
Chapter 1

Elliptic operators in Lp(RN ):

characterization of the domain

In this chapter we consider the following linear second order elliptic operator in divergence
form

(1.0.1) Au := A0u+ 〈F,Du〉 − V u,

where

A0u :=
N∑

i,j=1

Di(qijDju) .

As usual, we will refer to F and V as the drift and the potential term, respectively, and neither
F nor V will be assumed to be bounded.

Our aim is to prove a generation result for A in Lp(RN ) (1 < p < +∞) with respect to the
Lebesgue measure, providing an explicit description of the domain of the generator. Precisely,
we show that such a domain is the intersection of the domains of each addend of A in (1.0.1).

This problem is classical and well-known in the case of elliptic operators with regular and
bounded coefficients. We refer to the book of Lunardi [32] for a detailed analysis of the subject.
On the other hand, there are several approaches to show that elliptic operators with unbounded
coefficients generate strongly continuous semigroups in Lp (see [11], [12], [19], [35], [37], [41] and
the list of references therein), but only some of them give a precise description of the domain.
Besides, in some cases the problem is investigated only for p = 2 (see [17], [18] and in [50]).

Here we prove that if (Dp, ‖ · ‖Dp), with 1 < p < +∞, is the Banach space defined as

Dp := {u ∈W 2,p(RN ) : 〈F,Du〉 ∈ Lp(RN ), V u ∈ Lp(RN )} ,
‖u‖Dp := ‖u‖W 2,p(RN ) + ‖〈F,Du〉‖Lp(RN ) + ‖V u‖Lp(RN ) ,

then (A,Dp) generates a C0-semigroup in Lp(RN ), if suitable growth conditions on F , V and
their first order derivatives are assumed. As a by-product, one can deduce regularity results for
the solution of the elliptic equation associated with A.

The precise description of the domain relies on a priori estimates of the form

(1.0.2) ‖u‖2,p + ‖〈F,Du〉‖p + ‖V u‖p ≤ C(‖u‖p + ‖Au‖p),

for every p ∈ (1,∞) and every test function u and for some constant C > 0 independent of u.
We prove the estimates for ‖V u‖p and ‖Du‖p using basically integrations by parts and other
elementary tools. In the particular case p = 2, we also get an estimate for the second order
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derivatives of u (see Section 1.3). For p 6= 2, the variational method fails to estimate ‖D2u‖p
and we have to employ a different technique, which works under stronger assumptions. This is
done in Section 1.4, where we use an a priori estimate for the second order derivatives in the case
where the involved operator has globally Lipschitz drift coefficient and bounded potential term
(we prove such an estimate together with a generation result as a preliminary step in Section
1.2). Once the second order derivatives are estimated, the last term ‖〈F,Du〉‖p in (1.0.2) can be
estimated easily by difference.

Using a density argument, (1.0.2) turns out to be true also for functions in Dp. As a conse-
quence, we establish the closedness of (A,Dp) in Lp(RN ). Moreover, it is easily seen that (A,Dp)
is quasi dissipative in Lp(RN ). Therefore, in order to apply the Hille-Yosida generation theorem
and to get the desired result, it remains to prove that λ−A is surjective from Dp onto Lp(RN ),
for λ large. Sections 1.5 and 1.6 are devoted to this aim. We proceed differently in the case
p = 2 and p 6= 2. In the first case, we find the solution of the equation λu − Au = f in the
whole space as the limit of a sequence of solutions of the same equation in balls with increasing
radii and Dirichlet boundary conditions. In the second case, we check the surjectivity of λ − A
by approximating A with a family of operators whose drift coefficient is globally Lipschitz and
whose potential term is bounded. We note that, once again, the first method works under weaker
assumptions and this is the reason why we treat the case p = 2 separately.

Finally, in Section 1.7 we describe some properties of the above semigroups. We prove that
they are positive, not analytic in general, consistent with respect to p. Moreover if V tends to
+∞ as |x| → +∞, then (A,Dp) has compact resolvent.

1.1 Assumptions and statement of the main results

In the following q(x) = (qij(x)) is a N × N symmetric real matrix such that qij ∈ C1
b (RN )

and

(1.1.1) 〈q(x)ξ, ξ〉 :=
N∑

i,j=1

qij(x) ξiξj ≥ ν0|ξ|2, ν0 > 0,

for every x, ξ ∈ RN . Moreover, we consider F ∈ C1(RN ; RN ) and V ∈ C1(RN ) and we assume
that V is bounded from below. Without loss of generality, we suppose that V ≥ 1. We deal with
the elliptic operator

(1.1.2) Au := A0u+ 〈F,Du〉 − V u,

where A0u(x) :=
∑N
i,j=1Di(qij(x)Dju(x)).

For 1 < p < +∞, we define the space (Dp, ‖ · ‖Dp) as

Dp := {u ∈W 2,p(RN ) : 〈F,Du〉 ∈ Lp(RN ), V u ∈ Lp(RN )} ,(1.1.3)

‖u‖Dp := ‖u‖2,p + ‖〈F,Du〉‖p + ‖V u‖p .(1.1.4)

We endow Dp also with the graph norm of the operator A, namely

‖u‖A := ‖Au‖p + ‖u‖p .

In the case p = 2, besides the previous assumptions on the coefficients, we require that the
following growth conditions hold

(H1) |DV | ≤ αV 3/2 + cα,
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(H2) divF + βV ≥ −cβ ,
N∑

i,j=1

DiFj(x)ξiξj ≤ τ V (x)|ξ|2 + cτ |ξ|2, ξ, x ∈ RN ,

(H3) 〈F,DV 〉+ γV 2 ≥ −cγ ,

(H4) |F (x)| ≤ θ(1 + |x|2)1/2V (x) + cθ ,

with α, β, γ, τ, θ > 0 and cα, cβ , cγ , cτ , cθ ≥ 0 satisfying

(1.1.5) 1− β

2
− τ > 0 ,

and

(1.1.6)
M

4
α2 +

β

2
+
γ

2
< 1 ,

where M := supx∈RN max|ξ|=1〈q(x)ξ, ξ〉. We note that the second inequality in (H2) is a dissipa-
tivity condition for the function F .

The following generation result holds.

Theorem 1.1.1 (p=2) Suppose that (H1), (H2), (H3), (H4), (1.1.5) and (1.1.6) hold. Then
the operator (A,D2) generates a C0-semigroup on L2(RN ). If cβ = 0, then the semigroup is
contractive.

In Section 1.6 we prove an analogous result in the general case p > 1. To this aim we use a
different technique, which works under more restrictive assumptions on the coefficients of A.
Precisely, we replace assumptions (H1), (H2) and (H4) with the following ones

(H1’) |DV (x)| ≤ α V 2−σ(x)
(1 + |x|2)µ/2

,

(H2’) |DF | ≤ 1√
N

(βV + cβ),

(H4’) |F (x)| ≤ θ(1 + |x|2)µ/2V σ(x),

respectively, where DF denotes the Jacobian matrix of F and |DF |2 =
∑N
k,i=1 |DkFi|2, α, β, θ >

0, cβ ≥ 0, 1
2 ≤ σ ≤ 1 and 0 ≤ µ ≤ 1. Moreover, we suppose that for every x ∈ RN

(H5) |〈F (x), Dqij(x)〉| ≤ κV (x) + cκ,

holds, with constants κ > 0 and cκ ≥ 0.
Analogously to the case p = 2, also in this case a smallness condition on the coefficients is
required. Let

ω :=

{
M
4 (p− 1)α2 , if (σ, µ) =

(
1
2 , 0
)
,

0 , otherwise.

