
Appendix A

Maximum principles

In this appendix we state and prove the maximum principles used in the previous chapters.
They are not classical, since the coefficients of the involved operator are unbounded. More
precisely, let us consider

(A.0.1) A =
N∑

i,j=1

qijDij +
N∑
i=1

FiDi − V,

with qij = qji, Fi, V continuous real-valued functions in RN , satisfying

V ≥ 0,
N∑

i,j=1

qij(x)ξiξj ≥ ν0|ξ|2, ν0 > 0.

To overcome the unboundedness of the coefficients, we make the following assumption

(H) there exists a positive function ϕ ∈ C2(RN ), such that lim|x|→+∞ ϕ(x) = +∞ and Aϕ −
λ0 ϕ ≤ 0, for some λ0 > 0.

ϕ is called a Liapunov function. Clearly, assumption (H) gives growth bounds on the coefficients
of A. If for instance ϕ(x) = 1 + |x|2, then (H) is satisfied if there exists λ0 > 0 such that

TrQ(x) + 〈F (x), x〉 ≤ λ0(1 + |x|2).

It can be assumed that supRN (Aϕ − λ0ϕ) < +∞. This does not make any difference since
replacing ϕ with ϕ + C for a suitable constant C, we return exactly to (H). Moreover, when
one deals with parabolic problems, it is possible to consider ϕ dependent also on time and to
require that ϕ ∈ C2([0, T ] × RN ), ϕ ≥ 0, lim|x|→+∞ ϕ(t, x) = +∞ uniformly in [0, T ] and
(Dt−A+ λ0)ϕ ≥ 0. Since we are concerned both with parabolic and elliptic problems and since
the coefficients of A do not depend on t, we keep assumption (H) throughout the manuscript.

We start by proving maximum principles for parabolic and elliptic problems in a regular,
(possibly) unbounded open set Ω of RN with Neumann boundary conditions. Such results have
been used in Chapter 2. In this case it is sufficient for ϕ to be defined in Ω, but we have to
require an additional condition concerning its normal derivatives on ∂Ω. The proof is similar to
[34, Proposition 2.1].

Proposition A.0.5 Let Ω be an open set in RN with C1 boundary. Assume (H) and in addition

suppose that
∂ϕ

∂η
≥ 0 on ∂Ω, where η is the outward unit normal vector to ∂Ω. Let z ∈ C([0, T ]×
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Ω) ∩ C1(]0, T ]× Ω) ∩ C1,2(]0, T ]× Ω) be a bounded function satisfying
zt(t, x)−Az(t, x) ≤ 0, 0 < t ≤ T, x ∈ Ω,

∂z

∂η
(t, x) ≤ 0, 0 < t ≤ T, x ∈ ∂Ω,

z(0, x) ≤ 0 x ∈ Ω.

Then z ≤ 0.

Proof. Set v(t, x) = e−λ0tz(t, x); we prove that v ≤ 0, then the statement follows. We consider
the sequence

vn(t, x) = v(t, x)− 1
n
ϕ(x), 0 ≤ t ≤ T, x ∈ Ω,

and we observe that
Dtvn(t, x)− (A− λ0)vn(t, x) ≤ 0, 0 < t ≤ T, x ∈ Ω,

∂vn
∂η

(t, x) ≤ 0, 0 < t ≤ T, x ∈ ∂Ω,

vn(0, x) ≤ 0, x ∈ Ω.

For every n ∈ N the function vn attains its maximum in [0, T ] × Ω at some point (tn, xn). If
tn > 0 and xn ∈ Ω then

Dtvn(tn, vn) ≥ 0, Avn(tn, xn) + V (xn)vn(tn, xn) ≤ 0,

and consequently, using the equation

(λ0 + V (xn))vn(tn, xn) ≤ (λ0 +Dt −A)vn(tn, xn) ≤ 0.

Since λ0 > 0 this implies that vn(tn, xn) ≤ 0.
If tn = 0 we immediately have vn(tn, xn) ≤ 0. Finally, it is not possible that tn > 0 and

xn ∈ ∂Ω, without any interior maximum point because of the strong maximum principle ([24,
Theorem 2.14]).

Therefore we have proved that v(t, x) ≤ n−1ϕ(x) for all 0 ≤ t ≤ T and x ∈ Ω. Thus letting
n→ +∞ we conclude that v ≤ 0, as claimed.

