Chapter 2

Gradient estimates in Neumann
parabolic problems in convex
regular domains

In the present chapter we study, by means of purely analytic tools, existence, uniqueness and
gradient estimates of the solutions to the Neumann problems

w(t,x) — Au(t,z) =0 t>0, z€Q,
(2.0.1) g—Z(t,x) =0 t>0, z €00,
u(0,z) = f(z) zeqQ,
Au(z) — Au(z) = f(z) zeQ,
(202) gZ(m) =0 z € 09,

where € is a regular convex open subset of RY, 7 is the unitary outward normal vector to 952, f
is a continuous and bounded function in § and A is the linear second order elliptic operator

N N
A= Z QijDij+ZFiDi -V
i1

i,j=1

whose coefficients are supposed to be regular, possibly unbounded, in Q. The set Q may be
unbounded. Obviously, if O = RY we do not require any boundary condition.

Problems (2.0.1) and (2.0.2) are classical in the theory of partial differential equations and
they are well understood if the coefficients of A are bounded. If the coefficients are unbounded
and = RY | several results of existence, uniqueness and regularity are known, (see [13], [27],
[28], [34], [52]) and the overview [38]. Stochastic calculus is a useful tool ([13], [52], [56]); in
particular the recent book of Sandra Cerrai [13] contains a deep and exhaustive analysis of what
can be proved by stochastic methods.

We consider problem (2.0.1) and we prove that there exists a unique bounded classical solution
u(t,z). To do that, we consider the solutions w,, of Neumann problems in a nested sequence €,
of bounded domains whose union is €2, and we prove that w,, converges to a solution of (2.0.1).
We remark that one could approximate the solution with solutions of suitable mixed boundary
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value problems in 2, in such a way that for nonnegative initial data the approximating sequence
is increasing. This was done by Seizo It6 in his pioneering paper [27]. Although this further
property could be of much help in some steps, our techniques to get the gradient bounds do not
work with such boundary conditions. Therefore we consider the Neumann boundary condition
in each €2,. The solution u constructed in such a way is unique, since we assume a Lyapunov
type condition which ensures that a maximum principle holds.

Setting (P, f)(z) = u(t,z), P, turns out to be a semigroup of linear operators in the space
Cy(2) of the continuous and bounded functions in Q. We remark that in general P; is not strongly
continuous either in C,(Q) or in its subspace BUC() of the uniformly continuous and bounded
functions. This is a typical fact for semigroups associated with elliptic operators with unbounded
coeflicients. Therefore the generator can not be defined in the classical way. In the literature there
are several alternative definitions of generator; here we consider the weak generator introduced
by E. Priola (see [48] and also Section 5.2). We prove that it coincides with the realization of
A in Cy(Q) with homogeneous Neumann boundary conditions (see Proposition 2.2.4). In this
way, we can prove that the elliptic problem (2.0.2) admits a unique solution, whose second order
derivatives exist only in the sense of distributions and are locally p summable for every p.

After we have ensured existence and uniqueness for problems (2.0.1) and (2.0.2), our next
step consists in proving gradient estimates. We start by showing that

(2.0.3) |DP;f(z)| < C\};||f||Oo 0<t<T, z€Q, feCyQ),
(2.0.4) IDPf(2)] < Cr([[floe + [Dfllc) 0<t<T, €, feCyQ),
where

(2.0.5) C’%(ﬁ) = {u € Cr(Q): g:;(x) =0, z¢€ 89} .

We prove (2.0.3) and (2.0.4) using the Bernstein method, . e. we apply the maximum principle
to the equation satisfied by 2, = u2 +t|Du,|? (respectively z, = u2 +|Du,|?), that gives a bound
for z, independent of n, and then we obtain (2.0.3) (respectively (2.0.4)) letting n — oo. We
observe that the convexity assumption on €2 is crucial at this point, since it leads to the condition
% < 0 at the boundary (see Lemma 2.1.3). In the case Q = R the previous estimates were
proved in [34] with the same method and in [13] with probabilistic methods. As a consequence
of (2.0.3) we have an elliptic regularity result, since we can show that the domain of the weak
generator of P is contained in C} ().
Assuming V = 0, we prove further gradient estimates. In the case ¢;; = 6;; we show that

(2.0.6) IDP,f(z)[P < P P(IDfIP)(x) t>0, z€Q, feChQ).
for all p > 1, where ky € R is determined by the dissipativity condition
N
(2.0.7) > DiFj(2)&& < kolé]?, z€9Q, £ RN,
ij=1
If the coefficients ¢;; are not constant we prove the similar estimate
(2.0.8) IDPf(@)F < e P(DfP) @) 120, 2€Q, feCli@)

for all p > 1, where 0, € R is a suitable constant. These estimates have interesting consequences.
First, if there exists an invariant measure for P;, that is a probability measure such that

/Ptfd,u:/fdu, t>0, feCy),
Q Q
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estimates (2.0.6) and (2.0.8) are of much help in the study of the realization of P, in the spaces
LP(Q,p), 1 < p < oo (see Remark 2.4.5 for such consequences and Chapter 5 for the main
properties of invariant measures).

Second, we deduce the pointwise estimates

-1
o2l

P
2
2(1_6<rzt)) P(|fP)(z), t>0, p>2,

IDBN@WS<
(2.0.9)

—1
CpOpl
P < P¥pP~0
|DPtf(37)| — tp/271(1 _ efapt)

P(|fIP)(z), t>0,1<p<2,

for f € Cp(Q2), where ¢, > 0 is a suitable constant. Estimates (2.0.9) give the optimal constant
in (2.0.3); moreover integrating over {2 with respect to the invariant measure p we get the
corresponding estimates for DP, f in LP(Q, u), when f € LP(Q, u).

Dissipativity conditions of the type (2.0.7) are of crucial importance to get gradient estimates.
Indeed, in section 2.4 we give a counterexample to estimate (2.0.3) for an operator A = A +
> F;D; where F does not satisfy (2.0.7). Concerning estimate (2.0.6), in the case of variable
coefficients ¢;; the constant o, blows up as p — 1, and we do not expect that (2.0.6) holds also
for p = 1. Estimate (2.0.9) too fails in general for p = 1, as we show in the case of the heat
semigroup. Finally we show an example related with the Ornstein-Uhlenbeck operator.

2.1 Assumptions and preliminary results

First we state our assumptions that will be kept throughout the chapter. Q C RY is a convex
open set with C?** boundary (see Definition B.0.15). The coefficients of the operator A are
real-valued and belong to C.F*(Q) and satisfy the following conditions:

N
211) g =i Y, 6;@)&G 2 v(@)EP 1€, RN, inf v(z) =1y >0,

e
ij=1
(2.1.2) |Dgij(x)| < Mv(z), z€Q,i,j=1,..,N,
N
(2.1.3) Y DiFj(2)&& < (BV(x) + ko) [§]°, zeQ, (RN,
ij=1
(2.1.4) V(z) >0, |IDV(z)| <v(1+V(z)), ze€Q,

for some constants M,y > 0, ko, € R, § < 1/2. Moreover, we suppose that there exist a
positive function ¢ € C?(Q) and A\g > 0 such that

0
(2.1.5) lim ¢(z) =400, sup(Ap — Aop) < +00, —‘p(x) >0, xe€ .
|z|—4o00 Q 877
We introduce the following realization of operator A with homogeneous Neumann boundary
condition
_ — 0
D(A):{u € Ch(2) N ﬂ W2P(QN Bg) forall R > 0: Au € Cy(Q), —u‘ = 0}.

onlaa
1<p<oo g

We remark that if Q = RY our results can be generalized to operators with locally Holder
continuous coefficients satisfying suitable assumptions by a standard convolution approximation,
see Remark 2.3.4.

In this section we collect some preliminary results which are the main tools for the study of
problems (2.0.1) and (2.0.2). We start by stating maximum principles for such problems, and
consequent uniqueness results. For the proofs we refer to Appendix A.
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Proposition 2.1.1 Let z € C([0, T]xQ)NC%1(]0, T]x Q)NC*2(]0, T] x Q) be a bounded function
satisfying

zi(t,x) — Az(t,x) <0, 0<t<T, €,
0

% t2) <o, 0<t<T, z€df,
on

z(0,2) <0 x e

Then z < 0. In particular there exists at most one bounded classical solution of problem (2.0.1).

