Chapter 4

On the domain of some ordinary
differential operators in spaces of
continuous functions

The present chapter is devoted to the study of the following second order ordinary differential

operator

Au = au” + b/

in spaces of continuous functions. In particular, we are interested in a precise description of
the domain on which A generates a semigroup. In Chapter 1 we have computed explicitly the
domain of the generator in the framework of LP spaces, for 1 < p < oo, in higher dimensions.
In Chapters 2 and 3 we have studied parabolic problems with Neumann or Dirichlet boundary
conditions in an open set Q of R and, by means of gradient estimates, we have obtained some
information on the domains of the generators of the semigroups yielding the classical solutions to
the above problems. But we did not come to a complete description of such domains. Also in the
literature, one can find more results concerning LP spaces, with 1 < p < oo (see [11], [12], [37],
[41]), rather than spaces of continuous functions. In [41] a complete description of the domain is
given in Cy(RY) when the operator contains a potential term which balances the growth of the
drift coefficient. We refer to [34] for the case of Holder spaces.

In this chapter we limit ourselves to the special case N = 1 and we deal with C,(R) and with
C(R), the space of continuous functions having finite limits at +o00. Here a detailed theory has
been developed in the fifties by W. Feller who gave an explicit description of all the boundary
conditions under which A generates a semigroup of positive contractions. An introduction to
Feller’s theory which is sufficient for our purposes can be found in [21, Subsection VI.4.c].

We consider A with its maximal domain in Cp(R)

Diax(A) := {u € C,(R) N C*(R) | Au € Cy(R)}
and we assume that
(Hp) A — A is injective on Dyax(A) for some A > 0.

This is equivalent to saying that (A, Dmax(A)) generates a semigroup of positive contractions in
Cy(R), which is not however strongly continuous (see Proposition 5.2.3).

If (Ho) holds, then A — A is injective on Dy,ax(A) for all A > 0. Moreover it turns out that
A — A is injective on Dpax(A) if and only if it is injective on Dy, (A), where

Du(A) := {u € C(R) N C2(R) | Au € C(R)}
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is the maximal domain in C(R), see Proposition 4.1.1 below. Then, from [21, Theorem VI.4.15],
it follows that (A, Dy,(A)) generates a strongly continuous semigroup of positive contractions in
C(R).

We point out that (Hg) is equivalent to requiring that +oo are inaccessible boundary points

according to Feller’s terminology, which means that, if W(x) := exp ( f - ZE? dt) the function

is not summable either in (—oo, 0) or in (0, +00). In many cases verifying these integral conditions
is not by any means an easy task. A sufficient condition, which has the advantage to be easy
to handle, is the existence of a positive function V € C?(R) such that lim ;. V(z) = oo and
AV < AV for some A > 0, see again Proposition 4.1.1.

Our main results show that, under suitable conditions,

Diax(A) = {u € CZ(R) | au”,bu’ € Cy(R)}

and, if a is bounded,
D (A) = {u € C*(R) | bu’ € C(R)}.

)
In this way, requiring that Au € Cy(R) (resp. C(R)) is the same to requiring that the two terms
au” and bu’ separately belong to Cy(R) (resp. C(R)).
Let us state our main assumptions:

(Hy1) a € C(R) and a > ¢ for some § > 0.
(Hz) b€ C(R) and there exist constants ¢; € R and ¢z < 1 such that

a(z)t' (x) < 1 + b (), TER.

We shall keep hypothesis (H;) and (Hg) throughout Sections 4.1 and 4.2 together with (Hy), but
we shall need stronger assumptions in Subsection 4.2.2. In fact, to describe the domain in C(R)
we assume that a € Cp(R) and that b satisfies |b'| < ¢(1 4+ [b]).

4.1 Preliminary results

In this section we collect some preliminary results which will be useful for the sequel. We start
by studying the injectivity of the operator A — A on Dyax(A) and Dy, (A), i.e. the uniqueness of
the solution in Dy, (A) and Dpax(A) of the elliptic equation Au — Au = f.

Proposition 4.1.1 The following assertions are equivalent:
(i) (Ho) holds.

(i) A — A is injective on Dyax(A) for all X > 0, hence (A, Dyax(A)) generates a semigroup of
positive contractions in Cyp(R).

