Appendix B

Smooth domains and regularity properties of the distance function

In this Appendix we collect some regularity results of the distance function $r(x)=\operatorname{dist}(x, \partial \Omega)$, when $\partial \Omega$ is the boundary of a smooth open subset Ω of \mathbb{R}^{N}. These results are well-known in the case where Ω is bounded (see e.g. [26, section 14.6]), but most of them may be extended, without much effort, to the unbounded case, as it is shown below.

First we define open sets with uniformly $C^{2+\alpha}$ boundaries, for $0 \leq \alpha<1$.
Definition B.0.15 Let Ω be an open subset of \mathbb{R}^{N}. We say that $\partial \Omega$ is uniformly of class $C^{2+\alpha}$ if there exist a covering of $\partial \Omega$, at most countable, $\left\{U_{j}\right\}_{j \in \mathbb{N}}$, and a sequence of diffeomorphisms $\varphi_{j}: \bar{U}_{j} \rightarrow \bar{B}_{1}$ of class $C^{2+\alpha}$ such that

$$
\begin{aligned}
\varphi_{j}\left(U_{j} \cap \Omega\right) & =\left\{y \in B_{1} \mid y_{N}>0\right\} \\
\varphi_{j}\left(U_{j} \cap \partial \Omega\right) & =\left\{y \in B_{1} \mid y_{N}=0\right\}
\end{aligned}
$$

and the following properties are satisfied:
(i) there exists $k \in \mathbb{N}$ such that $\bigcap_{j \in J} U_{j}=\emptyset$, if $|J|>k$;
(ii) there exists $0<\varepsilon<1$ such that $\{x \in \Omega \mid r(x)<\varepsilon\} \subseteq \bigcup_{j \in \mathbb{N}} V_{j}$, where $V_{j}=\varphi_{j}^{-1}\left(B_{1 / 2}\right)$;
(iii) there exists $C>0$ such that

$$
\sup _{j \in \mathbb{N}} \sum_{0 \leq|\beta| \leq 2+\alpha}\left\|D^{\beta} \varphi_{j}\right\|_{\infty}+\left\|D^{\beta} \varphi_{j}^{-1}\right\|_{\infty} \leq C .
$$

Now we show that such a set Ω satisfies a uniform interior sphere condition, i.e. at each point $y_{0} \in \partial \Omega$ there exists a ball $B_{y_{0}}$ depending on y_{0}, contained in Ω and such that $\bar{B}_{y_{0}} \cap \partial \Omega=\left\{y_{0}\right\} ;$ moreover the radii of these balls are bounded from below by a positive constant.

Proposition B.0.16 If $\partial \Omega$ is uniformly of class C^{2}, then it satisfies a uniform interior sphere condition.

Proof. Using condition (iii) and taking into account that φ_{j} is a diffeomorphism from \bar{U}_{j} into \bar{B}_{1}, it is easy to see that if $y \in V_{j}$ and $|x-y|<1 /(2 C)$, then $x \in U_{j}$.

Let $y_{0} \in \partial \Omega$ and let $\eta\left(y_{0}\right)$ denote the unit inward normal vector to $\partial \Omega$ at y_{0}. For $0 \leq t<$ $1 /(2 C)$ the point $x=y_{0}+t \eta\left(y_{0}\right)$ belongs to U_{j} and $\left(\varphi_{j}^{(N)}\right.$ denotes the N-th component of $\left.\varphi_{j}\right)$

$$
\varphi_{j}^{(N)}(x)=t D \varphi_{j}^{(N)}\left(y_{0}\right) \cdot \eta\left(y_{0}\right)+R(t)
$$

with $|R(t)| \leq C t^{2} / 2$. Since $\varphi_{j}^{(N)}=0$ on $U_{j} \cap \partial \Omega$, then $D \varphi_{j}^{(N)}\left(y_{0}\right)=k \eta\left(y_{0}\right)$, with $k \geq C^{-1}$, by (iii). This yields $\varphi_{j}^{(N)}(x) \geq t C^{-1}-C t^{2} / 2>0$ for $0<t<2 / C^{3}:=\delta$.

Thus, we have proved that

$$
y+t \eta(y) \in \Omega, \quad y \in \partial \Omega, t \in] 0, \delta[.
$$

Now, let $y \in \partial \Omega$ and set $B=B(z, \delta / 2)$, where $z=y+\eta(y) \delta / 2$. Then, it is easy to see that $B \subset \Omega$ and $y \in \partial B$. If y is not the unique point in $\partial \Omega \cap \partial B$, then it suffices to replace the above ball with that of radius $\delta / 4$, centered at $z=y+\eta(y) \delta / 4$.

We are now ready to prove the properties of the distance function used in this paper.
Proposition B.0.17 Assume that $\partial \Omega$ is uniformly of class C^{2} and let δ be a positive constant such that at each point of $\partial \Omega$ there exists a ball which satisfies the interior sphere condition at y_{0} with radius greater or equal to δ. Then
(a) for every $x \in \Omega_{\delta}=\{y \in \bar{\Omega} \mid r(y)<\delta\}$ there exists a unique $\xi=\xi(x) \in \partial \Omega$ such that $|x-\xi|=r(x) ;$
(b) $r \in C_{b}^{2}\left(\Omega_{\delta}\right)$;
(c) $\operatorname{Dr}(x)=\eta(\xi(x))$, for every $x \in \Omega_{\delta}$.

Proof. (a) The existence part is obvious. For the uniqueness assertion, let $x \in \Omega_{\delta}$ and $y \in \partial \Omega$ such that $r(x)=|x-y|$. From Proposition B.0.16 there exists a ball $B=B(z, \rho)$ such that $B \subset \Omega$ and $\bar{B} \cap \partial \Omega=\{y\}$. Moreover from the definition of $\delta, x \in B$. It is easy to see that x and z lie on the normal direction $\eta(y)$ and that the balls $B(x, r(x))$ and $B(z, \rho)$ are tangent at y. Then $B(x, r(x))$ still verifies the interior sphere condition at y. It follows that for every $\bar{y} \in \partial \Omega \backslash\{y\}$, one has $\bar{y} \notin B(x, r(x))$, so that y is actually the unique point such that $|x-y|=r(x)$.

The proof of the last two assertions relies on the first statement and the implicit function theorem and it is completely similar to that of the case Ω bounded. We refer to [26, section 14.6].