Then we assume that

ω +
√

2
β +
√
Nαθ

p
+ αθ

p− 1
p

< 1 , if 1 < p < 2 ,

ω +
√

2
(
β +
√
Nαθ

)(1
p

+
1√
N

)
< 1 , if p ≥ 2 .

(1.1.7)

The following generation result holds.
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Theorem 1.1.2 (1<p<+∞) Suppose that (H1’), (H2’), (H4’), (H5) and (1.1.7) are satisfied,
for some 1 < p < ∞. Then the operator (A,Dp) generates a C0-semigroup on Lp(RN ), which
turns out to be contractive if cβ = 0.

Remark 1.1.3 We observe that (1.1.7) for p ≥ 2 implies (1.1.7) for 1 < p < 2, since

√
2
β +
√
Nαθ

p
+ αθ

p− 1
p
≤
√

2
(
β +
√
Nαθ

)(1
p

+
1√
N

)
, p > 1 .

Moreover, we note that when p = 2, (1.1.7) is not equivalent to (1.1.6), but it is stronger. This
fact relies on the different technique employed in the general case and, in particular, on the fact
that we need that other suitable operators verify our assumptions. For further details we refer
to Section 1.6. In any case, the two methods yield the same semigroup in L2(RN ).
Finally, we point out that in Theorem 1.1.2 we do not explicitly assume (H3), since (H1’) and
(H4’) imply

(1.1.8) |〈F,DV 〉| ≤ αθV 2 .

Remark 1.1.4 Hypothesis (H1) is essential to determine the domain. In fact in [41, Example
3.7] the authors exhibit a Schrödinger operator A = ∆− V in L2(R3) such that (H1) holds with
a too large constant α and the domain is not W 2,2(R3) ∩D(V ). Moreover in [41] it is observed
that (H1) holds for example for any polynomial whose homogenous part of maximal degree is
positive definite. (H1) fails for the function U = 1 + x2y2.

Remark 1.1.5 We note that making particular choices of the parameters µ and σ, we may cover
cases already known or discuss new ones. For example, if µ = 0 and σ = 1

2 , then we get exactly
the framework of [41]

|F | ≤ θV 1/2, |DV | ≤ αV 3/2

and therefore of [12]. If we take V constant, then we reduce to the case where F is globally
Lipschitz continuous studied in [37]. Setting µ = 0 and σ = 1 we have the case

|F | ≤ θV, |DV | ≤ αV,

which, according to our knowledge, seems to be new. From the second condition above, one
deduces that V grows at most exponentially. In particular, we can treat in this way polynomials
V as in Remark 1.1.4.

If we optimize assumption (H4’) choosing µ = σ = 1, analogously to (H4) in the case p = 2,
then (H1’) becomes |DV (x)| ≤ α V (x)

(1+|x|2)1/2 , which is much more restrictive than (H1). This
shows that the cases p = 2 and p 6= 2 are quite different. Such a difference is also confirmed by
the fact that when p = 2 we do not require any condition on 〈Dqij , F 〉.

The assumptions for p 6= 2 are determined by our approach to estimate the second order
derivatives of a test function u in terms of u and Au. The idea is to get first local estimates. To
this aim we change variables and localize the equation Au = f in certain balls B(x0, r(x0)). The
new operator produced by this technique (see (1.4.14)) has a globally Lipschitz continuous drift
term and a bounded potential. The radius r(x0) has to grow at most linearly with respect to
|x0| in order to use a covering argument and to obtain global estimates. So, roughly speaking,
we must require that r(x0) ≤ 1 + |x0| and that V (x) is ”close” to V (x0) if |x − x0| < r(x0).
This is exactly guaranteed by assumptions (H4’) (see (1.4.2)) and (H1’) (see Lemma 1.4.3). The
Lipschitz continuity of the transformed drift coefficient follows from (H2’). All the details are
given in Section 1.6.
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1.2 Operators with globally Lipschitz drift coefficient and

bounded potential term

In this section we collect all the results concerning operators with globally Lipschitz drift
coefficient and bounded potential term that will be used in the sequel. We first prove an a priori
estimate for the second order derivatives of a test function u, using the same technique of [37]
but specifying how the constants involved depend on the operator. Then, we show a generation
result, giving an explicit description of the domain.

Let

(1.2.1) B =
N∑

i,j=1

Di(aijDj) +
N∑
i=1

biDi − c

and assume that

(i) aij = aji ∈ C1
b (RN ),

∑N
i,j=1 aijξiξj ≥ ν0|ξ|2,

(ii) b = (b1, ..., bN ) is globally Lipschitz in RN ,

(iii) c ∈ L∞(RN ),

(iv) supx∈RN |〈Daij(x), b(x)〉| < +∞ , i, j = 1, ..., N .

The following a priori estimate is a crucial point for our aims.

Theorem 1.2.1 There exists a constant C > 0 depending on p,N, ν0,‖aij‖∞,‖Daij‖∞,‖〈Daij , b〉‖∞,
‖c‖∞ and the Lipschitz constant of b, denoted by [b]1, such that for all u ∈ C∞c (RN )

(1.2.2)
∫

RN
|D2u|p dx ≤ C

∫
RN

(|Bu|p + |u|p) dx.

Proof. We split the proof in two steps.

Step 1. We assume that the operator B is written in the non-divergence form

B =
N∑

i,j=1

aijDij +
N∑
i=1

biDi − c

and that b ∈ C2(RN ; RN ) with bounded first and second order derivatives, besides assumptions
(i), (ii), (iii) and (iv).

Let u ∈ C∞c (RN ). Then u solves the equation

Dtu−Bu = f in RN+1,

with f = −Bu. Let us consider the ordinary Cauchy problem in RN

(1.2.3)


dξ

dt
= b(ξ), t ∈ R

ξ(0) = x.

Since b is globally Lipschitz, for all x ∈ RN there is a unique global solution ξ(t, x) of (1.2.3) and
the identity

(1.2.4) x = ξ(t, ξ(−t, x)), t ∈ R, x ∈ RN
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holds. Moreover, from [36, Section 2.1] it follows that if ξx denotes the Jacobian matrix of the
derivatives of ξ with respect to x, then

(1.2.5)

|ξx(t, x)| ≤ e|t| ‖Db‖∞ , t ∈ R, x ∈ RN

|ξtx(t, x)| ≤ ‖Db‖∞e|t| ‖Db‖∞ , t ∈ R, x ∈ RN∣∣∣∣ ∂∂tξx(t, ξ(−t, x))
∣∣∣∣ ≤ ‖Db‖∞e3|t| ‖Db‖∞ , t ∈ R, x ∈ RN .