A similar maximum principle holds in the elliptic case. However, we point out that the
involved solutions are only of class W 2,p and not C2 in general. To prove such a result we need
a maximum principle for operators with bounded coefficients, which is due to Bony (see [9]).

Lemma A.0.6 Let Ω be an open subset of RN and let F : Ω→ RN be a function of class W 1,p,
with p > N . Then the image through F of a set with measure zero has still measure zero.

Proof. Let Q1 be a unitary cube of RN . By Morrey’s inequality (see [10, Teorema IX.12]), if
ϕ ∈W 1,p(Q1) then

(A.0.2) |ϕ(x)− ϕ(y)| ≤ C|x− y|1−
N
p

(∫
Q1

|Dϕ|p
) 1
p

, x, y ∈ Q1,

where C is a positive constant depending on p and N . In the sequel, we keep the same notation to
denote a constant which has such a dependence. If Qα is a cube with side lα and ψ is a function
in W 1,p(Qα), then ϕ(x) = ψ(lαx) belongs to W 1,p(Q1) and (A.0.2) applied to ϕ yields

|ψ(lαx)− ψ(lαy)| ≤ C|x− y|1−
N
p

(∫
Q1

lpα|Dψ(lαz)|pdz
) 1
p

, x, y ∈ Q1.
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By changing variables in the integral we get

|ψ(lαx)− ψ(lαy)| ≤ C|x− y|1−
N
p

(∫
Qα

lp−Nα |Dψ(z)|pdz
) 1
p

= C l
1−Np
α |x− y|1−

N
p

(∫
Qα

|Dψ(z)|pdz
) 1
p

≤ C l
1−Np
α

(∫
Qα

|Dψ(z)|pdz
) 1
p

, x, y ∈ Q1.

Therefore

(A.0.3) |ψ(ξ)− ψ(η)| ≤ C l1−
N
p

α

(∫
Qα

|Dψ(x)|pdx
) 1
p

, ξ, η ∈ Qα.

Let M be a subset of Ω with |M | = 0, where | · | denotes the Lebesgue measure. Then, for every
ε > 0 there exists a family {Qα}α of disjoint cubes such that M ⊆ ∪αQα ⊆ Ω and

∑
α l
N
α ≤ ε,

where lα denotes the side of Qα. By applying (A.0.3) to the scalar components F1, ..., FN of the
function F , we obtain for every α and every x, y ∈ Qα

|F (x)− F (y)| ≤
N∑
i=1

|Fi(x)− Fi(y)| ≤ C l1−
N
p

α

N∑
i=1

(∫
Qα

|DFi(z)|pdz
) 1
p

≤ C l
1−Np
α

(∫
Qα

( N∑
i,j=1

|DjFi|
)p) 1

p

=: λα.

This means that F (Qα) is contained in the cube Q̃α with side λα. It follows that

F (M) ⊆ F
(⋃

α

Qα

)
⊆
⋃
α

F (Qα) ⊆
⋃
α

Q̃α

and consequently

|F (M)| ≤
∑
α

|Q̃α| =
∑
α

λNα = CN
∑
α

[
l
N(1−Np )
α

(∫
Qα

( N∑
i,j=1

|DjFi|
)p)N

p
]
.

Applying Hölder’s inequality with exponents r = p/N and r′ = (1−N/p)−1, we get

|F (M)| ≤ CN
(∑

α

lNα

)1−Np (∑
α

∫
Qα

( N∑
i,j=1

|DjFi|
)p)N

p

≤ CNε1−Np

(∫
Ω

( N∑
i,j=1

|DjFi|
)p)N

p

.

Since ε was arbitrary, the thesis follows.