Proposition 2.1.2 Let u € Cy(Q) N W2P(Q N Bg) for all R > 0 and p < oo, be such that
Au € Cy(Q) and

Au(z) — Au(z) <0, x €,
(2.1.6) ou

— <

n (x) <0, x €09,

for some A > Ag. Thenu < 0. In particular, there exists at most one solution in D(A) of problem
(2.0.2).

The following lemma is of crucial importance for our estimates; it holds for convex domains
and this is the reason why we have assumed that 2 is convex.

Lemma 2.1.3 Let A be a conver open set with C' boundary, not necessarily bounded. Let
u € C?(A) such that Ou/dn(x) = 0 for all x € ON. Then the function v := |Dul|? satisfies

g—:;(x) <0, ze€0A.
PROOF. Let us introduce the notation @ = %, e ,an—N , where the derivatives are
or or or

0
understood in local coordinates. Since €2 is convex, we have 7 - —n(z) > 0 for all x € 9§ and

-
all vector 7 tangent to 09 at x (see [25, section V.B]). By assumption, Du(z) - n(x) = 0 for all
x € 02 and then differentiating we get

9 _ 2 M, \_
57 (Du(z) - n(z)) = D*u(z)T - n(x) + Du(zx) o (x) =0, =z€dA,
for every vector T tangent to 9. For 7 = Du(x) we have
ov 2 877
_ = . = — - —_ < .
n (x) = 2D%u(z)7 - n(x) 27 o () <0, xz€0Q

O

Now we recall some known results about Neumann problems in bounded domains. Let A be
a bounded open set in RY with C?*® boundary. Consider the realization of the operator A in

C(A) with homogeneous Neumann boundary condition

— 0
(2.1.7) D, (A) = {u € W2P(A) for all p < +oo : Au € C(R), a—u(x) =0, z € 8A} )
n
and Au = Au for all u € D, (A).
It is well known that (A4, D,(A)) generates a strongly continuous analytic positive semigroup
(S(t)) of contractions in the space C(A) (see e.g. [32, Section 3.1.5]). It follows that for all

f € C(A) the function u(t,z) = (S(¢) f)(z) has the following properties
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(i) u € C([0, +o0[; C(A)) N C(]0, +oo[; C(A)),
(ii) wu(t, ) € Dy(A), for all t >0,

(iii) w is the unique solution of the Neumann problem

Diu(t,z) — Au(t,x) =0 t>0, z €A,
(2.1.8) g—:;(t,x) =0 t>0, ze€dA,
u(0,x) = f(z) r €A

satisfying (i) and (ii).
Actually the function u enjoys further regularity, as it is shown below.

Lemma 2.1.4 The following properties hold
(a) u € C1He/22 ([ T] x K) for all0 < e < T < +oo and

(2.1.9) ||“Hcl+a/2,2+a([e,:r]><X) <C ||“Hc([o,:r]><X)

for a suitable constant C = C(g,T,A) > 0.

b) Diu € C1+e/22+a([c T) x K), for alli=1,..,N,0 < e < T < +00 and A" open set with
(
N C A. In particular u € C3(]0, +00[xA).

PROOF. (a) Assume first that f € C**®(A) and 9f/0n = 0 on A. Then there exists
a function v € C*/22+([0, T] x A), for all T > 0, which solves (2.1.8) (see [30, Theorem
IV.5.3]). By uniqueness v(t, z) = u(t, x).

Now take f € C(A) and consider a sequence (f,,) € C***(A) with df,,/0n = 0 on A, which
converges to f in C(A). Let v, € C1+2/2.2+([0, T] x A), for all T > 0, be the solution of problem
(2.1.8) with initial datum f,,. Fix 0 < &’ < e < T, then the following Schauder estimate holds

(2.1.10) [onllcrvarzeta(emxa) < Cllvnllee rxxy,  mEN

where C = C(g,e’,T,A) > 0 (see Theorem C.1.1).
On the other hand, the maximum principle implies that if z € C([0,T] x A)NC*(J0,T] x A)N
C12(]0,T] x A) solves problem (2.1.8) then

1zl eqo,mxay < Ifllom):

Applying this estimate and (2.1.10) to the difference v,, — v, we get

lve = villoqorxmy < Ifa = flle), n,m € N,
< Cllfa = fulle, n,m € N.

[vn = vmllcr+arzata ey«
It follows that (v,) is a Cauchy sequence in C1T/22+ ([ T] x A) and in C([0,T] x A), conse-
quently it converges to a function 7 € C'+*/22+([¢, T] x A) N C([0,T] x A). Tterating the same
argument we find a function v € CLE*/*2T*(]0, +o00[x A) N C([0, +00[x A) which solves problem
(2.1.8) with datum f. Again, by uniqueness, v(t,x) = u(t,z). Estimate (2.1.9) is clear from
(2.1.10) n — oo.
(b) The statement follows from [29, Theorem 8.12.1] since the coefficients of A belong to
Cite(h). 0
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Next we prove a gradient estimate for S(¢)f, using Bernstein’s method (see [34, Theorem
2.4]). Tt is worth observing that, since A is bounded, this result is well-known. Actually, our
interest is not in the estimate itself but rather in the fact that the constant Cr in (2.1.11) does
not depend on the domain A, when it is convex. This will be an important step in the study of
problem (2.0.1).

Proposition 2.1.5 Let A be a bounded convex open set with C%+% boundary. For all fired T > 0
there exists a constant Cp > 0 independent of A such that

(2.1.11) |IDS(t) f(x)| < 0<t<T, z€A

Cr
1l
for every f € C(A).

PrOOF. We may suppose that V > 1; the general case follows considering the operator
A" = A — 1. Assume first that f € D,(A); set u(t,z) = (S(t)f)(x) and define the function

v(t,x) = u*(t,x) + at|Du(t,x)|*, t>0, 2 €A,

where a > 0 is a parameter that will be chosen later. Then we have v € C*2(]0,T] x A) N
C%1(]0,T] x A); moreover, since f € D,(A), we have u € C([0,T); D, (A)); in particular Du €
C([0,T] x A) and then v € C([0,T] x A).

We claim that for a suitable value of ¢ > 0 independent of A, we have

(2.1.12) v (t, ) — Av(t,z) <0, 0<t<T, €A,
(2.1.13) g—z(t,z) <0 0<t<T, ze€dh;

then the maximum principle implies

v(t,z) <supv(0,2) = ||f|2, 0<t<T, z€A,
CDGK

which yields (2.1.11) with Cp = a~1/2.
The boundary condition (2.1.13) follows from Lemma 2.1.3. For (2.1.12), a straightforward
computation shows that v satisfies the equation

ve(t, 2) — Av(t, ) = a|Du(t, x)] —2Zq” ) Diu(t, z) Dju(t, z) + g1(t, ) + g2(t, x),

3,J=1
where

N

g1(t,x) = 2at Z D, Fj(x) Diu(t, ) Dju(t,z) — atV(x)|Du(t,z)|?
i,j=1
—2atu(t,z)Du(t,z) - DV (x) — V(z)u?(t, x),
N

g2(t,x) = 2at< Z Drqij(z)Dru(t, ) Diju(t, x) Z gij (@) Digu(t :E)Djku(t,x)>.

i,5,k=1 i,5,k=1

Let us estimate the function g;. Using (2.1.3), (2.1.4) and recalling that V > 1 we get for all
e>0

IN

2at(BV + ko)|Du|? — atV|Du|? + 2ayCt(1 + V)|ul? + 2avet(1 + V)| Dul|?* — Vu?
at(28 — 1+ 2ve)V|Du|? + (4ayC.t — 1)Vu? + 2at(ko + ve)| Dul?,

g1

A
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where C. > 0 is a constant. Since 5 < 1/2 we can choose € = £(/3,7) such that (26 —1+2y¢) <0
and we get

(2.1.14) g1 < (dayCat — 1)Vu? 4+ 2at(ko + ve)| Dul?.

Concerning go, from (2.1.2) we have

N N N
Z Dyqi;jDyuDiju < MV([L')Z‘Dkul Z |D;jul
i, k=1 k=1 i,j=1
N 1/2
< MN3/2V($)|DU|< > (D,»ju)2>
ij=1
N 1
< D;:u)> + = M?N3 Dul?
< ) 3 (Dl + PN D

and therefore

N N
g (t,x) < 2at<u(a:) > (Diju)® + iMzNgy(x)|Du|2 —v(x) Yy (Diju)2>

i,j=1 i,5=1
1
(2.1.15) = iatMQN3 v(z)|Dul*.
Estimates (2.1.14) and (2.1.15) imply that

vi(t,z) — Av(t,z) < {a + 2at(ko + ve)) + (;thQN3 — 2> V(x)} | Du(t, z)|?