With analogous notation we have also that
(1.2.6)

|ξxx(t, x)| ≤ e|t| ‖Db‖∞(e|t|‖Db‖∞ − 1)
‖D2b‖∞
‖Db‖∞

, t ∈ R, x ∈ RN∣∣∣∣ ∂∂xi ξx(t, ξ(−t, x))
∣∣∣∣ ≤ e3|t| ‖Db‖∞(e|t|‖Db‖∞ − 1)

‖D2b‖∞
‖Db‖∞

, t ∈ R, x ∈ RN , i = 1, ...N.

In the case where b is constant, one should replace e|t|‖Db‖∞−1
‖Db‖∞ by |t|. In particular, all the above

functions are bounded in [−T, T ]×RN , for every T > 0. Finally, the matrix ξx is invertible with
determinant bounded away from zero in every strip [−T, T ]× RN .
Setting v(t, y) = u(ξ(−t, y)), a straightforward computation shows that

Dtv − B̃v = f̃ , in RN+1

with f̃(t, y) = f(ξ(−t, y)) and

B̃ =
N∑

i,j=1

ãij(t, y)Dyiyj +
N∑
i=1

b̃i(t, y)Dyi − c̃,

ãij(t, y) =
N∑

h,k=1

Dxhξi(t, ξ(−t, y))ahk(ξ(−t, y))Dxkξj(t, ξ(−t, y))

b̃i(t, y) =
N∑

h,k=1

Dxhxkξi(t, ξ(−t, y))ahk(ξ(−t, y)),

c̃(t, y) = c(ξ(−t, y)).

Since the coefficients aij belong to C1
b (RN ) and satisfy (iv), then (t, y)→ aij(ξ(−t, y)) is bounded

and differentiable with bounded derivatives in [−T, T ] × RN . Taking into account (1.2.5) and
(1.2.6) it follows that for all (t, y) ∈ [−T, T ]× RN we have

|ãij(t, y)|+ |Dtãij(t, y)|+ |Dyk ãij(t, y)|+ |̃bi(t, y)| ≤ L, i, j, k = 1, ...N,

where L depends on T,N, ‖aij‖∞, ‖Daij‖∞, ‖〈Daij , b〉‖∞, ‖Db‖∞, ‖D2b‖∞. Moreover

N∑
i,j=1

ãij(t, y)ηiηj ≥ ν̃0|η|2, η, y ∈ RN , t ∈ [−T, T ],

with ν̃0 depending on ν0, T, ‖Db‖∞. Finally, the modulus of continuity of ãij depends only on
T,N, ‖aij‖∞, ‖Daij‖∞, ‖〈Daij , b〉‖∞, ‖Db‖∞, ‖D2b‖∞. Therefore Dt−B̃ is a uniformly parabolic
operator in [−T, T ] × RN , for every T > 0. Applying the classical Lp-estimates available from
the theory of uniformly parabolic operators (see e.g. [30, Section IV.10]) we have that

(1.2.7)
∫ 1/2

−1/2

∫
RN

(|Dyv(t, y)|p + |D2
yv(t, y)|p)dy dt ≤ K

∫ 1

−1

∫
RN

(|f̃(t, y)|p + |v(t, y)|p)dy dt
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whereK depends on p,N, ν̃0, ‖ãij‖∞, ‖Dãij‖∞, ‖Dtãij‖∞, ‖b̃i‖∞, ‖c̃‖∞, hence on p,N, ν0, ‖aij‖∞,
‖Daij‖∞, ‖〈Daij , b〉‖∞, ‖Db‖∞, ‖D2b‖∞, ‖c‖∞.
In order to come back to the function u, we observe that, setting (S(t)ϕ)(x) = ϕ(ξ(t, x)) then,
for every fixed t, S(t) maps W 2,p(RN ) into itself and∫

RN
|(S(t)ϕ)(x)|pdx ≤ α1(t)

∫
RN
|ϕ(y)|pdy,∫

RN
|Dx(S(t)ϕ)(x)|pdx ≤ α2(t)

∫
RN
|Dyϕ(y)|pdy,∫

RN
|D2

x(S(t)ϕ)(x)|pdx ≤ α3(t)
∫

RN
(|D2

yϕ(y)|p + |Dyϕ(y)|p)dy,

with α1(t), α2(t), α3(t) depending on t, p,N, supRN |ξx(−t, ·)| and α3(t) depending also on supRN

|ξxx(−t, ·)|. It follows that t 7→ αi(t), i = 1, 2, 3, are uniformly bounded in t in the interval [−1, 1].
In the sequel we denote by αi the respective upper bounds. Moreover, by (1.2.4) each S(t) is
invertible with S(t)−1 = S(−t). Now, recalling that u = S(t)v, for every t, we have∫

RN
|D2

xu(x)|pdx ≤ α3

∫
RN

(|D2
yv(t, y)|p + |Dyv(t, y)|p)dy.

Integrating from −1/2 to 1/2 and taking into account (1.2.7) we obtain∫
RN
|D2

xu(x)|pdx ≤ α3K

∫ 1

−1

∫
RN

(|f̃(t, y)|p + |v(t, y)|p)dy dt

≤ 2α1α3K

∫
RN

(|f(x)|p + |u(x)|p)dx,

which is the claim.

Step 2. Take B in the general form (1.2.1) and assume that the coefficients satisfy (i), (ii), (iii)
and (iv). Then we can write

B =
N∑

i,j=1

aijDij +
N∑
j=1

(
N∑
i=1

Diaij + bj

)
Dj − c.

Let η ∈ C∞c (RN ), supp η ⊂ B1, η ≥ 0,
∫

RN η = 1 and set b̂ = b ∗ η. If we define

B̂ =
N∑

i,j=1

aijDij +
N∑
j=1

b̂jDj − c,

then B̂ satisfies all the assumptions of the previous step. Indeed, since b is Lipschitz continuous,
b− b̂ is bounded:

|b(x)− b̂(x)| ≤
∫

RN
|b(x)− b(x− y)|η(y)dy ≤ [b]1

∫
RN
|y|η(y)dy = cη[b]1.

Then

|〈Daij(x), b̂(x)〉| ≤ |〈Daij(x), b(x)〉|+ |〈Daij(x), b(x)− b̂(x)〉|
≤ ‖〈Daij , b〉‖∞ + ‖Daij‖∞cη[b]1,

and
‖Db̂‖∞ ≤ [b]1

‖D2b̂‖∞ ≤ [b]1‖Dη‖1.
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From the first step it follows that there exists a constant C > 0 depending on N,p,ν0,‖aij‖∞,
‖Daij‖∞, ‖〈aij , b〉‖∞,[b]1,‖c‖∞ such that for all u ∈ C∞c (RN )

‖D2u‖p ≤ C(‖B̂u‖p + ‖u‖p).

Therefore

‖D2u‖p ≤ C(‖Bu‖p + ‖Bu− B̂u‖p + ‖u‖p) ≤ C1(‖Bu‖p + ‖Du‖p + ‖u‖p),

with C1 depending on the stated quantities. Using the interpolatory estimate ‖Du‖p ≤ C2‖u‖1/2p ·
‖D2u‖1/2p we conclude the proof.