Proposition A.0.7 Let Ω be a bounded open set of RN with C1 boundary and let u ∈W 2,p(Ω),
with p > N . Assume that u attains its maximum M at x0 ∈ Ω and that u(x) < M , for every
x ∈ Ω \ {x0}. Then, for each closed neighborhood V of x0 there exists E ⊆ V with |E| > 0, such
that for almost all x ∈ E the Hessian matrix of u, (D2u(x)), is nonpositive, i.e. 〈D2u(x)ξ, ξ〉 ≤ 0,
for all ξ ∈ RN .
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Proof. Let S be the hypersurface of RN+1 given by the equation y = u(x), x ∈ Ω, y ∈ R.
Since p > N , by the Sobolev embeddings the function u belongs to C1(Ω), hence S is of class
C1. This ensures that the tangent hyperplane is well defined at each point of S. Let V be a
closed neighborhood of x0 contained in Ω and let us denote by E the set of points x in V with
the property that S lies locally under the tangent hyperplane at (x, u(x)). We observe that E
is nonempty since it contains x0. Now, we claim that E has positive measure. Let us first show
that there exists δ > 0 such that if h ∈ RN and |h| < δ, then there are a point ξ ∈ E and a
real number α such that the hyperplane of equation y = 〈h, x〉 + α is tangent to S at the point
(ξ, u(ξ)). To this aim, we observe that infΩ\V (M −u(x)) > 0. Otherwise, there exists a sequence
(xn) ⊆ Ω \ V such that u(xn) converges to M . By compactness, we can find y ∈ Ω \ {x0}
and a subsequence (xnk) such that xnk → y and therefore, by continuity, u(xnk) → u(y) = M .
But this is impossible since x0 was, by the assumption, the unique maximum point of u in Ω.

Now consider λ = inf
Ω\V

(M − u(x))
(

sup
Ω\V
|x− x0|

)−1

> 0 and choose 0 < δ < λ. Then, for every

h ∈ RN with |h| < δ and every x ∈ Ω \ V we have

u(x)−M − 〈h, x− x0〉 < u(x)−M + inf
Ω\V

(M − u(x))
(

sup
Ω\V
|x− x0|

)−1

|x− x0|

≤ inf
Ω\V

(M − u(x))− (M − u(x)) ≤ 0,

hence

(A.0.4) u(x) < 〈h, x〉+M − 〈h, x0〉, for all x ∈ Ω \ V.

Since V is compact and u(x)− 〈h, x〉 is a continuous function in V , there exists ξ ∈ V such that

max
x∈V

(u(x)− 〈h, x〉) = u(ξ)− 〈h, ξ〉 =: α.

In particular, α ≥ u(x0)− 〈h, x0〉 = M − 〈h, x0〉 and therefore from (A.0.4) it follows that

u(x) < 〈h, x〉+ α, for all x ∈ Ω \ V.

On the other hand, by construction,

u(x) ≤ 〈h, x〉+ α, for all x ∈ V,

then u(x) ≤ 〈h, x〉+ α, for every x ∈ Ω. Since u(ξ) = 〈h, ξ〉+ α, we deduce also that Du(ξ) = h

and therefore the hyperplane y = 〈h, x〉 + α is in fact the tangent hyperplane to S at (ξ, u(ξ)).
Since it lies over S, we have that ξ ∈ E. Now, define F : Ω → RN as F (x) = Du(x). From the
previous step, if h ∈ RN and |h| < δ, then there exists ξ ∈ E such that h = Du(ξ) = F (ξ). This
means that Bδ ⊆ F (E) and, as a consequence, |F (E)| > 0. Since F is of class W 1,p(Ω), from the
previous lemma it follows that E has positive measure, too.

Now, the regularity of u implies that u is almost everywhere twice differentiable in the classical
sense. Let x ∈ E be such that u is twice differentiable at x in the classical sense and assume,
by contradiction, that there exists y ∈ RN such that

∑N
i,j=1Diju(x) yiyj > 0. Without loss

of generality we can suppose that |y| = 1. Set f(t) = u(x + ty) − t〈Du(x), y〉, for |t| < ε, for
some ε > 0. Then f is differentiable in (−ε, ε) with f ′(0) = 0 and f ′′ exists at t = 0 with
f ′′(0) =

∑N
i,j=1Diju(x) yiyj > 0. This implies that t = 0 is a strict relative minimum point

for f , hence f(t) > f(0) for t ∈ (−ε, ε) \ {0}, which means u(x + ty) > u(x) + t〈Du(x), y〉, for
t ∈ (−ε, ε) \ {0}. On the other hand, since x ∈ E, for every z sufficiently close to x we have

u(z) ≤ u(x) + 〈Du(x), z − x〉.
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Choosing z = x+ ty we find

u(x+ ty) ≤ u(x) + t〈Du(x), y〉,

which is a contradiction. Thus, we have established that at each point x ∈ E where u is twice
differentiable in the classical sense, (D2u(x)) is nonpositive. This concludes the proof.