(i1i) A\— A is injective on Dy, (A) for all X > 0, hence (A, Dy, (A)) generates a strongly continuous
semigroup of positive contractions in C(R).

Moreover, if there erxists a positive function V. € C?(R) such that im0 V(2) = +00 and
AV <AV for some X > 0, then the above conditions are satisfied.
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PROOF. For (i) < (ii) see [38, Proposition 3.5]. Implication (i7) = (ii¢) is obvious, see also [21,
Theorem VI.4.15].

Now we prove that (i4i) implies (ii). Let u € Dpax(A) be such that Au — Au = 0. From
[21, Theorem VI.4.14] it follows that there exist two linearly independent solutions vq and vy of
(A= A)v = 0 such that v, (resp. vz) is bounded (resp. unbounded) at +o0o and unbounded (resp.
bounded) at —co. Then u = kjv1 + kova, for some constants k1, ke € R. Since u is bounded,
k1 = ko = 0, which means u = 0.

Finally if there exists a function V' as above then (i¢) holds as a consequence of Proposition
5.2.3. (

Now we prove some estimates which will be the main tool for the description of Dy,ax(A).

Proposition 4.1.2 Assume that a > 0 and that (Hz) holds. Let M > 0 and v be a function in
CY([—-M, M)) such that v(—M) = v(M) = 0. Then

1 et
(4.1.1) 0Vl (= ar.20) < ||‘wl + b0l aran + — 01l (= ar.a) 5
1-— C2 1-— C2

where ¢ = max{cy,0}.

PROOF. Set f = av’ + bv. Let g € [-M, M| be a maximum point of the function bv. We may
suppose that xg €] — M, M[ and b(xzg) # 0, otherwise b(zg)v(zo) = 0 and estimate (4.1.1) is
trivially satisfied. Moreover, without loss of generality we assume that ||bv]|;_ = b(x0)v(20).
Then (bv)'(x¢) = 0 and from hypothesis (Hs) it follows that

v(o) o _ v(xo)

b(zo) = Lb(zo)

a(zo)v'(z0) = —a(xe)b' (x0) — cab(z0)v(z0)

and consequently

v(wo)

b(xo)

Multiplying by b(xo)v(xo) = ||bv||;_ s both sides of the previous inequality we get

[ flli=arnn > fzo) = alzo)v'(20) + b(zo)v(wo) > (1 — c2)b(x0)v(20) — €1

ovlli—aran |- ra = (1= e2)Ib0lI7 5y 0y — c1v?(w0) 2 (1= e2) 000y sy = € 01 -

. 1 cr
If @ := ||bv]|_ar.am, we have 22 < az + 3 with a = ﬁHfH[,M,M], 8= 1 1c HU”[Z—JW,]W]' It
—C —C2
follows that z < a + +/f3, that is
1 e
16Vl (- ar0 < 1—c 1 ll=arn) + \/ 1—7102 [l YvA
which is the statement. ]

Remark 4.1.3 Assume (H;) and (Hg). If u € C?([—M, M]) is such that u/(—M) = v/ (M) =0
then Proposition 4.1.2 implies

1 cf
106/ [[ 1= a0y < 1—c [ Aull s + \/ 1 —102 (g

Now, if € > 0 is sufficiently small, there exists a constant C., independent of M, such that

W[ 1=aroar) < €l |- aran + Cellulli-aran -
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Moreover we have that

//||

1 1
||“”H[—M,MJ < gHau =) S 5 (||bu’||[,M,M] + [[Aull—nrary) -

Taking into account these estimates and choosing € small enough we get
(4.1.2) 106 | arany < C (1A —aran + 1wl aaan)

where C' depends only on ¢1, ¢o and 4.

Estimate (4.1.2) still holds for every function u € C?(R) with compact support; indeed, it is
sufficient to consider an interval containing the support of u. The next step is to show that if a is
bounded then this estimate extends to every function u € CZ(R). This will be used in Subsection
4.2.2.

Proposition 4.1.4 Ifa € Cy,(R), a > § > 0 and (Hz) holds, then for every u € CZ(R) we have
(i) 100 ls < C([|Atfloe + lJulloo) ;
(i) [u"l[oo < C ([[Aulloc + [lufloe),

where C' = C(cy, c2,9).