+(4ayCet — 1)V (z)u’(t, )

IN

{a +2aT (kg + ve)) + <;aTM2N3 — 2) Z/(x)} | Du(t, z)|?

+(4ayC.T — D)V (x)u?(t, ),

for all ¢ €]0,T] and = € A. It is clear now that there exists a sufficiently small value @ > 0 which
depends on vy, M, ko, 3,7, N, T but not on A such that (2.1.12) holds.
If f € C(A) the statement follows easily using the semigroup law, since S(t) is analytic:

V2Cr V2Cr
i 15(/2) flloo < NG

|DS(t)f ()| = [DS(t/2)S(t/2) f ()] < [1floc-

2.2 Construction of the associated semigroup

In this section we prove that there exist bounded solutions to problems (2.0.1) and (2.0.2),
we show that there exists a semigroup (P;);>0 in Cy(Q) which yields the solution of (2.0.1) and
we study the main properties of P;.

We consider a nested sequence {§2,},en of convex bounded open sets with C?T boundary
such that

Ua.=92 o2c (o

neN neN
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We denote the domain of the realization of A in ,, with

(2.2.1) D,(A) = {u € W2P(Q,,) for all p < 0o : Au € C(Q,), g—z(w) =0, z¢€ 8Qn} .

and we denote the associated semigroup with (T,,(¢))¢>0. Here is the existence theorem for
problem (2.0.1).

Theorem 2.2.1 For every f € Cy(Q) there ewists a unique bounded solution u(t,z) of problem
(2.0.1) belonging to C ([0, +oo[xQ) N CHO‘/Q’HD‘(]O7 +00[xQ). Moreover

loc

(2.2.2) u(t,z) = lm (T,,(¢)) f(z), t>0, z€Q.

n—oo

Setting P f = u(t,), then (P;)i>0 is a positive contraction semigroup in Cy(Q). Moreover

(2:2.3) IDP S < <X

o 0<t<T,
_\/ZIIfH

where Cp is the same as in (2.1.11).

PROOF. Set uy(t,z) = (T,(t) f)(z). Let @ C Q be a bounded open set and 0 < ¢ < T'. From
[30, Theorem IV.10.1] it follows that if ” C Q is a bounded open set such that Q' C Q" and
dist (2,92 \ 2”) > 0, then there exists a constant C = C(e, T, Q, Q") > 0 such that

(2.2.4) HunHcl+a/2,2+a([57T]><ﬁ’) < CHuan([o,T]xﬁ”)-

Hence
||un||cl+a/2,2+a([5,T]xﬁ’) < Cllfllos
for all n € N such that Q" C Q,, and therefore the sequence (uy)nen is relatively compact
in C12([e, T x ﬁ/). Considering an increasing sequence of domains [e,,T),] X ﬁ; whose union
is ]0, +00[xQ and using a diagonal procedure we can conclude that there exists a subsequence
(tn, )ken (possibly dependent on f) such that
3 lim uy,, (t,2) =u(t,z), t>0, r€Q,

k—oo

where u € 011(;04/2,%04 (]0, +00[x Q). Moreover (uy,, )ren converges to u in C12([e, T] x ﬁl) for all
0 < € < T and for all bounded open set £’ C €.

We prove that u is a bounded classical solution of problem (2.0.1). The function u is a solution
of the equation u; — Au = 0 in ]0, +00[x €. This follows letting & — oo in the equation satisfied
by un, . Moreover since

lu(t,z)| < |[|flloc, t>0, z€Q,
then u is bounded in ]0, +00[xQ. The boundary condition

%(t’m) =0, t>0, ze€.
follows immediately since u,, converges to u in C12([e, T] x Q) forall0 <e<T and Q CQ
bounded open set. Finally we prove that u is continuous at (0, 2¢) with value f(zg) for all 2o € Q.
Consider two neighborhoods U; C Uy of xg. Set Qg = UgNQ and 21 = U; N2 and suppose that
Qp is convex and has C?T® boundary. Let § € C?(€p) be such that § = 0 in a neighborhood of
QNaly, 6§ =11in Q; and 96/9n = 0 in Uy N IN. Define

v (t,x) = 0(z)un(t, ), t>0, z € Q.
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Then v, satisfies the boundary condition

Ovn
on

(t.2) = 0@) 2, 2) + un(t,2) 2 (2) = 0,

2.2.
(2.2.5) an on

for all t > 0 and = € 99y and for all n such that Qg C €2,,. Moreover v,, satisfies the equation
Divy,(t,x) — Avp(t, ) = Y (t,z), t>0, x € Q,

where

N
Un(t,x) = —up(t,z)(A+V(z))0(x) — 2 Z i () Dijun (t, ) D;6(x).
ij=1
Since T,,(t) satisfies the gradient estimate (2.1.11), it follows that there exists a constant C' > 0
such that

C
2.2.6 () |loo < —= 0<t<T,
(2.2.6) l[¢n ()] i
for all n € N. Let T'(t) be the strongly continuous analytic semigroup generated by the realization
of A in C(€p) with Neumann boundary conditions. From [32, Proposition 4.1.2] it follows that
v (t) can be written as

v (t) =T()(0f) +/0 T(t — 8)n(s)ds.

Since v, = u, in Qy, if (¢,2) €]0, T[xQ; we have

[ty (&, ) = f(zo)| < [T(£)(0F)(x) — f(wo)] +/0 IT(t = 8)¢n (8)llocds-

Using (2.2.6) and letting k — oo we get

t
ut.2) — Flao)| < [TOON)@) — fao)] + [ S-ds
0 Vs

which shows that u is continuous at (0,). Since zo € Q is arbitrary, we conclude that u is
continuous in [0,7] x Q. Thus we have proved that u is a bounded classical solution of problem
(2.0.1).

We claim that the whole sequence (uy,)nen converges to u in C12([e, T xﬁl) forall0 <e < T,
) C Q bounded open set. Indeed consider any subsequence (uy, )ren Of (Un)nen. The previous
argument can be applied to (un, )ren and it follows that there is a subsequence (unkj )jen and a
function v such that v is a classical bounded solution of problem (2.0.1) and (unkj )jen converges
to v. But from Proposition 2.1.1 it follows that w = v. This show that the whole sequence
converges to u.

Writing (P;f)(z) = u(t,z), we get the positivity of P; directly from the positivity of T, (t).
The semigroup law for the linear operators P; follows in a standard way from uniqueness.

Finally, according to Proposition 2.1.5, for all 7' > 0 there exists a constant Cp > 0 such that

C —
IDTA(0)f (@) < Zlflle; 0<t<T, 2 €00,

7

for all n € N. Letting n — oo we get (2.2.3). O

The next proposition shows some continuity properties of P; that will be useful in the sequel.
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Proposition 2.2.2 If (f,)nen C Cp(Q) is a bounded sequence which converges pointwise in §) to

a function f € Cp(Q), then (P, fn)(z) converges to (Pyf)(z) in CY2([e, T x 5/) forall0 <e<T

and all bounded sets ' C Q. If (f,) converges to f uniformly on compact subsets of S, then

(P fn)(x) converges to (P f)(x) uniformly in [0, T) xQ for allT > 0 and all bounded sets ' C Q.
Finally P, can be represented in the form

(2.2.7) (P.f)(z / fly)pt,z;dy), t>0, z€Q,

where p(t, z; dy) is a positive finite Borel measure on ().

PROOF. We may assume that f = 0. Let (f,)neny be a bounded sequence in Cy(9) that
converges pointwise to zero in Q, and set w,(t,z) = P;f,(z). Using the local Schauder es-
timate (2.2.4) and the maximum principle it follows that the sequence (u,) is bounded in
ClHe/22+0([e T] x Q) for all 0 < £ < T and all bounded €' C €. Therefore there exist a subse-
quence uy, , and a function u € C%2(]0, +00[x Q) such that u,,, converges to u in C1:2([e, T xﬁl)
for all 0 < € < T and for all bounded @' C Q. The function u is a bounded solution of the
equation

—Au=0 1in (0,+00) x Q,

and it satisfies the boundary condition

0
ai;; =0 in (0,+00) x O

Now we show that u is continuous up to ¢ = 0 and that u(0,2) = 0 in order to conclude that
u = 0, by Proposition 2.1.1. Let gy, ©; and € be as in the proof of Theorem 2.2.1 and set

vn(t, ) = 0(x)u,(t,z). Then we can write

v (t) =T @) (0fn) + /0 T(t — s),(s)ds

where T'(t) is the semigroup generated by the realization of A in C(€) with Neumann boundary
condition and

Un(t,2) = —un(t,2)(A+ V(x -2 Z ij(x) Dyun (t, ) D;0(x).