At this point, we are ready to prove the announced maximum principle for W 2,p functions
involving operators with bounded coefficients. More precisely, let

L =
N∑

i,j=1

αijDij +
N∑
i=1

βiDi + γ.

Assume that all the coefficients are real-valued functions in L∞(Ω) and that the matrix (αij) is
symmetric and nonnegative and that γ ≤ 0.

Theorem A.0.8 Let Ω be a bounded open set with C1 boundary and let u ∈ W 2,p(Ω), with
p > N . Assume that u attains a nonnegative maximum at x0 ∈ Ω. Then

lim inf
x→x0

ess (Lu)(x) ≤ 0,

where lim inf
x→x0

ess (Lu)(x) = sup
ρ>0

inf
x∈Bρ(x0)

ess Lu(x).

Proof. Let ε > 0 and set v(x) = u(x)− ε|x− x0|2. It is readily seen that v ∈W 2,p(Ω) and that
x0 is a strict maximum point for v. Then, from Proposition A.0.7 for each ρ > 0, there exists
a set Eρ ⊂ Bρ(x0) such that |Eρ| > 0 and (D2v(x)) is nonpositive for almost all x ∈ Eρ. Since
(αij) is nonnegative a.e., we deduce that

N∑
i,j=1

αij(x)Dijv(x) ≤ 0, for almost all x ∈ Eρ.

On the other hand, since v ∈ C1(Ω), we have that lim
x→x0

Div(x) = Div(x0) = 0 and hence, using

the boundedness of βi

lim
x→x0

N∑
i=1

βi(x)Div(x) = 0.

Finally, since γ(x) ≤ 0 and v(x0) = u(x0) ≥ 0 we have that limx→x0 γ(x)v(x) = 0, if v(x0) = 0.
If v(x0) > 0 then, by continuity, v(x) > 0 for x close to x0, hence γ(x)v(x) ≤ 0. Therefore we
have

lim inf
x→x0

ess (Lv)(x) = sup
ρ>0

inf
x∈Bρ(x0)

ess (Lv)(x)

≤ sup
ρ>0

inf
x∈Eρ

ess
( N∑
i,j=1

αij(x)Dijv(x) +
N∑
i=1

βi(x)Div(x) + γ(x)v(x)
)

≤ 0.

Thus we have established that lim inf
x→x0

ess (Lv)(x) ≤ 0. Since

Lv(x) = Lu(x)− 2ε
N∑
i=1

αii(x)− 2ε
N∑
i=1

βi(x)(xi − xi0)− εγ(x)|x− x0|2,

we obtain that

lim inf
x→x0

essLu(x) ≤ 2ε
N∑
i=1

‖αii‖∞.

Letting ε→ 0, we get the statement.
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In the sequel, we use the previous result to derive an elliptic maximum principle for the
operator A defined in (A.0.1). First we state an easy corollary of Theorem A.0.8, which is more
useful for our aims.

Corollary A.0.9 Let u belong to W 2,p
loc (RN ) for any p <∞ and suppose that Au ∈ C(RN ). If u

has a relative nonnegative maximum at the point x0, then Au(x0) ≤ 0.

Proposition A.0.10 Let Ω be an open set in RN with C2 boundary. Let u ∈ Cb(Ω)∩W 2,p(Ω∩
BR) for all R > 0 and p <∞, such that Au ∈ Cb(Ω) and

λu(x)−Au(x) ≤ 0, x ∈ Ω,

for some λ > 0. Let x0 ∈ ∂Ω such that u(x0) > 0 and u(x) < u(x0) for all x ∈ Ω. Then

(A.0.5)
∂u

∂η
(x0) > 0.

Proof. We follow the proof of the classical Hopf maximum principle (see e.g. [26, Lemma
3.4]). By the regularity assumption on ∂Ω, we can consider a ball B(y, r) ⊂ Ω such that B(y, r)∩
∂Ω = {x0}. Assume that u > 0 in B(y, r). It is readily seen that there exists α > 0 such that the
function z(x) = e−α|x−y|

2 − e−α r2
satisfies Az > 0 in D = B(y, r) \ B(y, r/2). Set w = u + εz,

where ε > 0 is chosen in such a way that w(x) < u(x0) for all x ∈ ∂B(y, r/2). Then w(x) ≤ u(x0)
in ∂D and

(A.0.6) Aw(x) = Au(x) + εAz(x) > λu(x) > 0, x ∈ D.

