Appendix B

Smooth domains and regularity properties of the distance function

In this Appendix we collect some regularity results of the distance function $r(x) = \text{dist}(x, \partial \Omega)$, when $\partial \Omega$ is the boundary of a smooth open subset Ω of \mathbb{R}^N . These results are well-known in the case where Ω is bounded (see e.g. [26, section 14.6]), but most of them may be extended, without much effort, to the unbounded case, as it is shown below.

First we define open sets with uniformly $C^{2+\alpha}$ boundaries, for $0 \le \alpha < 1$.

Definition B.0.15 Let Ω be an open subset of \mathbb{R}^N . We say that $\partial\Omega$ is uniformly of class $C^{2+\alpha}$ if there exist a covering of $\partial\Omega$, at most countable, $\{U_j\}_{j\in\mathbb{N}}$, and a sequence of diffeomorphisms $\varphi_j: \overline{U}_j \to \overline{B}_1$ of class $C^{2+\alpha}$ such that

$$\varphi_j(U_j \cap \Omega) = \{ y \in B_1 \mid y_N > 0 \}$$

$$\varphi_j(U_j \cap \partial \Omega) = \{ y \in B_1 \mid y_N = 0 \}$$

and the following properties are satisfied:

- (i) there exists $k \in \mathbb{N}$ such that $\bigcap_{i \in J} U_i = \emptyset$, if |J| > k;
- (ii) there exists $0 < \varepsilon < 1$ such that $\{x \in \Omega \mid r(x) < \varepsilon\} \subseteq \bigcup_{j \in \mathbb{N}} V_j$, where $V_j = \varphi_j^{-1}(B_{1/2})$;
- (iii) there exists C > 0 such that

$$\sup_{j\in\mathbb{N}}\sum_{0\leq |\beta|\leq 2+\alpha} \|D^{\beta}\varphi_j\|_{\infty} + \|D^{\beta}\varphi_j^{-1}\|_{\infty} \leq C.$$

Now we show that such a set Ω satisfies a *uniform interior sphere condition*, i.e. at each point $y_0 \in \partial \Omega$ there exists a ball B_{y_0} depending on y_0 , contained in Ω and such that $\overline{B}_{y_0} \cap \partial \Omega = \{y_0\}$; moreover the radii of these balls are bounded from below by a positive constant.

Proposition B.0.16 If $\partial \Omega$ is uniformly of class C^2 , then it satisfies a uniform interior sphere condition.

PROOF. Using condition (iii) and taking into account that φ_j is a diffeomorphism from \overline{U}_j into \overline{B}_1 , it is easy to see that if $y \in V_j$ and |x - y| < 1/(2C), then $x \in U_j$.

Let $y_0 \in \partial\Omega$ and let $\eta(y_0)$ denote the unit inward normal vector to $\partial\Omega$ at y_0 . For $0 \leq t < 1/(2C)$ the point $x = y_0 + t\eta(y_0)$ belongs to U_j and $(\varphi_j^{(N)}$ denotes the N-th component of $\varphi_j)$

$$\varphi_j^{(N)}(x) = t D \varphi_j^{(N)}(y_0) \cdot \eta(y_0) + R(t)$$

with $|R(t)| \leq Ct^2/2$. Since $\varphi_j^{(N)} = 0$ on $U_j \cap \partial \Omega$, then $D\varphi_j^{(N)}(y_0) = k\eta(y_0)$, with $k \geq C^{-1}$, by (iii). This yields $\varphi_j^{(N)}(x) \geq tC^{-1} - Ct^2/2 > 0$ for $0 < t < 2/C^3 := \delta$.

Thus, we have proved that

$$y + t\eta(y) \in \Omega, \qquad y \in \partial\Omega, \ t \in]0, \delta[.$$

Now, let $y \in \partial\Omega$ and set $B = B(z, \delta/2)$, where $z = y + \eta(y)\delta/2$. Then, it is easy to see that $B \subset \Omega$ and $y \in \partial B$. If y is not the unique point in $\partial\Omega \cap \partial B$, then it suffices to replace the above ball with that of radius $\delta/4$, centered at $z = y + \eta(y)\delta/4$.

We are now ready to prove the properties of the distance function used in this paper.

Proposition B.0.17 Assume that $\partial \Omega$ is uniformly of class C^2 and let δ be a positive constant such that at each point of $\partial \Omega$ there exists a ball which satisfies the interior sphere condition at y_0 with radius greater or equal to δ . Then

- (a) for every $x \in \Omega_{\delta} = \{y \in \overline{\Omega} | r(y) < \delta\}$ there exists a unique $\xi = \xi(x) \in \partial\Omega$ such that $|x \xi| = r(x);$
- (b) $r \in C_b^2(\Omega_{\delta});$
- (c) $Dr(x) = \eta(\xi(x))$, for every $x \in \Omega_{\delta}$.

PROOF. (a) The existence part is obvious. For the uniqueness assertion, let $x \in \Omega_{\delta}$ and $y \in \partial \Omega$ such that r(x) = |x - y|. From Proposition B.0.16 there exists a ball $B = B(z, \rho)$ such that $B \subset \Omega$ and $\overline{B} \cap \partial \Omega = \{y\}$. Moreover from the definition of $\delta, x \in B$. It is easy to see that x and z lie on the normal direction $\eta(y)$ and that the balls B(x, r(x)) and $B(z, \rho)$ are tangent at y. Then B(x, r(x)) still verifies the interior sphere condition at y. It follows that for every $\overline{y} \in \partial \Omega \setminus \{y\}$, one has $\overline{y} \notin B(x, r(x))$, so that y is actually the unique point such that |x - y| = r(x).

The proof of the last two assertions relies on the first statement and the implicit function theorem and it is completely similar to that of the case Ω bounded. We refer to [26, section 14.6].