7,7=1
Using the gradient estimate (2.2.3) and the boundedness of (f,, )xen it follows that
(2.2.8) [y, (8, 2)| < [(T(#)(0fn)) (@) +CVE, 2€Q, 0<t<T, k€N,

where C' > 0 is a constant independent of & € N. For all 1 < p < 400 the semigroup (7T'(¢))
extends to an analytic semigroup in LP(Qg) (see [32, Section 3.1.1]), and for p > N the domain
of the generator of T'(t) in LP(£2) is embedded in C(Qg); since 0f,, converges to zero in LP ()
it follows that T'(t)(6f,,) converges to zero uniformly in Qg. Thus letting k — oo in (2.2.8) we
get

lu(t,z)] < CVt, 0<t<T, ze,

which implies that u is continuous at (0, ) for all zg € ;. Since Q; C Q is arbitrary, we obtain
that v is continuous at t = 0 with w(0,z) = 0.

Therefore u = 0 and the subsequence u,,, converges to zero in C1?([e, T xﬁ,) forall0 <e < T
and bounded ' C Q. As in the proof of Theorem 2.2.1 one can prove that the whole sequence
(tun)nen converges to zero in C12([e, T] x ﬁl) for all 0 < € < T and bounded Q' C Q, as stated.
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Suppose now that (f,,)nen converges to zero uniformly on compact subsets of Q. By (2.2.8)
we have

lun (8, 2)| < NT()(0fn) oo + OVE< N0 fnlloo + CVE, 2, 0<E<T,
where C' > 0 does not depend on n € N. Therefore for all £ > 0 we have

||Un||0([o,T]x§1) < ||0fnlloc +CVeE+ HunHC([g,T]xﬁl)-

Taking into account the first step of the proof this yields
limsup ([ua | o0 7<) < C/e,
n—oo

that is u,, converges to zero uniformly in [0, 7] x €;. Since §; is arbitrary, the conclusion follows.
We can prove now (2.2.7). By the Riesz representation theorem, for every x € Q there exists
a positive finite Borel measure p(¢, z;dy) in Q such that

(2.2.9) (Rﬁ@%=4f@m@wmw, f € Col9).

If f € Cy(Q2), we consider a bounded sequence (f,,)nen C Co(€2) which converges to f uniformly
on compact sets of Q. Writing (2.2.9) for f,, and letting n — 400 we obtain the statement for
f € Cp(22), by dominated convergence. ]

Using the semigroup law we extend estimate (2.2.3) to the whole half-line [0, 4+o00].

Corollary 2.2.3 For all w > 0 there exists C, > 0 such that

(2.2.10) [DP;flloe < Cu \/ ||f||oo,

Proof. Fix w > 0 and let T = T(w) > 0 such that e**t=1/2 > 1, for all t > T'(w). By (2.2.3)
for all ¢t €]0,T] we have

t>0, fe C},(ﬁ)

HDPflloof =1 £lloe < C IIfHoo, 0<t<T,
' Vi \f
while for all ¢ > T
CT ev
[DP;flloc = [IDPr Pi—r fllec < \f NPt fle < f = (| flloo < T ||fHoo, t>T.
So the statement follows with C, = max {CT, \f} ]

We remark that the semigroup (P;);>0 is not strongly continuous in C(Q) in general: this is
shown by the example €2 = RN nd A = A. As in the case = RY (see Section 5.2), we can
D(

introduce the weak generator (4, D(A)) defined by

D(A) = {f € Cp() : sup I2ef = £l < oo and 3Jg € Cy(Q) such that
te(0,1) t
iy BD@ =10 0, )
Af(z) = }21(1) ( tf)(xt) — f(ac)7 f e D(A), zeq.
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The following results are proved in [48]: if f € D( A), then P, f € D(/T) and fAlPtf = Ptﬁf, for
all t > 0. Moreover one has (0,4+00) C p(A), [|[R(A, A)|| < 1/X and

+oo
(2.2.11) (R(NA) ) (x) = /0 e M(P,f)(z) dt, x €1,

and R(\, A) is surjective from Cy(Q) onto D(A) for all A > 0.

Our aim now is to show that in fact A coincides with the operator A. This result is well
known in the case where = R™. More precisely, one can prove that A C A. If it is assumed
that a Liapunov function exists, then one can check that also the other inclusion holds. We refer
to Section 5.2, where the main properties concerning Feller semigroups in RY are collected. If
Q) is not the whole space, then the same result holds, but in proving it we have to pay attention
to the boundary. Indeed, the main point in the proof below consists in applying suitable interior
L? estimates which involve also a part of 9 (see (2.2.13)).

Proposition 2.2.4 For all f € C,(Q2) and X\ > 0, the function u = R()\,E)f belongs to D(A)
and solves problem (2.0.2). Moreover D(A) = D(A) and Av = Av for all v € D(A).

PROOF. Let f € Cyp(Q) and let u = R(\, A)f. For all n € N, let u,, = Ry(X, A)f € Dy (A),
where R, (), A) is the resolvent of the operator (A, D, (A)), that is

+oo
wn(z) = / AT, (0 )@)dt, = €T,

Taking into account the contractivity of T,,(¢), we have

1
(2.2.12) [unlloo < Sl flloor  AUR[loo < 21| flloc

for all n € N, and then from Theorem 2.2.1 and by dominated convergence it follows that

lim u, = u,
n—oo

pointwise in Q and in LP(€2), for all k¥ € N. Furthermore, by Theorem C.2.1 we have
(2.2.13) [t — [l w20 < Py k)<||un - um||Lp(Qk+1)), n,m >k,

for all p € (1, 4+00), where c(p, k) > 0 is a constant. Consequently u,, converges to u in W2P(Qy),
for all k € N. Hence u € W2P(Q2 N Bg), for all R < oco. Moreover by Sobolev embedding u,,
converges to u in C1(Qy) for all k¥ € N, and then we deduce that du/dn = 0 in 9. Finally,
letting n — oo in the equation Au,, — Au, = f, it follows that Au — Au = f in Q. Therefore u
belongs to D(A) and it is a solution of problem (2.0.2).

In particular, since R(), A) is surjective from Cy(€2) onto D(A), it follows that D(A) C D(A).
Conversely, let u € D(A) and define f = Au— Au € Cy(Q), where A > Ao (see (2.1.5)). Then the
function v = R(A, A\)f is a bounded solution of problem (2.0.2). By Proposition 2.1.2 we have
u = v, and in particular u € D(g) O

A consequence of the gradient estimate (2.2.10) is that D(A) is continuously embedded in
Proposition 2.2.5 D(A) C C}(Q). Moreover for allw > 0 there exists a constant M,, > 0 such
that:

(2.2.14) [Dulloo < My [Julldo [[(A = w) ull%
for allu € D(A).
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PrOOF. Let u € D(A), w > 0 and A > 0. Then the function f = (A +w)u — Au belongs to
Cp(Q) and

u(@) = (RO + w, ) f) (x) = / ORI P @) dt,  ze .
0
By using estimate (2.2.10), we may differentiate under the integral sign obtaining
+oo
Du(z) = / e~ MHIYDP, f)(z)dt, x€Q
0

and

+OO — Mw
Du(z)| < C, / - Zlfle. e

where M, > 0 is a constant. Therefore

mmeM@¢Awm+WA;2M”)

and, taking the minimum over A, (2.2.14) follows. O

With the same technique as in Proposition 2.1.5 we get the following gradient estimate.
Proposition 2.2.6 For every T > 0 there exists Cr > 0 such that
(2.2.15) IDPflloe < Cr (Iflloe +1Dfl) ,  0<t<T,
for every f € C}(Q) (see (2.0.5)).