Next, we show that the operator B endowed with the domain

D = {u ∈W 2,p(RN ) : 〈b,Du〉 ∈ Lp(RN )}

generates a C0-semigroup on Lp(RN ), 1 < p < +∞ (see also [37]). The following lemma is useful
(see [37, Lemma 2.1]).

Lemma 1.2.2 Let 1 < p < +∞ and u ∈W 2,p(BR) ∩W 1,p
0 (BR). If η ∈ C1(BR) is nonnegative,

then

(p− 1)
∫
BR

η|u|p−2
N∑

i,j=1

aijDiuDju χ{u6=0} +
∫
BR

u|u|p−2
N∑

i,j=1

aijDiuDjη(1.2.8)

≤ −
∫
BR

ηu|u|p−2
N∑

i,j=1

Di(aijDju).

Proof. Suppose first p ≥ 2. In this case the function u|u|p−2 belongs to W 1,q(BR), where q
is the conjugate exponent of p. Indeed, it is obvious that u|u|p−2 is in Lq(BR). Concerning the
first order derivatives, we have D(u|u|p−2) = (p − 1)|u|p−2Du. Then, using Hölder’s inequality
with exponent p

q ≥ 1 we get

∫
BR

|u|q(p−2)|Du|q ≤
(∫

BR

|Du|p
) q
p
(∫

BR

|u|
pq(p−2)
p−q

)1− qp

=
(∫

BR

|Du|p
) q
p
(∫

BR

|u|p
)1− qp

.

Therefore, integration by parts is allowed in the right hand side of (1.2.8) and the statement is
verified with equality.

Assume now 1 < p < 2. Let first u ∈ C2(BR) ∩ C0(BR). For every δ > 0 we have

−
∫
BR

η u(u2 + δ)
p
2−1

N∑
i,j=1

Di(aijDju) =
∫
BR

η(u2 + δ)
p
2−2((p− 1)u2 + δ)

N∑
i,j=1

aijDiuDju

+
∫
BR

u(u2 + δ)
p
2−1

N∑
i,j=1

aijDiuDjη.(1.2.9)
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Then, from Fatou’s Lemma we have

(p− 1)
∫
BR

η|u|p−2
N∑

i,j=1

aijDiuDju χ{u 6=0}

≤ lim inf
δ→0

(
−
∫
BR

η u(u2 + δ)
p
2−1

N∑
i,j=1

Di(aijDju)−
∫
BR

u(u2 + δ)
p
2−1

N∑
i,j=1

aijDiuDjη

)

= −
∫
BR

η u|u|p−2
N∑

i,j=1

Di(aijDju)−
∫
BR

u|u|p−2
N∑

i,j=1

aijDiuDjη.

It follows that the function η|u|p−2
∑N
i,j=1 aijDiuDju χ{u6=0} belongs to L1(BR) and, letting

δ → 0 in (1.2.9), by dominated convergence (1.2.8) holds with equality. In the general case where
u ∈ W 2,p(BR) ∩ W 1,p

0 (BR), we can consider a sequence (un) in C2(BR) ∩ C0(BR) such that
un converges to u in W 2,p(BR). In particular, we can find a subsequence (unk) and functions
h1, h2, h3 ∈ Lp(BR) such that unk , Dunk , D

2unk converge to u,Du and D2u, respectively, almost
everywhere and

|unk(x)| ≤ h1(x),

|Dunk(x)| ≤ h2(x),

|D2unk(x)| ≤ h3(x)

(see [10, Teorema IV.9]. Taking the previous step into account and applying again Fatou’s
Lemma, we get

(p− 1)
∫
BR

η|u|p−2
N∑

i,j=1

aijDiuDju χ{u6=0}

≤ lim inf
k→+∞

(
−
∫
BR

η unk |unk |p−2
N∑

i,j=1

Di(aijDjunk)

−
∫
BR

unk |unk |p−2
N∑

i,j=1

aijDiunkDjη

)
.(1.2.10)

Using Young’s inequality one has∣∣∣∣unk |unk |p−2
N∑

i,j=1

Di(aijDjunk)
∣∣∣∣ ≤ c1|unk |p−1

(
|Dunk |+ |D2unk |

)
≤ c2

(
|unk |p +

(
|Dunk |+ |D2unk |

)p)
≤ c3

(
|unk |p + |Dunk |p + |D2unk |p

)
≤ c3

(
hp1 + hp2 + hp3

)
∈ L1(BR),

where c3 depends on ‖aij‖∞, ‖Daij‖∞ and p. In the same way, one can estimate the remaining
term, hence estimate (1.2.8) follows from (1.2.10) using dominated convergence.

Proposition 1.2.3 (B,D) generates a strongly continuous semigroup T (t) in Lp(RN ), 1 < p <

∞. Moreover, setting λp := − infx∈RN
(

1
p div b(x) + c(x)

)
, for all λ > λp and f ∈ Lp(RN ), there

exists a unique solution u ∈ D of λu−Bu = f and the estimate

(1.2.11) ‖u‖p ≤ (λ− λp)−1‖f‖p

is satisfied.
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Proof. It is sufficient to prove the statement when c is equal to zero, since in the general case,
the thesis easily follows from a perturbation argument (see [21, III.1.3]).

Let us consider (B,C∞c (RN )). Proceeding as in the forthcoming Lemma 1.3.1, it can be
proved that C∞c (RN ) is dense in D with respect to its natural norm

‖u‖D = ‖u‖2,p + ‖〈b,Du〉‖p.

The interpolatory estimate ‖Du‖p ≤ k(‖u‖p + ‖D2u‖p) and estimate (1.2.2) yield immediately

‖Du‖p ≤ C(‖u‖p + ‖Bu‖p), u ∈ C∞c (RN ).

Therefore, we have

‖〈b,Du〉‖p =
∥∥∥∥ N∑
i,j=1

Di(aijDju)−Bu
∥∥∥∥
p

≤ C(‖D2u‖p + ‖Du‖p + ‖Bu‖p) ≤ C(‖u‖p + ‖Bu‖p).

Collecting all the estimates so far, we have established that for every u ∈ C∞c (RN ), hence, by
density, for every u ∈ D

‖u‖2,p + ‖〈b,Du〉‖p ≤ C(‖u‖p + ‖Bu‖p).

Since the other inequality is obvious, we have that ‖ · ‖D and the graph norm of B, ‖ · ‖B , are
equivalent. Therefore, (D, ‖ · ‖B) is complete and as a consequence (B,D) is closed in Lp(RN ).

Let us prove that (B − λ0, C
∞
c (RN )) is dissipative in Lp(RN ), where

λ0 = −1
p

inf
RN

divb.

In this case, we say that (B,C∞c (RN )) is quasi-dissipative. Let λ > λ0 and u ∈ C∞c (RN ) be fixed.
Multiplying the equation λu−Bu = f by u|u|p−2 and integrating by parts we deduce

λ

∫
RN
|u|pdx+ (p− 1)

∫
RN
|u|p−2

N∑
i,j=1

aijDiuDju dx+
1
p

∫
RN

divb |u|pdx =
∫

RN
f u|u|p−2dx

and then

(λ− λ0)
∫

RN
|u|pdx ≤

∫
RN

(
λ+

1
p

divb
)
|u|pdx+ ν0(p− 1)

∫
RN
|Du|2|u|p−2dx

≤
(∫

RN
|f |pdx

) 1
p
(∫

RN
|u|pdx

)1− 1
p

.

