Taking, if necessary, a smaller ξ in order to have $4^{\gamma+1} \xi<1$, by multiplying by ξ^{n} and summing from 0 to ∞ we obtain

$$
\begin{aligned}
\sum_{n=0}^{\infty} \xi^{n}\left\|\psi_{n} u\right\|_{C^{1+\frac{\alpha}{2}, 2+\alpha}(Q)} \leq & \frac{C}{1-\xi}\left(\|L u\|_{C^{\frac{\alpha}{2}, \alpha}\left(Q_{\varepsilon}\right)}+\|u\|_{C\left(Q_{\varepsilon}\right)}\right) \\
& +\sum_{n=1}^{\infty} \xi^{n}\left\|\psi_{n} u\right\|_{C^{1+\frac{\alpha}{2}, 2+\alpha}(Q)}+C_{2}\|u\|_{C(Q)}
\end{aligned}
$$

Hence

$$
\left\|\psi_{0} u\right\|_{C^{1+\frac{\alpha}{2}, 2+\alpha}(Q)} \leq \bar{C}\left(\|L u\|_{C^{\frac{\alpha}{2}, \alpha}\left(Q_{\varepsilon}\right)}+\|u\|_{C\left(Q_{\varepsilon}\right)}\right)
$$

with $\bar{C}=\bar{C}(\varepsilon, K, N, \nu, \alpha, \Omega)$. Since $\psi_{0}=1$ in $Q_{2 \varepsilon}$, the statement follows.

C. 2 An L^{p} elliptic estimate

Let Γ be the operator defined in (C.1.1). Unlike the previous section, here it is sufficient to assume that the coefficients $a_{i j}$ are uniformly continuous and bounded in Ω and that b_{i}, c belong to $L^{\infty}(\Omega)$, with Ω bounded open subset of \mathbb{R}^{N} of class C^{2}. We also assume the ellipticity condition (C.1.2).

We present interior elliptic estimates, where the involved subdomains are not assumed to have compact closure in Ω, but are allowed to have a part of the boundary overlapped on $\partial \Omega$. Neumann boundary conditions are prescribed only on this part.

Theorem C.2.1 Let $1<p<\infty$ and let Ω_{0} and Ω_{1} be open subsets contained in Ω such that $\partial \Omega_{0} \cap \partial \Omega \neq \emptyset, \partial \Omega_{1} \cap \partial \Omega \neq \emptyset$ and dist $\left(\Omega_{0}, \Omega \backslash \Omega_{1}\right)>0$. Assume also that Ω_{1} is of class C^{2}. Then there exists a constant $C>0$, depending on $p, N, \nu, \Omega_{0}, \Omega_{1}$, the L^{∞} norms of all the coefficients and the modulus of continuity of $a_{i j}$, such that for every function $u \in W^{2, p}\left(\Omega_{1}\right)$ with $\frac{\partial u}{\partial \eta}=0$ on $\partial \Omega_{1} \cap \partial \Omega$, the estimate

$$
\|u\|_{W^{2, p}\left(\Omega_{0}\right)} \leq C\left(\|\Gamma u\|_{L^{p}\left(\Omega_{1}\right)}+\|u\|_{L^{p}\left(\Omega_{1}\right)}\right)
$$

holds.
Proof. Let us consider an increasing sequence of domains Ω_{n} such that $\Omega_{\infty}=\Omega_{1}$ and $\operatorname{dist}\left(\Omega_{n}, \Omega \backslash\right.$ $\left.\Omega_{n+1}\right)=O\left(2^{-n}\right)$. Let θ_{n} be a function in $C^{\infty}\left(\mathbb{R}^{N}\right)$ such that $\theta_{n}=1$ in $\Omega_{n}, \theta_{n}=0$ in an open set containing $\Omega \backslash \Omega_{n+1}, 0 \leq \theta \leq 1, \frac{\partial \theta}{\partial \eta}=0$ on $\partial \Omega$. We note that in the case where Ω is the halfspace $\left\{x_{N}>0\right\}$, it is sufficient to take θ_{n} as an even reflection with respect to x_{N} in order to have $\frac{\theta_{n}}{\partial \eta}=0$ when $x_{N}=0$. For a regular bounded set, one can constructed such a function using the first step and local coordinates. Moreover, the first and second order derivatives of the functions θ_{n} satisfy the estimates

$$
\left\|D \theta_{n}\right\|_{\infty} \leq L 2^{n}, \quad\left\|D^{2} \theta_{n}\right\|_{\infty} \leq L 4^{n}
$$

Since $\theta_{n} u \in W^{2, p}\left(\Omega_{1}\right)$ and

$$
\frac{\partial\left(\theta_{n} u\right)}{\partial \eta}=\frac{\partial \theta_{n}}{\partial \eta} u+\frac{\partial u}{\partial \eta} \theta_{n}=0, \quad \text { on } \partial \Omega_{1}
$$

we may apply the classical global L^{p} estimate (see [32, Theorem 3.11(iii)]) and we find that

$$
\begin{equation*}
\left\|\theta_{n} u\right\|_{W^{2, p}\left(\Omega_{1}\right)} \leq C\left(\left\|\Gamma\left(\theta_{n} u\right)\right\|_{L^{p}\left(\Omega_{1}\right)}+\left\|\theta_{n} u\right\|_{L^{p}\left(\Omega_{1}\right)}\right) \tag{C.2.1}
\end{equation*}
$$