PrROOF. We may suppose that V > 1; the general case follows considering the operator
A" = A — I. We give the proof by steps; first we prove that there exists a constant C7 > 0 such
that

(2.2.16) IDT,(t)f (@) < Cr(Ifllsc + 1Dfllc) ,  0<t<T, 2 €Qy,

for every n € N and f € C}(Q,). Since D, (A) (see (2.2.1)) is dense in C}(Q,), it is enough to
prove (2.2.16) for f € D, (A).
Let f € D,,(A) and define

w(t,z) = u?(t,2) +a|Du(t,z)]*, t>0, r€Q,,

where u(t,z) = (T,(t)f)(z) and a > 0 is a constant. Then w € C([0,T] x Q,) N C%1(J0,T] x
Q,)NCH%(]0,T) x 2,) and from Lemma 2.1.3 it follows that

—(t,z) <0, >0, x €0,

Moreover w satisfies the equation

wy(t,x) — Aw(t, x) —2qu ) Diu(t, x) Dju(t, x) + hi(t, z) + ha(t, x),

4,j=1
where
hi(t,z) = QaZDF ) Diu(t, ) Dju(t, ) — aV (x)|Du(t, z)|?
=1
—2a]u(t z)Du(t,z) - DV (x) — V(z)u?(t, z),
ho(t,z) = ( Z Dygij(x)Dpu(t, x)D;ju(t, z) i ¢ij(2)D;pu(t x)Djku(t,x)>.
i gy k=1 i, k=1
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The same estimates of the proof of Proposition 2.1.5 show that there exists a value of a > 0
independent of n such that

we(t,z) — Aw(t,z) <0, 0<t<T, z€,.
Therefore the classical maximum principle yields

w(t,z) < sup w(0,z) < (|fI% +allDfI%), 0<t<T, z€8y,,
xeﬁn

which implies (2.2.16) with Cr = a=1/2 Vv 1.
Let now f € C}(Q). For all k € N, let 6, € C;(Q) be a function with bounded support such

that
0<6 <1, [DO|loo <L,

9k21ian, %:OinﬁQ,
on

where L > 0 is a constant independent of k € N, and set f; = i f. Then for all n € N such that
supp (0;) C Q,, we have

Ofk (1) — V%

of
B (z) = 5777

(z)f(z) + ek(x)%(x) =0, z€d,
that is fy € C}(Qn). Then T, (t) fi satisfies estimate (2.2.16), and letting n — 400 we get

IDPfi(@)] < Cr(llfulloe + 1D filloe) < Cr((1+ L) fllos + [[Dfllsc), 0<t<T, z€Q.

Taking into account Proposition 2.2.2 and letting & — oo the statement follows. ]

As a consequence we get the following result which will be used in the sequel.
Proposition 2.2.7 If f € C% (Q) then the function DP,f is continuous in [0, +0c0) x Q.

PROOF. Let f € C,ll (€2). Taking account of Theorem 2.2.1 we have only to prove that DP;f
is continuous at ¢t = 0. Let zy € Q be fixed and Qg, 1, 6 and T'(t) as in the proof of Theorem
2.2.1. We set

o(t,z) = 0(x)(Pef)(x), t=0, z€ o,

and we prove that Dv is continuous at (0, z); since v(t,z) = (P.f)(x) for all z € Oy then the
conclusion follows. We can write

oft) = T(£)(0F) + / T(t - )b (s)ds,
where

W(t,x) = —Pif(@)(A+V(@)0(x) =2 ) q;j(x)DiPof (x)D;6(x).

i,j=1
From Proposition 2.2.6 it follows that
[¥(®)llee < Cr([flloc +[1Dflloc), 0<t<T,
for some Cp > 0, where T is fixed, and then by (2.1.11) we have

ID7(¢ = 5)(6) e < =1l + [Dfl), 0 <5<t<T,
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for some C' > 0. Therefore
|Dv(t, ) — D f(xo)| < |DT()(0f)(x) — Df(x0)| + 2CVE([| fllse + 1D f]lo0);
for all 0 < t < T, x € Q. Taking account of

(2.2.17) lim  |[DT®#)(0f)(xz) — Df(xo)| =0,

(t,z)—(0,z0)
we conclude that Duv is continuous at (0,z0). Relation (2.2.17) is immediate if f € D,(A),
where D, (A) is the domain of the generator of T'(t), as in (2.1.7). Indeed in this case T'(t)(0f)
belongs to C([0,00); Dy (A)) and D, (A) C Cp(Qo). In general we have f € C}(Qo) (see (2.2.5)),
and (2.2.17) follows by approximation, since D, (A) is dense in C}}(Qo). O

Remark 2.2.8 In the case 2 = RY the compactness of P; in C,(RY) has been studied in [39].
The results extend to the case Q # R, with the same proofs adapted to the Neumann problem.
Assume that V = 0, 4. e. consider the conservative case where P;1 = 1. First, P; is compact in
Cyp(Q) for all t > 0 if and only if for all £,e > 0 there exists a bounded set Q' C  such that
p(t,z,9) > 1 —¢ for all z € Q. Secondly, if there exists a positive function 1) € C? such that
. o

Jim @) =40 @) =0, wedn  Aue) < —g(vl), sen

xr|—4o00 Ui
where g : [0, +00[— R is a convex function such that lim,_, . g(z) = +00 and 1/g is integrable
at 400, then P; is compact in C(€2) for all ¢ > 0.

2.3 Pointwise gradient estimates

In the whole section we assume that V' = 0 which implies that P;1 = 1 for all ¢ > 0, by
uniqueness. Actually this is a necessary condition for the estimates that we are going to prove.
Indeed, taking f = 1in (2.3.1) it follows that P11 = 1.

Proposition 2.3.1 Suppose g;j(x) = 6;; for all i,5 = 1,...,N. Then for every p > 1 and
f € ClQ) we have

(2.3.1) |DP, f(z)|P < eP*!P,(|DfP)(z), t>0, z €.

Proor: It is sufficient to prove the case p = 1. For p > 1, we observe that since P,1 =1
the measures p(t, z;dy) given by Proposition 2.2.2 are probability measures, and then Jensen’s
inequality yields

IDPf ()P < (X' P(IDf])(x))" < e*P* P(IDfIP) ().

Let f € C}(Q) and let € > 0 be fixed. Set u(t,z) = P, f(x) and define the function

1
w(t,z) = (|[Du(t,z)]* +¢)2, t>0, z€Q.

From Proposition 2.2.6 and Proposition 2.2.7 it follows that w is bounded and continuous
in [0, 400[xQ. Since u € C-T*/*27%(10, +00[xQ) (see Theorem 2.2.1), we have that w €

loc

C%1(]0, +oo[x ). Finally, from [29, Theorem 8.12.1] we deduce that w € C12(]0, +o0[xQ).
From Lemma 2.1.3 it follows that

O 4,0) =

19
2 2 2 <
n (|Du(t, z)|* +¢) 7877|Du‘ (t,x) <0, ¢>0, e

1
2
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A straightforward computation shows that w satisfies the equation

wt(tagj) - Aw(tvx) = gl(tax) + 92(t7$)

where
1 X
g = (IDul*+¢) 2 ) (DiF;)(Diu)(Dju)
i,j=1
3 N N 2 1 N
g2 = (IDuP+e) 2> (Z(Dju)(piju)> — (IDuP +2) 2 ) (Djju)?
i=1 \ j=1 i,5=1
We estimate now the functions ¢g; and g5. Since
_3 N ? _3 N
(|Dul* +¢) 2 Z (ZDjuDiju> < (|Dul*+¢) 2 |Dul? Z (Diju)2
i=1 \ j=1 1,j=1

=

N
< (|Duf*+¢) 2 Z Dwu

1,j=1
it follows that go < 0. On the other hand using (2.1.3) we obtain

[y

_1 _
g1(t,z) < ko (|Du(t,z)]> +¢) 2 |[Du(t,z)|* = kow — koe (|Du(t,z)|* +¢) 2 .
If kg > 0 we have immediately
g1 (ta l‘) S kOwa
whereas if ky < 0, we have
g1(t,z) < kow — kov/z.

In any case we obtain
— Aw < ko (w — 6.)

5. = 0 kOZOa
< \/E k0<0.

where

Therefore the function v = w — §, satisfies

ve(t, x) — Av(t, x) < ko u(t, x) t>0, zeq,
%Z(w)ﬁo t>0, z €09,
1 _
v(0,2) = (IDf(2)]* +¢)2 — 6. r € Q.
On the other hand, the function
1
o) =eor ((DsE ) @) e a0,
solves the problem
zt(t, ) — Az(t, x) = koz(t, x) t>0, e,
g;(t,a:)z t>0, x €00,
1 _
2(0,2) = (|Df(x)]? +¢)2 x €.