Let x ∈ D the maximum point of w in D. It is not possible that x ∈ D, otherwise from Corollary
A.0.9 we should have Aw(x) ≤ 0, which is in contradiction with (A.0.6). Then x ∈ ∂D and
necessarily x = x0. It follows that

∂w

∂η
(x0) =

∂u

∂η
(x0) + ε

∂z

∂η
(x0) ≥ 0.

Since ∂z/∂η(x0) < 0, this implies (A.0.5).

Proposition A.0.11 Let Ω be an open set in RN with C2 boundary. Assume (H) and in addition

suppose that
∂ϕ

∂η
≥ 0 on ∂Ω, where η is the outward unit normal vector to ∂Ω. Let u ∈ Cb(Ω) ∩

W 2,p(Ω ∩BR) for all R > 0 and p <∞, such that Au ∈ Cb(Ω) and

(A.0.7)


λu(x)−Au(x) ≤ 0, x ∈ Ω,

∂u

∂η
(x) ≤ 0, x ∈ ∂Ω,

for some λ ≥ λ0. Then u ≤ 0.

Proof. As in Proposition A.0.5, we introduce the sequence

un(x) = u(x)− 1
n
ϕ(x), x ∈ Ω

and we note that

(A.0.8)


λun(x)−Aun(x) ≤ 0, x ∈ Ω,

∂un
∂η

(x) ≤ 0, x ∈ ∂Ω.
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We prove that un ≤ 0, for all n ∈ N; then the conclusion follows letting n →∞. Each un has a
maximum point xn ∈ Ω. If xn ∈ Ω then un(xn) ≤ 0. Indeed, if un(xn) > 0, then from Corollary
A.0.9 it follows that Aun(xn) ≤ 0 and, using (A.0.8), un(xn) ≤ 0, which is a contradiction.
Now assume that xn ∈ ∂Ω and un(x) < un(xn) for all x ∈ Ω (otherwise there would exist an
interior maximum point and we could apply the previous step). Then from Proposition A.0.10
and (A.0.8) it follows that un(xn) ≤ 0 and this completes the proof.

Next, we deal with Dirichlet parabolic problems. We skip the proof of the following proposi-
tion, since it is exactly the same as that of Proposition A.0.5.

Proposition A.0.12 Let Ω be an open set of RN and assume hypothesis (H). Let u ∈ C([0, T ]×
Ω) ∩ C1,2(]0, T [×Ω) be a bounded function satisfying

(A.0.9)


ut(t, x) ≤ Au(t, x), 0 < t ≤ T, x ∈ Ω,

u(t, x) ≤ 0, 0 < t ≤ T, x ∈ ∂Ω,

u(0, x) ≤ 0 x ∈ Ω,

Then u ≤ 0.

Now we present a maximum principle for discontinuous solutions to the Dirichlet parabolic
problem (A.0.9). The result is suggested in [29] and involves special domains.

Theorem A.0.13 Assume hypothesis (H). Let Ω be an open subset of RN , gi : Ω → R, i =
1, . . . , n, be C2-functions. Suppose that

Ω = {x : gi(x) > 0, i = 1, . . . , n}, |Dgi| ≥ 1 on Γi = ∂Ω ∩ {gi = 0}.

Define Q = (0, T )× Ω, ∂′Q = (0, T )× ∂Ω ∪ {0} × Ω and ∂txQ = {0} × ∂Ω. Let u ∈ C1,2(Q), u
continuous on Q \ ∂txQ, bounded on Q. If ut ≤ Au in Q and u ≤ 0 in ∂′Q \ ∂txQ, then u ≤ 0 in
Q.

Finally, if ut = Au, |u(t, ξ)| ≤ K for t > 0, ξ ∈ ∂Ω and |u(0, x)| ≤ K, x ∈ Ω, then ‖u‖∞ ≤ K.

Proof. The proof is given into two steps.
Step 1. We assume in addition that Ω is bounded.

In this case the functions gi are bounded in Ω together with their derivatives up to the second
order. A long but straightforward computation shows that the functions

(A.0.10) ψi(t, x) =
1
tεν

exp
(
λt− εg2

i (x)
t

)
verify, for ε > 0 small enough and λ large enough, (Dt −A)ψi ≥ 0, i = 1, . . . , n, in (0,∞)× Ω.