PROOF. Let u € CZ(R). We prove that

(4.1.3) 10| <

o5 1 llee-

Let v = v and n € C°(R) be such that 0 < n <1,n=11in[-1,1] and n =0 in R\ [-2,2].
Set nn(z) = n(x/n). Then a(vn,) + blvn,) = (av’ + bv)n, + avn), and applying (4.1.1) to

v, € CLR) we have
lalloo cf
2 o 15 e
1o Pl

which is just estimate (4.1.3). Now, (¢) follows from (4.1.3) as in Remark 4.1.3.
Estimate (i7) easily follows from (7). O

1
b TLOO<
[bvmn e < —

Letting n — oo it follows that

[bv]loo <

1—

4.2 Characterization of the domain
4.2.1 The case of C,(R)
In this subsection we show that Dy,.x(A) is given by
Dax(A) = {u € CZ(R) | au”,bu’ € Cy(R)}.

The crucial point is to prove that A — A is surjective from the right-hand side above onto C(R).
This is done through an approximation procedure by considering the solutions of the equation
Au— Au = f in bounded intervals with Neumann boundary conditions and applying the estimates
of Section 4.1.
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Proposition 4.2.1 Assume that (Hy), (H1) and (Hz) hold. Then
Diax(A) = {u € CZ(R) | au”,bu’ € Cy(R)}.

PrOOF. Set D(A) := {u € C}(R) | au”,bu’ € Cp(R)}. Let A > 0 and f € Cy(R) be fixed. For
every n € N consider the problem

A —Au=f in [—n,n]
u'(—n) =u/(n) =0
It is well known that there exists a unique solution u,, € C?([—n,n]) which satisfies the following
estimate
1
(4.2.1) et l=nn < S 11 Flloo

(see e.g. [21, Theorem VI.4.16]). The equality Au,, — Au,, = f implies that
(4.2.2) [t l(nn) < 2] flloo-

Taking into account estimate (4.1.2) we have

(4.2.3) bl < € (1 Atnllinm) + [unlli-nn) < C l1f oo,
where C' = C(cy, 2,0, \). Moreover

(4.2.4) Slluplli=n.m < llavglli—nn) < lAtnll—n,n) + 10Ul —nm < C1llflleo
and, by interpolation

(4.2.5) lunlli=nm < ColllAtnll—nn) + ltnlli—n,m) < C2[lflloo

with C; and Cy depending only on ci,c2,5,A\. Now fix k € N and consider n > k. Then the
previous estimates imply that ||u,||c2(— k) is bounded by a constant independent of n and k.
It follows that the sequences (u,), (u,) are bounded and equicontinuous, then by Ascoli-Arzela
Theorem there exists a subsequence of (u,) which converges in C*([—k, k]). Using a diagonal
procedure we can construct a subsequence, still denoted by (u,,), and a function u € C*(R) such
that u, converges to u together with the first derivatives uniformly on every compact subset
of R. Tt follows that bu], converges to bu’ uniformly on compact sets and, using the equation
Auy, — Au, = f, it turns out that au! and consequently u!’ converge, too. Therefore u € C?(R)
and A\u— Au = f. Writing estimates (4.2.3), (4.2.4) and (4.2.5) for the function u,, in [—k, k] with
n > k and letting first n — oo and then k — oo we obtain that u € CZ(R) with au”,bu’ € Cy(R),
ie. u € D(A).

This shows that A — A : D(A) — C,(R) is surjective. Since D(A) C Dyax(A4) and X\ — A :
Diax(A) — Cy(R) is bijective we deduce that D(A) = Dyax(A), as claimed. O

4.2.2 The case of C(R)

As in the previous subsection we show that the domain D,,(A) on which A generates a strongly
continuous semigroup in C(R) is given by

D (A) = {u € C*(R) | bu' € C(R)}.
To this aim we require that
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(Hy) there exist positive constants dq, ds such that

b(x)x < di(1+2%)log(l+2?) +dy, z€R.

(H}) a € Cy(R) and a > 6 for some § > 0.
(H) b€ CYR) and |o'(x)| < c¢(1 + |b(z)]), for some constant ¢ > 0 and for all z € R.

Since a is bounded one easily verify that the function V' (x) = 1+log(1+2?) satisfies the hypothesis
of Proposition 4.1.1. Hence (A, Dy,(A)) generates a semigroup in C(R). Clearly (H}) and (H)
imply (H;) and (Hz), thus we may use the results of Subsection 4.2.1.