Therefore Proposition 2.1.1 applied to v — z and to the operator A + kol yields v < z, that is
1 1 —
(|Du(t,z)]* + )2 — . < e™'P, ((|Df|2 + E)2> () t>0, zeq.
Letting £ — 0 estimate (2.3.1) with p = 1 follows.
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We now consider the case of variable second order coefficients. Under the assumption

N
(2:3.2) Y (Dgij(a) - €)° < qov(@)[¢], we€Q, EeRY,

i,j=1
which is slightly stronger than (2.1.2), we generalize the previous result when p > 1.
Proposition 2.3.2 Suppose that (2.3.2) holds. Then
(2.3.3) |IDP,f(z)|P < e P,(|Df|P)(z), t>0, €,

for allp > 1 and f € C’%(ﬁ), where o, = pko—i—gqo ifp>2and op = pko—i—ﬁqo if

1<p<2.

PROOF. Let f € Cp(2) be fixed. We first prove the statement for p = 2. Consider the
function
w(t,z) = |Du(t,z)]*, t>0, z€Q,
where u(t,z) = (P.f)(z); then w € C(]0, +oo[xQ) N C%1(]0, +oo[x Q) N CH2(]0, +00[x ), and
from Lemma 2.1.3 we have
w

8—n(t,x) <0, t>0, ze€0.

Moreover it is readily seen that
w(t,x) — Aw(t,x) = fo(t, x),

where
fo=2 ( > DigiDruDiju+ Y | DyF;DyuDju—» qijDikuDjku> :
i3,k 7.k 1,5,k

From (2.3.2) it follows that

1/2 1/2
N N N
i,5,k=1 i,j=1 i,j=1
N 1/2
1/2
< (X ouw?|  (av@)Dul)
i,j=1
a 1
(2.3.4) < w(x) Y (Dyu)® + 0| Dul?,
i,j=1
and then using (2.1.3) we get
N 1 N
fo(t,l‘) S 2<V(l‘) Z (Diju)Q + ZC]O|DU|2 + /4;0|Du|2 — 1/(3:) Z (Diju)2>

i,j=1 ij=1

= (Qko + %O) |Dul? = o3| Dul?
On the other hand the function
2(t,x) = e P,(|IDf|?)(x), t>0, z€Q,
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is the solution of the problem

zt(t,x) — Az(t, z) = 022(t, x) t>0, ze,
0z

hdad = Q
an(t,a:) t>0, x €,
2(0,2) = |Df(x)|? z€Q.

Using Proposition 2.1.1 we can conclude that w < z, that is (2.3.3) with p = 2.
Now the case p > 2 follows easily applying Jensen’s inequality:

|DPf(z)]” < (6"22513t(|Df|2)(96))g < e R(DfIP)(z), t>0, z€Q.

Assume 1 < p < 2. Fix € > 0 and define the function
P
w(t,z) = (|Du(t,z)|* +¢)?,
where u(t,z) = (Pyf)(z). Then w € C([0, +00[xQ) N C%1(]0, +00[xQ) N C12(]0, +00[xQ), and
from Lemma 2.1.3 we have

ow P 9
a—ﬁ(tw) =3 (|Du(t,z)|* +¢)

210
2 18—|Du(t7x)|2 <0, t>0, ze€00.
n

Moreover it turns out that

we(t,z) — Aw(t,z) = fi(t,z) + f2(t, x),
where

p—2
fi=p (IDul*+¢) 2 fo

fa=p(2—p)(|Dul® +e) Z ¢ij DeuDjruDpuDipu
i,5,k,h

Taking into account (2.3.4) for all § > 0 we have

p—2 N N
1
2 2 2 2
f<p (|Du| + E) 2 <(51/($C) Z (DU’LL) + BQOIDU‘ + ko‘Du| — ' Z qiijkuDiku> .
3,7=1 1,5,k=1
As far as f5 is concerned, we set Ag, = Z;ijl ¢ijDjruD;pu and we observe that, since the matrix
A = (Agp) is symmetric and nonnegative definite, we have Zghﬂ AgnDpuDyu < Tr(A)|Dul?,
where Tr(A) denotes the trace of A. Therefore

N

p—4
fo = p2-p) (|Du|2 +z—:) 2 Z Agn DiuDpu

k,h—l

72
< ( ) (|1)U|2 + 5 Z qij ijDku
i,5,k=1
Choosing § = p — 1 we get
22 > do
fitfe < p(IDuP+e) 2 (- D) 3 (Dijw)® + (m + ko ) | Dul?

i,j=1

N

+(1 —p) Z QiijkUDiku>
i k=1

2 p=2

>(|Du| +¢) T |Dul?* = opw — eo, (|Du* +¢) 2,

p
ap—1)"
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which implies
wy — Aw < gp(w — ),

where
0 if o, >0,
0 = P
e2 if o, <0.

Now the conclusion of the proof is the same as in Proposition 2.3.1: applying Proposition 2.1.1
to compare with z(t,z) = e?»'P,((|Df]? + €)2) we deduce

(M}

(IDu(t, 2) +)2 — 6. <P, (IDFP +)2) (@), 120, 2€0,

and then (2.3.3) follows letting e — 0. ]

In the following proposition we deduce from (2.3.3) another type of pointwise gradient esti-
mate. The basic idea of the proof is taken from [7] where it is considered the case p = 2.

Proposition 2.3.3 Assume that (2.3.2) holds. Then for all f € Cy(Q) we have

oovg ! 2 —
(23.5) DPf(x)]? < (2(1_)) P ),  t>0, 2D,
for all p > 2, and

Cp’/o_lap

(2.3.6) IDP,f(z)|P <

» _
= tP/2-1(1 — e=ont) P fP)(x), t>0, ze,

for alll < p < 2, where ¢, =27 /(p(p— 1))?/? and op s given by Proposition 2.3.2. When o, =0
in (2.3.5) and (2.5.6) we replace o,,/(1 — e~ 7%') by 1/t.

PROOF. We prove that T}, (t) f satisfies estimates (2.3.5) and (2.3.6) for z € Q,,, for all n € N;
then the conclusion follows letting n — oo. Fix n € N and set T; = T,,(t), for simplicity. Note
that T} satisfies estimate (2.3.3) for all the functions in C}(Q,).

First we consider the case p = 2. Let f € Cp(Q2), fix £ > 0 and set

®($):TS ((Tt—sf)z)a O§S§t76,

where € > 0. From the analiticity of T; it follows that g = Ty f € D, (A), for all 0 < s <t —¢
(we recall that D,,(A) is the domain of the generator of T}, defined in (2.2.1)). Moreover from a
direct calculation it is readily seen that g € D,,(A) and

' (s) = AT (g%) — 2Ts(gAg) = Ts(A(g*) — 29.Ag) = 2T((qDg, Dg)).

Thus

t—e

Dt —e) = D(0) = T, ((T./)*) — (T.f)* = 2/0 Ts((gDTi—s f, DTy f)) ds.

Now, applying Proposition 2.3.2 to T;_,f we obtain
T.((¢DTi—f, DTi—sf)) = 1o To(|DTi—s f [*) = voe™ 7| DTLf |2,

so that

t=e 2up(1 — e~ o2(t=¢)
Ty (TLf)?) — (Tif)? > 2VO|Dth|2/ o2 gy — 20 )
0

‘Dth|2 )
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and then

Jgual O'Qual

W(TFE((TJ) ) — (T¢f) ) < mthe((TsfF)

DT, f? <

Letting € — 0 we obtain our claim.
If p > 2, using Jensen’s inequality we get

p P
P 0'21/71 2 O'2V71 2 p
DT, f|? < (Mn(ﬁ)) < (2(1_60_t)> T,(|f|P)-

Now assume 1 < p < 2. Let first f € Cp(Q) with f > 6 for some § > 0. Fix ¢, > 0 and
define the function
U(s)=Ts (Ti—sf)?) 0<s<t—e.