Dividing by ‖u‖p−1
p we get (λ − λ0)‖u‖p ≤ ‖λu − Bu‖p, as claimed. Therefore, the operator

(B,C∞c (RN )) is quasi-dissipative.
The next step is to show that (λ−B)C∞c (RN ) is dense in Lp(RN ) for some large λ. Let q be

the conjugate exponent of p and let w ∈ Lq(RN ) be such that

(1.2.12)
∫

RN
(λϕ−Bϕ)w dx = 0, ∀ ϕ ∈ C∞c (RN ).

We claim that w = 0. By a classical result concerning local regularity of distributional solutions to
elliptic equations (see [5] and the references therein), it turns out that w ∈W 2,q

loc (RN ). Therefore
we are allowed to integrate by parts in (1.2.12) and we deduce that

(1.2.13)
∫

RN
λwϕdx−

∫
RN

N∑
i,j=1

Di(aijDjw)ϕdx+
∫

RN
divbw ϕdx+

∫
RN
〈b,Dw〉ϕdx = 0.
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Using an approximation argument, it can be seen that the equation in this form is satisfied also by
any function ϕ of Lp(RN ) with compact support. Indeed, if ϕ is such a function, set ϕn = %n ∗ϕ,
where %n is a standard sequence of mollifiers. Then ϕn ∈ C∞c (RN ) and ϕn converges to ϕ in
Lp(RN ), as n → ∞. Moreover, we can find R > 0 sufficiently large in such a way that suppϕn
and suppϕ are contained in BR, for every n ∈ N. Each ϕn satisfies (1.2.13) and letting n→∞,
we obtain that ϕ verifies (1.2.13), too.

Now, let η be in C∞c (RN ) such that η ≡ 1 in B1, 0 ≤ η ≤ 1, η ≡ 0 in RN \ B2 and set
ηn(x) = η( xn ). Plugging w|w|q−2 η2

n into (1.2.13) and using (1.2.8) we deduce∫
RN

λ|w|q η2
n + (p− 1)

∫
RN

η2
n|w|q−2

N∑
i,j=1

aijDiwDjw χ{w 6=0}

+2
∫

RN
w|w|q−2ηn

N∑
i,j=1

aijDiwDjηn +
∫

RN
divb |w|q η2

n +
∫

RN
〈b,Dw〉w|w|q−2 η2

n

≤
∫

RN
λ|w|q η2

n −
∫

RN

N∑
i,j=1

Di(aijDjw)w|w|q−2 η2
n +

∫
RN

divb |w|q η2
n

+
∫

RN
〈b,Dw〉w|w|q−2 η2

n = 0.

Then, using the ellipticity condition and integrating by parts we get∫
RN

λ|w|q η2
n + ν0(p− 1)

∫
RN

η2
n|w|q−2|Dw|2 χ{w 6=0} + 2

∫
RN
w|w|q−2ηn

N∑
i,j=1

aijDiwDjηn

+
∫

RN
divb |w|q η2

n −
1
q

∫
RN

divb |w|q η2
n −

2
q

∫
RN
〈b,Dηn〉|w|q ηn ≤ 0.

Therefore

(1.2.14)
∫

RN

(
λ+

1
p

divb
)
|w|q η2

n + ν0(p− 1)
∫

RN
η2
n|w|q−2|Dw|2 χ{w 6=0} ≤ I1 + I2,

where

I1 = −2
∫

RN
w|w|q−2ηn

N∑
i,j=1

aijDiwDjηn dx

I2 =
2
q

∫
RN
〈b,Dηn〉|w|q ηn dx.

From Hölder’s inequality it follows that

|I1| ≤ 2NK
∫

RN
ηn |Dw| |Dηn| |w|q−1 dx

≤ 2N ‖Dη‖∞K
n

∫
RN

ηn |Dw| |w|(q−2)/2|w|q/2 χ{w 6=0} dx(1.2.15)

≤ ‖Dη‖∞NK

n

∫
RN

η2
n|Dw|2|w|q−2 χ{w 6=0} dx+

‖Dη‖∞NK

n

∫
RN
|w|q dx,

where K = maxi,j ‖aij‖∞. Concerning I2, we observe that since b is Lipschitz continuous in RN ,
there exists a constant L > 0 such that |b(x)| ≤ L(1 + |x|), for every x ∈ RN . Therefore

|I2| ≤
2
q

∫
n≤|x|≤2n

ηn(x)|b(x)| |Dηn(x)| |w(x)|q dx(1.2.16)

≤ 2‖Dη‖∞L
q

∫
n≤|x|≤2n

(1 + |x|)
n

|w(x)|q dx

≤ 6 ‖Dη‖∞L
q

∫
n≤|x|≤2n

|w(x)|q dx.
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Taking (1.2.15) and (1.2.16) into account, (1.2.14) gives∫
RN

(
λ+

1
p

divb
)
|w|q η2

n +
(
ν0(p− 1)− ‖Dη‖∞N K

n

)∫
RN

η2
n|w|q−2|Dw|2 χ{w 6=0}

≤ ‖Dη‖∞N K

n

∫
RN
|w|q dx+

6 ‖Dη‖∞L
q

∫
n≤|x|≤2n

|w|q dx.

For n large ν0(p− 1)− ‖Dη‖∞N K
n > 0 and if λ > λ0 we have

(λ− λ0)
∫

RN
|w|q η2

n ≤
‖Dη‖∞N K

n

∫
RN
|w|q dx+

6 ‖Dη‖∞L
q

∫
n≤|x|≤2n

|w|q dx.

Letting n→ +∞ we infer w = 0.
From the Lumer Phillips Theorem [21, Theorem II.3.15] it follows that the closure (B, D(B))

of (B, C∞c (RN )) generates a strongly continuous semigroup in Lp(RN ). Since (B,D) is closed
and C∞c (RN ) ⊆ D, we find that (B,D) extends (B, D(B)). Conversely, if f ∈ D, then there exists
a sequence (fn) in C∞c (RN ) such that fn converges to f with respect to ‖·‖D, which is equivalent
to ‖ ·‖B . This implies, by definition, that f ∈ D(B) and Bf = Bf . Therefore (B, D(B)) coincides
with (B,D).

As far as the last part of the statement is concerned, we observe that as a consequence of
the generation result, for λ large, the resolvent equation λu− Bu = f admits a unique solution
u ∈ D, for every f ∈ Lp(RN ). In order to determine the lower bound of λ, as before we have to
multiply the equation λu − Bu = f by u|u|p−2 and to integrate by parts. In this way we find
that λ has to be strictly larger than λp = − inf

(
1
p div b+ c

)
and that estimate (1.2.11) holds, as

stated.