Now, it is readily seen that $\Gamma\left(\theta_{n} u\right)=\theta_{n} \Gamma u+B_{n} u$, where B_{n} is a first order differential operator, whose coefficients involve the coefficients of $\Gamma, \theta_{n}, D \theta_{n}$ and $D^{2} \theta_{n}$. Therefore

$$
\begin{aligned}
\left\|B_{n} u\right\|_{L^{p}\left(\Omega_{1}\right)} & \leq 4^{n} C\|u\|_{W^{1, p}\left(\Omega_{n+1}\right)} \leq 4^{n} C\left\|\theta_{n+1} u\right\|_{W^{1, p}\left(\Omega_{1}\right)} \\
& \leq 4^{n} C\left(\varepsilon\left\|\theta_{n+1} u\right\|_{W^{2, p}\left(\Omega_{1}\right)}+\varepsilon^{-1}\left\|\theta_{n+1} u\right\|_{L^{p}\left(\Omega_{1}\right)}\right)
\end{aligned}
$$

where we have used the interpolatory estimate $\|v\|_{W^{1, p}\left(\Omega_{1}\right)} \leq \varepsilon\|v\|_{W^{2, p}\left(\Omega_{1}\right)}+c \varepsilon^{-1}\|v\|_{L^{p}\left(\Omega_{1}\right)}$, which holds for every function $v \in W^{2, p}\left(\Omega_{1}\right)$ and every $\varepsilon>0$.
Besides, we have $\left\|\theta_{n} \Gamma u\right\|_{L^{p}\left(\Omega_{1}\right)} \leq\|\Gamma u\|_{L^{p}\left(\Omega_{1}\right)}$. From (C.2.1) it follows that

$$
\begin{aligned}
\left\|\theta_{n} u\right\|_{W^{2, p}\left(\Omega_{1}\right)} \leq & C\left(\|\Gamma u\|_{L^{p}\left(\Omega_{1}\right)}+4^{n} \varepsilon\left\|\theta_{n+1} u\right\|_{W^{2, p}\left(\Omega_{1}\right)}\right. \\
& \left.+4^{n} \varepsilon^{-1}\left\|\theta_{n+1} u\right\|_{L^{p}\left(\Omega_{1}\right)}+\|u\|_{L^{p}\left(\Omega_{1}\right)}\right) .
\end{aligned}
$$

Set $\xi=C 4^{n} \varepsilon$. We need ξ independent of n. Then $\varepsilon^{-1}=(\xi / C)^{-1} 4^{n}$ and the last inequality becomes

$$
\left\|\theta_{n} u\right\|_{W^{2, p}\left(\Omega_{1}\right)} \leq C\left(\|\Gamma u\|_{L^{p}\left(\Omega_{1}\right)}+\|u\|_{L^{p}\left(\Omega_{1}\right)}\right)+\xi\left\|\theta_{n+1} u\right\|_{W^{2, p}\left(\Omega_{1}\right)}+C_{1} 4^{2 n}\left\|\theta_{n+1} u\right\|_{L^{p}\left(\Omega_{1}\right)} .
$$

Choose ε in such a way that $\xi<1$ and $\xi 4^{2}<1$. Then multiplying by ξ^{n} and summing on n from 0 to $+\infty$ we obtain

$$
\begin{aligned}
\sum_{n=0}^{\infty} \xi^{n}\left\|\theta_{n} u\right\|_{W^{2, p}\left(\Omega_{1}\right)} \leq & \frac{C}{1-\xi}\left(\|\Gamma u\|_{L^{p}\left(\Omega_{1}\right)}+\|u\|_{L^{p}\left(\Omega_{1}\right)}\right) \\
& +\sum_{n=1}^{\infty} \xi^{n}\left\|\theta_{n} u\right\|_{W^{2, p}\left(\Omega_{1}\right)}+C_{2}\|u\|_{L^{p}\left(\Omega_{1}\right)}
\end{aligned}
$$

which yields

$$
\left\|\theta_{0} u\right\|_{W^{2, p}\left(\Omega_{1}\right)} \leq C\left(\|\Gamma u\|_{L^{p}\left(\Omega_{1}\right)}+\|u\|_{L^{p}\left(\Omega_{1}\right)}\right)
$$

Since $\theta_{0}=1$ in Ω_{0} we get

$$
\|u\|_{W^{2, p}\left(\Omega_{0}\right)} \leq C\left(\|\Gamma u\|_{L^{p}\left(\Omega_{1}\right)}+\|u\|_{L^{p}\left(\Omega_{1}\right)}\right),
$$

and the proof is concluded.