Then g =T;_sf > § > 0 and a straightforward computation shows that

% = p—1@

A(g”) = pg" " Ag + p(p — 1)g**(qDy, Dy), ar =P 5y

which imply that g € D,,(A), since g € D,,(A). Moreover
V() = T2 (AW”) ~ pg" " Ag) = plp ~ ) Te((Tr- /)" (aDTi-of. DTi-sf) ).
and hence
@30 Te(T )~ (P =po=1) [ LT DT DT ) ) d
Applying Proposition 2.3.2 and Hoélder’s inequality we get for all 5 € R
IDTifIP = [DT T f|” < e Ti(IDTy—s f17)

= e7%T (|DTffsf|p (thsf>_ﬂ (Tt*Sf)ﬁ)

O Y (e N S NG L) S
p/2
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e {1 (DT DTy (3 ) Y {25

Choosing 8 = p(2 — p)/2 and using Jensen’s and Young’s inequalities we get for all § > 0

DT fIP < Valeaps {Ts ((qDthsf, DT,_.f) (thsf)p_Q)}p/Q (T, (Ttisf)p}l—p/Q

IN

vy e (T, ((gDTy_of, DTy of) (To_o f)P~2) Y2 (T (7)) 1P/

IN

IN

v e {E6F T, (gDTomof, DT ) (Lo f)2) + (1= 5) 072 L")
so that
—0ops D P2 p—2 p -2 14
oe” TP |DTfIP < §6PTS ((gDT—s f, DTy—s f) (Ty—s )P %) + (1 - 5) 72Ty (f7).
Integrating from 0 to ¢t — € and using (2.3.7) we get

vo(1 — e~ »(t=9))

| DT, f|”

IA

P52 / T ((qDTy—of, DTy_o f) (To—o f)P~2) ds
2 0
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and then letting ¢ — 0
-1
vy O p .2 1 P\ 2
DT fIP < 270y (Lob —— (1—7)51»—215 .
| tf| — 1 _ e_g—pt t(f ) <2 p(p _ 1) + 2

r(2—p)

Taking the optimal choice 6 = {p(p — 1)t} 1  we finally obtain

1
Yo Op

[p(p — D211 = =t

(2.3.8) |DTfIP < Ti(f7).

If f € Cy(Q) and f > 0 then (2.3.8) follows by approximating f with f+ 1 and using Proposition
2.2.2. If f € Cy(Q) then

DL fIP = [DL(f* — [P <2271 (IDL(FH)IP + [DT(f7)IP)
21y to, » —\p
S oI e U T
< 2Py0—10p _ T(f7),
[pp — DI/ 21 (1 = e=ort)
which concludes the proof. ]

Remark 2.3.4 If Q = RY, we can consider the case of operators with locally Holder continuous
but not differentiable coefficients. In the case of differentiable coefficients, (2.1.2) and (2.1.3) are
consequences of

(2.3.9) 145 (%) — qi;(y)] < My()|z —yl,  w,yeq,

(2.3.10) (F(z) = F(y) - (x —y) < (BV(2) + ko)|lz —y*, 2,y €.

@ (RY) and satisfy (2.3.9) and (2.3.10), and
assume that V € CLT*(RY) and it satisfies (2.1.4). If one considers a standard family of mollifiers
(e)e>0 and define 45; = ¢ij * ¢ and Fi = F; x (., then the functions ¢;; and Fy are regular and
satisfy (2.3.9) and (2.3.10) with the same constants qo, 8, ko for all € > 0. Therefore ¢;; and
Ff satisfy (2.1.2) and (2.1.3); if A® denotes the operator with coefficients ¢f;, F;¥ and V, and if
Pf denotes the associated semigroup, then Py satisfies all the gradient estimates that we have
proved, with the same constants for all € > 0. As ¢ — 0 we get the gradient estimates for
the semigroup P, associated with the operator with coefficients g;;, £; and V. Indeed from the

interior estimates [30, Theorem TV.10.1] it follows that Pff — P;f in CL2((0,00) x RV).

Assume that the coefficients ¢;; and F; belong to C{

2.4 Consequences and counterexamples

The aim of this section is to show on one hand some consequences of the gradient estimates
proved so far and on the other two counterexamples to some of them.

We start by giving a new formulation of the uniform gradient estimate (2.2.3): now we
precise how the constant Cr depends on the operator A. This allows us to deduce a Liouville
type theorem.

Corollary 2.4.1 Suppose that V =0 and (2.3.2) holds. Then for every f € Cy(2)

=

14 o
0 o2 )> T

< -y -
1Pl < (50 2
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if o2 #0 and
1
1

2
IDP e < (5o ) Il 020,

Zf 09 = 0.
The proof is an easy consequence of Proposition (2.3.3) with p = 2.

Proposition 2.4.2 Suppose that V =0, (2.3.2) holds and o5 = 2ko + g0 < 0. If f € D(A) is
such that Af =0 then f is constant.

Proor. Let f € D(A) and Af = 0. Then P, f = f, for all ¢t > 0. Applying Corollary 2.4.1
and letting ¢ — +o00 it turns out that D f = 0 and consequently f is constant. ]

Now we assume that (P;);>o extends to a contractive semigroup in L},(Q) = L'(€2, u), for
some measure p. Then, by interpolation, P, extends to a contractive semigroup in LF (Q) for all
1<p<oo.

In this situation, the pointwise gradient estimates of Section 2.3 imply global gradient es-
timates with respect to the LP-norm. Moreover, if (4,, D(A,)) denotes the generator of P in
L?(£2), we deduce that D(A,) embeds continuously in W, ().

Proposition 2.4.3 Suppose that V =0 and (2.5.2) holds. For all f € L}(Q), we have P f €
WiP(Q) and

-

—1 2
Vy O9
24.) 10PNy < () Wl > 0022
1
—1 P
1_1 Cp UV, a
(2.4.2) IDPfll, < t» (1_) Ifllp o t>0,1<p<2.

In the case where o, =0, 0,,/(1 — e 7?t) is replaced by 1/t.

ProoF. Fix p > 2. If f € Cy(Q) N LA () integrating (2.3.5) it follows that P, f € W, ?(%Q)
and it satisfies (2.4.1). If f € LL(Q), take a sequence (f,) C Cp(Q2) N LE(€2) that converges to
fin L2(Q). Writing (2.4.1) for f, — fy, it follows that P;f, is a Cauchy sequence in W,?(€2).
Therefore Pif € WiP(Q) and it satisfies (2.4.1). The case 1 < p < 2 follows similarly from

(2.3.6). O

Corollary 2.4.4 Suppose that V. = 0. For allp > 1 and w > 0 there exists C = C(p,w) > 0
such that

ewt
(2.4.3) IDPfll, < C Vi Ifllp»  t>0,

for every f € LY. Consequently, D(Ap) C WAP(Q) and for all w > 0 there exists M, > 0 such
that

(2.4.4) [1Dullp < Myllullg [I(Ap —w)ulls
for alluw e D(Ap).
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PRrROOF. Fix T > 0. From Proposition 2.4.3 it follows that | DP, f||, < Cpt='/2||f||, for every
t €]0,T[ and f € LE(Q) for some constant Cr > 0. Therefore arguing as in Corollary 2.2.3 we
get (2.4.3).

For the second statement, fix w, A > 0. Let f € Cy(Q) N LE(2) and set u = R(A + w, A)f.
Then

+oo
Du(z) = / eI DP ) (2)dt, xeQ.
0
As in Proposition 2.2.5, with estimate (2.2.10) replaced by (2.4.3), we deduce that
1 1
[1Dullp < Myllullg [|(Ap = w)ull3-

Since Cy(€2) N LE(Q) is dense in LE (Q), R(A, A)(Cy,(Q) N LE(Q)) is a core for (A,, D(Ay)). Thus,
the general case u € D(A,) easily follows from the previous step by approximation. ]

Remark 2.4.5 We note that, in particular, one may take as p the invariant measure of P, (when
it exists), which is, by definition, a Borel probability measure such that

Py fdu = / fdu,
Q Q

for allt > 0 and f € C,(Q) (we refer to Chapter 5 for more details concerning invariant measures).
In this case estimate (2.0.6) and (2.0.8) have interesting consequences. (2.0.6) with p = 1 and
ko < 0 yields the hypercontractivity of (P;) in L?(£, i), which means that for every f € L?(€, u)
one has

(2.4.5) ”PtfHLq(f)(Q,u) <[ fllz2(m)>

where q(t) = 1 + e for a suitable A > 0. One can check that (2.4.5) is equivalent to the
logarithmic Sobolev inequality

2
[ 1P 108111 < 11300108 1 Pl + 5 [ 105

for every f € WH2(Q, u).
(2.0.8) with p = 2 and o5 < 0 yields the Poincaré inequality in W2(£, p)

(2.4.6) [1s=FPau<c [ Dsfan

where f = fQ fdu. As a consequence, one obtains the spectral gap for the generator Ay of (P;)
in L?(Q, 1), which means that

o(A2)\ {0} C {A € C | ReX < —1/C}

where C is determined by (2.4.6).
We do not enter in the details of such consequences, but we limit ourselves to mention them.
We refer to [20, Section 10.5].