1.3 A priori estimates of ‖V u‖p, ‖Du‖p and ‖D2u‖2

From now on, for clarity of exposition, we assume that cα = cβ = cγ = cτ = cθ = 0
in conditions (H1), (H2), (H3) and (H4). This is always possible, keeping the same constants
α, β, γ, τ , just replacing V with V +λ and choosing λ large enough (this implies possibly different
constants in the statements).
In this section we provide, as a preliminary step, some a priori estimates for the solutions of the
elliptic equation λu − Au = f . Precisely, via integrations by parts and other elementary tools,
we prove that for all u ∈ Dp, the Lp-norms of V u and Du may be estimated by the Lp-norms of
Au and u itself, with constants independent of u. If p = 2, we also deduce an analogous estimate
for the second order derivatives of u.

Let us first show that C∞c (RN ) is dense in (Dp, ‖ ·‖Dp), 1 < p < +∞, so that all our estimates
will be proved on test-functions.

Lemma 1.3.1 Suppose that (H4) holds. Then C∞c (RN ) is dense in (Dp, ‖ · ‖Dp).

Proof. Let η be a cut-off function such that 0 ≤ η ≤ 1, η ≡ 1 in B1, supp η ⊂ B2 and
|Dη|2 + |D2η| ≤ L. We write ηn(x) in place of η(x/n).

Suppose that u ∈ Dp. It is easy to see that ‖ηnu − u‖Dp , as n → ∞. In fact, ηnu → u in
W 2,p(RN ) and V ηnu→ V u in Lp(RN ), by dominated convergence. Moreover,

〈F,D(ηnu)〉 = ηn〈F,Du〉+ u〈F,Dηn〉 .
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As before, the first term in the right hand side converges to 〈F,Du〉 in Lp(RN ), as n goes to
infinity. The second term tends to 0 since from (H4) it follows that∫

RN
|u|p|〈F,Dηn〉|p dx ≤ Lp/2θp

∫
B2n\Bn

|V u|p
(

1 + 4n2

n2

)p/2
dx

≤ 5p/2Lp/2 θp
∫

RN\Bn
|V u|p dx.(1.3.1)

This shows that the set of functions in Dp having compact support, denoted by Dp,c, is dense in
Dp.

Suppose now that u ∈ Dp,c. A standard convolution argument shows the existence of a
sequence of smooth functions with compact support converging to u in Dp. Thus, the density of
C∞c (RN ) in (Dp, ‖ · ‖Dp) follows.

We state that, under rather weak assumptions, the operator (A,C∞c (RN )) is dissipative in
Lp(RN ), for any 1 < p < +∞.

Lemma 1.3.2 Suppose that

(1.3.2) divF + p V ≥ 0.

Then (A,C∞c (RN )) is dissipative in Lp(RN ).

Proof. We have to prove that for all λ > 0 and for all u ∈ C∞c (RN ) one has

(1.3.3) ‖u‖p ≤
1
λ
‖λu−Au‖p.

Let λ > 0 be fixed. If u ∈ C∞c (RN ) we set u∗ = u|u|p−2 and recall that

(1.3.4) D(u∗) = (p− 1)|u|p−2Du, D(|u|p) = pu∗Du .

Set λu−Au = f . Multiplying both sides of this equation by u∗ and integrating by parts, we
obtain

λ

∫
RN
|u|p + (p− 1)

∫
RN
〈qDu,Du〉|u|p−2 dx+

1
p

∫
RN

divF |u|p dx+
∫

RN
V |u|p dx =

∫
RN

fu∗ dx .

By (1.1.1) we get

(p− 1)
∫

RN
〈qDu,Du〉|u|p−2 dx ≥ (p− 1)ν0

∫
RN
|Du|2|u|p−2 dx ≥ 0

and taking (1.3.2) into account it turns out that

λ

∫
RN
|u|p ≤

∫
RN

fu∗ dx ≤
(∫

RN
|f |p dx

) 1
p
(∫

RN
|u|p dx

)1− 1
p

.

Multiplying by ‖u‖1−pp we get (1.3.3).

Remark 1.3.3 It is noteworthy observing that if (1.3.2) holds, 1 < p ≤ 2 and u ∈ C∞c (RN ) then

(1.3.5)
∫

RN
|Du|p ≤ c

∫
RN

(|Au|p + |u|p) dx ,
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where c = c(ν0, p) > 0. In fact, from the proof of Lemma 1.3.2, with λ = 1, we deduce that∫
RN
|Du|2|u|p−2 dx ≤ 1

ν0(p− 1)

(∫
RN
|u−Au|p dx

) 1
p
(∫

RN
|u|p dx

)1− 1
p

(1.3.6)

≤ c

∫
RN

(|Au|p + |u|p) dx ,

where c = c(ν0, p) > 0. If p = 2, we are done. If 1 < p < 2, Young’s inequality with exponent
2/p yields∫

{u6=0}
|Du|p dx =

∫
{u6=0}

(
|Du|p|u|

p(p−2)
2

)
|u|−

p(p−2)
2 dx ≤ cp

∫
{u6=0}

(|Du|2|u|p−2 + |u|p) dx

and (1.3.5) follows by (1.3.6).

Remark 1.3.4 We note that condition (H2’), with cβ = 0, together with (1.1.7) implies con-
dition (1.3.2), so that Lemma 1.3.2 still holds. If cβ 6= 0, then the same computations of
Lemma 1.3.2 show that (A − cβ

p , C
∞
c (RN )) is dissipative in Lp(RN ), which means that oper-

ator (A,C∞c (RN )) is quasi-dissipative. Explicitly, one has

(1.3.7) ‖u‖p ≤
(
λ− cβ

p

)−1

‖(λ−A)u‖p , u ∈ C∞c (RN ).

In the following lemma we prove an estimate of the Lp-norm of V u.

Lemma 1.3.5 Let 1 < p < +∞. Assume that (H1), (H3) and

(1.3.8) divF + βV ≥ 0

hold with

(1.3.9)
M

4
(p− 1)α2 +

β

p
+ γ

p− 1
p

< 1 ,

where M := supx∈RN max|ξ|=1〈q(x)ξ, ξ〉.
If u ∈ C∞c (RN ), then

(1.3.10)
∫

RN
|V u|p dx ≤ c

∫
RN

(|Au|p + |u|p) dx

for some c > 0 depending only on p,M, ν0 and on the constants in (H1), (H3) and (1.3.8).

Proof. Let u ∈ C∞c (RN ). We recall that if u∗ = u|u|p−2, then (1.3.4) holds.
Integrating by parts one deduces∫

RN
(A0u)V p−1u∗ dx = −

∫
RN
〈qDu,D(V p−1u∗)〉 dx

= −(p− 1)
∫

RN
〈qDu,Du〉V p−1|u|p−2 dx− (p− 1)

∫
RN
〈qDu,DV 〉V p−2|u|p−2u dx

and ∫
RN

V p−1〈F,Du〉u∗ dx =
1
p

∫
RN

V p−1〈F,D(|u|p)〉 dx

= −1
p

∫
RN

V p−1divF |u|p dx− p− 1
p

∫
RN

V p−2〈F,DV 〉|u|p dx .
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Thus, multiplying (1.1.2) by V p−1u∗ and integrating, we obtain

(p− 1)
∫

RN
〈qDu,Du〉V p−1|u|p−2 dx+

∫
RN
|V u|p dx(1.3.11)

= −
∫

RN
(Au)V p−1u∗ dx− 1

p

∫
RN

V p−1divF |u|p dx

−p− 1
p

∫
RN

V p−2〈F,DV 〉|u|p dx− (p− 1)
∫

RN
〈qDu,DV 〉V p−2|u|p−2u dx.