Let M = sup
Q
u = sup

Q\∂txQ
u > 0 (otherwise the proof is finished). Let γ > 0 and define

uγ(t, x) = u(t, x)−Mγεν
n∑
i=1

1
(t+ γ)εν

exp
(
λ(t+ γ)− εg2

i (x)
t+ γ

)
,

where ε and λ are given in (A.0.10). Clearly (Dt −A)uγ ≤ 0. Take η > 0 such that λγ − εη
γ > 0

and consider
Iη = {x ∈ Ω : ∃i = i(x) = 1, . . . , n : g2

i (x) ≤ η}.

For each x ∈ Iη, one has

γεν
n∑
i=1

1
γεν

exp
(
λγ − εg2

i (x)
γ

)
≥ exp

(
λγ − εη

γ

)
> 1.
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By continuity, there exists δ > 0 such that for any (t, x) ∈ [0, δ]× Iη,

γεν
n∑
i=1

1
(t+ γ)εν

exp
(
λ(t+ γ)− εg2

i (x)
t+ γ

)
> 1.

It follows that uγ ≤M −M = 0 in ([0, δ]× Iη) \ ∂txQ.
Since u(0, x) ≤ 0, x ∈ Ω \ Iη, we have uγ(0, x) < 0, x ∈ Ω \ Iη as well. Because Ω is bounded,

by continuity we obtain uγ(t, x) ≤ 0, (t, x) ∈ [0, δ]× Ω \ Iη, for some δ > 0.
We have obtained that uγ ≤ 0 in ([0, δ]×Ω)\∂txQ. Applying the classical maximum principle

in [δ, T ]× Ω, we get that uγ ≤ 0 in ([0, T ]× Ω) \ ∂txQ. Letting γ → 0+, we infer the claim.

Step 2. We consider a possibly unbounded Ω.
Here we will use the Lyapunov function ϕ. Set v = e−λ0tu and observe that vt−Av+λ0v ≤ 0.

We prove that v ≤ 0 in Q. Fix R > 1 and consider

ΩR = Ω ∩BR = {gi > 0} ∩ {R2 − |x|2 > 0}, QR = (0, T )× ΩR.

Note that ΩR satisfies the same geometric assumptions of Ω if one adds to the set {g1, . . . , gn}
the function g0(x) = R2 − |x|2. Let CR = inf

∂BR∩Ω
ϕ. Remark that CR →∞ as R→∞. Define

vR(t, x) = v(t, x)− ‖v‖∞
ϕ(x)
CR

, (t, x) ∈ QR.

It is easy to see that (Dt −A+ λ0)vR ≤ 0 in QR. Moreover vR(0, x) ≤ 0, x ∈ ΩR.
If t ∈ (0, T ), then vR(t, x) ≤ 0 for x ∈ ∂BR ∩ Ω, since ϕ

CR
≥ 1. Moreover vR(t, x) ≤ 0 for

x ∈ ∂Ω, t ∈ (0, T ). This shows that vR ≤ 0 on the parabolic boundary of QR.
Applying Step 1 to the operator Ã = A− λ0 in ΩR, we get vR ≤ 0, in QR, that is

v(t, x) ≤ ‖v‖∞
ϕ(x)
CR

.

Letting R→∞, we get the claim.

The last statement easily follows considering the functions ±u−K.

Observe that the above theorem covers also the case of certain non smooth domains, whose
boundaries can be described by a finite number of functions gi as in the statement, see e.g.
Example 3.6.1.

Let us show that uniformly C2 domains are covered by Theorem A.0.13.

Corollary A.0.14 . Theorem A.0.13 holds for uniformly C2-domains.

Proof. It suffices to show that there exists a C2-function g : Ω → R such that g > 0 in Ω,
|Dg| ≥ 1 in ∂Ω = {g = 0}. Let r be the distance function from ∂Ω. Then r ∈ C2(Ωδ) for some
δ > 0 and |Dr| = 1 on ∂Ω. Let moreover θ be a smooth function such that 0 ≤ θ ≤ 1, θ = 1 in
Ωδ/2, θ = 0 outside Ωδ. It is easy to check that g = θr + 1− θ satisfies the claim.
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