Example 2.4.6 This example shows that Proposition 2.3.3 fails in general for p = 1. Consider
the heat semigroup in R

1 _(@=y)?
Pif(z) = (47”5)1/2/Re - f(y)dy, t>0, ze€R
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generated by the operator Au(z) = u”(z). The derivative is given by

1 (z=)?
DPf(z) = ——— | (y — x)e~ " dy, t>0, z€R.
@) = g L= D T Sy v
Fix R > 0. Let f € Cp(R) be such that 0 < f <1, f(x) =0 for # < R— R~ and f(z) =1 for
x > R. Then

1

oo _ﬂ 1 oo _ﬂ
Ptf(O)SW/RRIe = dy, DPtf(O)Z2t<4ﬂ_t)1/2/R ye it dy.

Therefore

1 0 2 o0 12 -
DPIO) 2 exPif0), en=r; [ v Fay([ e Hay
2t Jr R—R-1
Using the De L’Hospital rule, it is readily seen that cg — 400 as R — 4o00. This means that no
pointwise estimate similar to (2.3.5) can hold for p = 1.

With the next counterexample we show that gradient estimate (2.2.3) is not true in general
without assuming the dissipativity condition (2.1.3). In particular we show an example in which
D(A) is not contained in C}(€).

Example 2.4.7 Consider in 2 = R the operator

/

Au(z) =" (z) + B'(z)u/ (z) = e B@ (eBu)u'(x)) , T€ER,

where B € C?(R) is such that Q(z) = e5®@ [*e=B®dt € L1(R). Then, in particular e? € L!(R).
Let D(A) = {u € C?(R) N Cp(R) : Au € Cy(R)}. It follows from [55, page 242] (see also [40,
Proposition 2.1]) that (A, D(A)) is the generator of a semigroup in Cj(R) having e5(
invariant measure.

If f € Cp(R), then the function

#)dx as its

(2.4.7) u(z) =C1 + /3c e~ B® ((72 + /t f(s)eB(s)ds> dt,
0

0

for arbitrary C7,Cy € R, is the general solution of the equation Au = f. Assuming that

(2.4.8) /+Oo f)eP®at =o,

and setting
“+00 0
Cy = —/ f(t)eB(t)dt:/ f(t)ePWat,
0 —0o0

for x > 0 (2.4.7) gives
T +oo
u(r) = G —/ e_B(t)/ f(s)eB®ds dt
0 t

+oo SAx
Ch —/ eB(S)f(s)/ e BWat ds.
0 0

+oo
()] < [Crl + [l Q(s)ds, x>0,
0

It follows that
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which implies that u is bounded at +oco. Similarly, since Q € L(] — 00, 0[), u is bounded at —oo.
Since Au = f, we conclude that u € D(A). The derivative of u is given by

“+o0
o' (z) = —e_B(z)/ f(s)eB@ds, z eR.

We claim that we can choose the functions B and f so that Q € L'(R), (2.4.8) holds but v’ is
not bounded. To this aim, take

B(z) = —z* 4 log h(z),
where h € C?(R) satisfies

h(z) = e, if m:n—%,nEN,
en <h(x)<1l if n—6,<x<n, neN,
h(z)=1 otherwise,

with .\
B M
n n

As a consequence of this choice

4 T4 4 x _t*
Q(x) - e—:t / et dt, X < 0, Q(,’L‘) = h(m)e—z / Ldt’
0 0

0.
10 T >
Using the De L’Hospital rule one sees that lim, ., 23Q(x) = 1/4 and hence that Q € L*(] —
00,0[). If > 0 then
4 [T et4 4 [T 4 4 e en 6"4
Qlr) < e ° / —dt<e”® / et dt+e® / —dt
(@) o h(t) 0 7;1 n—6, €n
<

3 o] 4 ] (%)
e /”ﬂ et dt + e Z (Sni — e /T et dt + e Z L
0 0

2’
£ n
n=1 n n=1

which shows that @ € L'(]0, +00). Let f € Cy(R) be such that f(z) =1 for all z > 0 and (2.4.8)
holds. Then

1 4
@t ptoo (n—3)" o+l
()] = & / et > &2 / et dt

5n Ty gn n
_ 1)4

(” 1\4

> i e (n + 5) = 27

2ep, 2

which implies that «/(z) is unbounded at +oo.
Therefore we have shown that the function u belongs to D(.A) but not to C{ (R). This means

that the gradient estimate (2.2.3) cannot be true. We note that in this situation the dissipativity
assumption (2.1.3) fails since B” is unbounded from above.
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Example 2.4.8 We see now an example of a Neumann problem in a domain €2 with Lipschitz
continuous boundary. In spite of the lower regularity of 92, the associated semigroup satisfies
the gradient estimate (2.3.1). Consider the Ornstein-Uhlenbeck operator

Au(z) = %Au(m) —x-Du(x), x€RY.

If we set
Nim,a?)(y) L a0 myeRY
m,o y = — ¢ g ) o ) m7y )
(\/277 O')N
L(t,z,y) = N(e 'z, 1—e*)(y), t>0, z,y R,

then the Ornstein-Uhlenbeck semigroup in Cy,(RY) is given by the formula
Ue)@) = [ f@T(tzy)dy, t>0, xR
RN

We fix k € N, 0 < k < N and we consider the domain Q = {z € RY : x3,1,...,2xy > 0}.
We define now the Ornstein-Uhlenbeck operator in 2 with Neumann boundary conditions. For
k+1 < j < N consider the reflections

0; : RN = RN, Oz = (z1,....,xj_1,—Tj,Tj41, -, oN), z€RN,
and the family
A={0=0;,0--00;, k+1<i; <N, i;<inifj<h 1<n<N-—k}
Moreover if f € C,(Q) we define the extension Ef € C,(RY) by
(Ef)(x) = f(@1, s Ty [Ths1]s oo |zn]),  x€RN.

The Ornstein-Uhlenbeck semigroup in €2 is given by the formula

(PN)@) = WED@) = [ (BN, >0, 20,
With the changes of variable y’ = fy and using the identity T'(¢, z,0y) = ['(¢, 6z, y) for all § € A,
we get

(Ph@) = [ fo){re) + S0}y
@ e

(2.09) = [t {rtn) + Y P00}y
@ SN

The Neumann boundary condition can be verified in the following way. Let = € 092 be such that
xzj =0 forsome je{k+1,.,N}and ; #0 for all i € {k+1,..., N}, i # j. Then the outward
unit normal vector is n(x) = —e;. For all § € A the normal derivative of the function I'(¢, 0z, y)

1S
—t

0 (ty; —etxzj)e
87]' (ta exay) - (1 _ e,gt)
where in the right hand side we have the sign + if 6 does not contain the reflection 6; and the sign
— otherwise. Let now 6 € A such that it does not contain the reflection ¢; and let ' = 606 € A;
then if z; = 0 we have fz = ¢’z and

I(t,0x,y), t>0, z,y €N,

0 0 Y
—TI'(¢,0 —TI(t, 0 =2 _T(t,0 —
6.’1/'] ( ) fl;,y) + axj ( ) I,y) (1 _ e—Qt) ( ) LE,y)

y;
ml“(t,e’x,y) =0,
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for all ¢ > 0 and y € Q. Thus the Neumann boundary condition for P;f follows coupling in
the sum in formula (2.4.9) all the maps § € A that does not contain the reflection §; with the
respective maps ' = 60; o 6. In this way all the terms of the sum are considered and the normal
derivative turns out to be zero.

Since DUEf(z) = e tU(DEf)(x) for all x € RY, we have

[DPf(2)| < e "U(IDESf|)(2) = e "R(IDf])(z), t=0, z€Q,

that is P, satisfies the gradient estimate (2.3.1) for p = 1 and hence for all p > 1.

79



80