Now, assumptions (1.3.8) and (H3) imply

(1.3.12) −
∫

RN
V p−1divF |u|p dx ≤ β

∫
RN
|V u|p dx

and

(1.3.13) −
∫

RN
V p−2〈F,DV 〉|u|p dx ≤ γ

∫
RN
|V u|p dx ,

respectively.
By (1.1.1) and (H1) the last term in (1.3.11) can be estimated as follows∫

RN
〈qDu,DV 〉V p−2|u|p−2u dx ≤

∫
RN
〈qDu,Du〉1/2〈qDV,DV 〉1/2V p−2|u|p−1 dx(1.3.14)

≤ α
√
M

∫
RN
〈qDu,Du〉1/2V p−1/2|u|p−1 dx .

Setting Q2 :=
∫

RN 〈qDu,Du〉V
p−1|u|p−2 dx and R2 :=

∫
RN |V u|

p dx, from Hölder’s inequality it
follows

(1.3.15)
∫

RN
〈qDu,Du〉1/2V p−1/2|u|p−1 dx ≤ QR.

Thus, collecting (1.3.11)–(1.3.14) we obtain

(p− 1)Q2 +
(

1− β

p
− γ(p− 1)

p

)
R2 ≤ α(p− 1)

√
MQR+

∣∣∣∣∫
RN

(Au)V p−1u∗ dx

∣∣∣∣
≤ (p− 1)Q2 +

(p− 1)α2M

4
R2

+
∣∣∣∣∫

RN
(Au)V p−1u∗ dx

∣∣∣∣ .
Since ∣∣∣∣∫

RN
(Au)V p−1u∗ dx

∣∣∣∣ ≤ ∫
RN
|Au||V u|p−1 dx ≤ εR2 + cε

∫
RN
|Au|p dx ,

the thesis follows from (1.3.9) and by choosing ε small enough.

The next result provides an Lp-estimate of V |Du|, with p ≥ 2. In particular, since V ≥ 1, it
extends estimate (1.3.5) to the case p > 2. We explicitly notice that we need a further assumption
on F , namely the dissipativity condition.

Lemma 1.3.6 Let p ≥ 2. Assume that (H1), (H2), (H3) and (1.3.9) hold and that β satisfies
also the inequality

(1.3.16) 1− β

p
− τ > 0 .
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If u ∈ C∞c (RN ), then

(1.3.17)
∫

RN
V |Du|p dx+

∫
RN
|Du|p−2|D2u|2 dx ≤ c

∫
RN

(|Au|p + |u|p) dx ,

with c depending on N, p, ν0, α, β, τ,M, ‖Dqij‖∞.

Proof. We divide the proof in two steps: in the first step we consider the supplementary
assumption that qij ∈ C2(RN ), in the second one we remove this condition via an approximation
procedure.

Step 1. Suppose that qij ∈ C2(RN ) ∩ C1
b (RN ), for every 1 ≤ i, j ≤ N . Let u ∈ C∞c (RN ) and

define f = λu− Au, with λ > 0 to be chosen later. With a fixed k ∈ {1, ..., N}, we differentiate
with respect to xk, so that

λDku−
N∑

i,j=1

Di(DkqijDju)−
N∑

i,j=1

Di(qijDjku)−
N∑
i=1

DkFiDiu(1.3.18)

−
N∑
i=1

FiDiku+ uDkV + V Dku = Dkf.

Multiplying (1.3.18) by Dku|Du|p−2, summing over k = 1, ..., N and integrating on RN we get

(1.3.19) λ

∫
RN
|Du|p dx+ I1 + I2 + I3 + I4 + I5 +

∫
RN

V |Du|p dx =
∫

RN
〈Df,Du〉|Du|p−2 dx,

where

I1 = −
∫

RN

N∑
i,j,k=1

Di(DkqijDju)Dku|Du|p−2 dx,

I2 = −
∫

RN

N∑
i,j,k=1

Di(qijDjku)Dku|Du|p−2 dx,

I3 = −
∫

RN

N∑
i,k=1

DkFi Diu Dku|Du|p−2 dx,

I4 = −
∫

RN

N∑
i,k=1

Fi Diku Dku|Du|p−2 dx,

I5 =
∫

RN
〈DV,Du〉u|Du|p−2 dx .

Let us estimate the integrals above. Since t 7→ t|t|p−2 is in C1(RN ; RN ), integrating by parts and
applying Hölder’s and Young’s inequalities we have

|I1| =

∣∣∣∣∣
∫

RN

N∑
i,j,k=1

Dkqij DjuDiku|Du|p−2

+(p− 2)
∫

RN

N∑
i,j,k,h=1

Dkqij DjuDkuDhuDihu|Du|p−4

∣∣∣∣∣
≤ c1

∫
RN
|Du|p−1|D2u| dx = c1

∫
RN
|Du|p/2(|Du|(p−2)/2|D2u|) dx

≤ c1
ε

∫
RN
|Du|p dx+ c1 ε

∫
RN
|Du|p−2|D2u|2 dx ,
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where c1 = c1 (p,N, ‖Dqij‖∞) and ε > 0 is arbitrary. Consequently

(1.3.20) I1 ≥ −
c1
ε

∫
RN
|Du|p dx− c1 ε

∫
RN
|Du|p−2|D2u|2 dx .

Assumption (1.1.1) allows to estimate the second integral, after an integration by parts; indeed

I2 =
∫

RN

N∑
i,j,k=1

qij Djku Diku|Du|p−2 dx

+
p− 2

4

∫
RN

N∑
i,j=1

qij Dj(|Du|2)Di(|Du|2)|Du|p−4 dx

≥ ν0

∫
RN
|D2u|2|Du|p−2 dx+ ν0

p− 2
4

∫
RN

∣∣∣D(|Du|2)∣∣∣2 |Du|p−4 dx .

Since the last term is nonnegative we deduce that

(1.3.21) I2 ≥ ν0

∫
RN
|Du|p−2|D2u|2 dx.

From (H2) it follows immediately that

(1.3.22) I3 ≥ −τ
∫

RN
V |Du|p dx.

As far as I4 is concerned, integrating by parts, it turns out that

I4 =
∫

RN

N∑
i,k=1

DiFi (Dku)2 |Du|p−2 dx+
∫

RN

N∑
i,k=1

Fi Dku Diku |Du|p−2 dx

+(p− 2)
∫

RN

N∑
i,k,h=1

Fi (Dku)2 Dhu Dihu |Du|p−4 dx

=
∫

RN
divF |Du|p dx− I4 − (p− 2)I4

which implies by (H2) that

(1.3.23) I4 =
1
p

∫
RN

divF |Du|p dx ≥ −β
p

∫
RN

V |Du|p dx.