Proposition 4.2.2 Assume that (Hy' ), (Hi') and (Hy') hold. Then
Dn(A)={uec C*R) | '€ CR)}.

PROOF. Set D := {u € C?(R) | bv’ € C(R)}. Since A — A : D,,(A) — C(R) is bijective and
D C Dy, (A), it is sufficient to prove that A — A : D — C(R) is surjective.

Step 1: We assume first that a = 1. Let A > 0 and f € C(R) be fixed. From Proposition 4.2.1
we know that there exists u € Dyax(A4) = {u € CZ(R) | bu’ € Cy(R)} such that Au — Au = f.
On the other hand, since (A, Dy, (A)) generates a strongly continuous semigroup of contractions,
there is w € D,,(A) which solves the same equation. By uniqueness u = w. This means that
u € CZ(R) N CR) with Au € C(R), bu’ € Cp(R) and Au — Au = f. It remains to prove
that u',u”,bu’ € C(R). Since v’ is uniformly continuous and u admits finite limits at +oo we
deduce that lim|y o v/ () = 0. In order to use the same argument for u” we first assume
f € C(R) N CE(R). Then we may differentiate the equation

(4.2.6) Au—u" —bu = f
obtaining
Aw—v" =’ =f +bv,

where v = /. (Hj) implies that g := f' 4+ b'v € Cy(R). Therefore v € Dyax(A) and Proposition
4.2.1 implies that v € CZ(R). This means that u € C3(R) and as before it implies that v” € C(R),
with lim, e u”(x) = 0.

Now take f € C(R). Set f. := ®.* f € C(R) N CL(R) for £ > 0, where (®.) is a family
of standard mollifiers. From the previous computations, for every € > 0 the solution u. of
the equation Aue — Au. = f. belongs to D. Let u € Dyax(A) be the solution of Au — Au =
f and consider the difference u — u.. Then u — u. € CZ(R) with A(u — u.) € Cp(R) and
AMu—ue) — A(u — ue) = f — fe. Moreover

o~ welloe < 51 = Flloe
thus from the equation we get
[Au = Auclloo < 2/ fe = fll
and from Proposition 4.1.4(ii) it follows that
[u” = ullloe < C(l|Au — Auloo + [lu — telloo) -

Since f. converges uniformly to f as € — 0, we obtain that u! converges uniformly to u” as

e — 0. Since each u! tends to 0 as |z| — oo, we conclude that lim,|_. u” = 0. Therefore
u € C%(R) and bu' € C(R), i.e. u € D.
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Step 2: Now we consider a generic function a satisfying (H}). We endow the domain D with
the canonical norm
lullp = llull ooy + l10vllo

and we apply the method of continuity to the operators

d? d
+b—, telo,1].

At = (ta—i—l—t)@ dx

Let w € D C Dpax(A). We observe that the constants ¢;, ¢o in (Hg) and § in (H)) are independent
of t € [0, 1], so, applying Proposition 4.2.1 with A; instead of A and letting n — oo in estimates
(4.2.1), (4.2.3), (4.2.4) and (4.2.5), we obtain for A > 0

lullp < ClI(A = Ar)ulloo

where the constant C is independent of ¢ € [0, 1].
Since A— Ay : D — C(R) is bijective from step 1, we conclude that A— A; = X\ — A is bijective,
too. ]

4.2.3 Examples

Assume for simplicity that ¢ = 1. If b is given by b(z) = —|z|"x, with » > 0, then it is
readily seen that the function V (x) = 1+ 22 satisfies AV < AV for A > 0 sufficiently large. Then
Proposition 4.1.1 holds and A endowed with its maximal domain is a generator both in Cy(R)
and in C(R). The corresponding semigroup is differentiable for r > 0, but never analytic in
Cy(R) (see [40, Propositions 4.4 and 3.5]). Since (H}) and (Hj) are satisfied, Propositions 4.2.1
and 4.2.2 hold.

Condition (Hy) is satisfied by all polynomials and functions like e’ with P a polynomial. But
if b oscillates too fast then (Hz) is not true and Diax(A) is not contained in general in C} (R) as
shown in Example 2.4.7.

As far as hypothesis (H}) is concerned, we remark that it holds for example for e* but not
for e®”. In this last situation we do not know whether Proposition 4.2.2 still holds.
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