Applying (H1) and Young’s inequality, we get

|I5| ≤ α

∫
RN

V
3
2 |u||Du|p−1 dx = α

∫
RN

(V |u| |Du|
p−2

2 )(V
1
2 |Du|

p
2 ) dx

≤ α

ε

∫
RN
|V u|2|Du|p−2 dx+ εα

∫
RN

V |Du|p dx

≤ c2

∫
RN
|V u|p dx+ c2

∫
RN
|Du|p dx+ εα

∫
RN

V |Du|p dx

with c2 = c2(ε, p, α). Then

(1.3.24) I5 ≥ −c2
∫

RN
|V u|p dx− c2

∫
RN
|Du|p dx− εα

∫
RN

V |Du|p dx.

We are left to estimate the integral in the right hand side in (1.3.19). Integrating by parts and
arguing as before we obtain

35



∣∣∣∣ ∫
RN
〈Df,Du〉|Du|p−2 dx

∣∣∣∣ ≤ (p− 1)
N∑

h,k=1

∫
RN
|f | |Du|p−2|Dhku| dx

= (p− 1)
∫

RN
|f | |Du|

p−2
2 |Du|

p−2
2

N∑
h,k=1

|Dhku| dx

≤ c3

∫
RN
|f |2 |Du|p−2 dx+ ε(p− 1)

∫
RN
|Du|p−2|D2u|2 dx ,

with c3 = c3(p,N, ε). Applying Young’s inequality we have finally∣∣∣∣ ∫
RN
〈Df,Du〉|Du|p−2 dx

∣∣∣∣ ≤ c4

∫
RN
|f |p dx+ c4

∫
RN
|Du|p dx(1.3.25)

+ε(p− 1)
∫

RN
|Du|p−2|D2u|2 dx ,

with c4 = c4(p,N, ε). Collecting (1.3.20)–(1.3.25) from (1.3.19) we obtain(
λ− c1

ε
− c2 − c4

)∫
RN
|Du|p dx

+
(
ν0 − (c1 + p− 1)ε

)∫
RN
|Du|p−2|D2u|2 dx

+
(

1− β

p
− τ − εα

)∫
RN

V |Du|p dx

≤ c2
∫

RN
|V u|p dx+ c4

∫
RN
|f |p dx .

From (1.3.16) and (1.3.10), choosing first a small ε and then a large λ, we deduce that∫
RN

(|Du|p + V |Du|p) dx+
∫

RN
|Du|p−2|D2u|2 dx ≤ c

∫
RN

(|Au|p + |u|p) dx ,

where the constant c depends on p,N, ν0,M, ‖Dqij‖∞ and the constants in (H1), (H2), (H3).

Step 2. Let ϕ be a standard mollifier and set, as usual, ϕε(x) = ε−Nϕ
(
x
ε

)
. If qεij = qij ∗ϕε and

Aεu =
N∑

i,j=1

Di(qεijDju) + 〈F,Du〉 − V u ,

then by Step 1, noticing that ‖qεij‖∞ ≤ ‖qij‖∞, ‖Dqεij‖∞ ≤ ‖Dqij‖∞ and that (qεij) satisfy (1.1.1)
with the same constant ν0, it follows that∫

RN
(|Du|p + V |Du|p) dx+

∫
RN
|Du|p−2|D2u|2 dx ≤ c

∫
RN

(|Aεu|p + |u|p) dx ,

with c independent of ε. Since ‖Aεu−Au‖p → 0 as ε goes to 0, we get the thesis.

1.4 A priori estimates of ‖D2u‖p, ‖〈F,Du〉‖p
In the present section, we estimate the Lp norm of the second order derivatives of a solution

u ∈ Dp of Au = f , f ∈ Lp(RN ). The proof is more involved than that of the case p = 2
given in Section 1.3, since the variational method fails. Thus, we employ a different technique,
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which works under more restrictive assumptions on the coefficients of A, precisely we replace
assumptions (H1) and (H4) with (H1’) and (H4’), respectively. As noticed in Section 1.1, these
assumptions imply (1.1.8). Moreover, (H5) is assumed.

The estimate of the second order derivatives is proved in Proposition 1.4.5. The idea is
to define, via a change of variables and a localization argument, a family of operators, say
{Ax0}x0∈RN , with a globally Lipschitz drift coefficient and a bounded potential term. Then
we apply Theorem 1.2.1 to each Ax0 to obtain local estimates of the Lp-norm of the second
order derivatives of u. In order to get global estimates, we use a covering argument based on
Besicovitch’s Covering Theorem (see Proposition 1.4.1 below). We just note that the transformed
operators {Ax0} turn out to be uniformly elliptic if and only if we require that |F | ≤ θV 1/2, which
is the case of [41].

Once that the estimate of the second order derivatives is available, by difference we get the
estimate for 〈F,Du〉.

Proposition 1.4.1 Let F = {B(x, ρ(x))}x∈RN be a collection of balls such that

(1.4.1) |ρ(x)− ρ(y)| ≤ L|x− y|, x, y ∈ RN ,

with L < 1
2 . Then there exist a countable subcovering {B(xn, ρ(xn))} and a natural number

ζ = ζ(N,L) such that at most ζ among the doubled balls {B(xn, 2ρ(xn))} overlap.

The above proposition relies on the following version of the Besicovitch covering theorem, (see
e.g. [4, Theorem 2.18]).

Proposition 1.4.2 There exists a natural number ξ(N) satisfying the following property. If
Ω ⊂ RN is a bounded set and ρ : Ω → (0,+∞), then there is a set S ⊂ Ω, at most countable,
such that Ω ⊂

⋃
x∈S

B(x, ρ(x)) and every point of RN belongs at most to ξ(N) balls B(x, ρ(x))

centered at points of S.

We turn now to the proof of Proposition 1.4.1.
Proof of Proposition 1.4.1. If L = 0 then the radii are constant and the statement easily

follows.
If L > 0, we consider the sets

Ωn := B
(

0, 2ρ(0)(1 + L)n
)
\B
(

0, 2ρ(0)(1 + L)n−1
)
, n ≥ 1

Ω0 := B(0, 2ρ(0)).

Applying Proposition 1.4.2 we have that for all n ∈ N0 there exists a (at most) countable subset
Sn ⊂ Ωn, such that Ωn ⊂

⋃
x∈Sn

B(x, ρ(x)) =: Cn. Since (1.4.1) implies ρ(x) ≤ ρ(0) + L|x|, it is

easy to prove that

Cn ⊂ B
(

0, ρ(0)(2(1 + L)n+1 + 1)
)
\B
(

0, ρ(0)(2(1− L)(1 + L)n−1 − 1)
)
, n ≥ 1.

Note that 2(1 + L)n−1(1− L)− 1 > 0 for all n ≥ 1 because L < 1
2 . Since 1 + L > 1, there exists

k = k(L) ∈ N such that for all n ≥ k

2(1− L)(1 + L)n−1 − 1 > 2(1 + L)n−k+1 + 1,

which implies that Cn∩Cn−k = ∅. Hence the intersection of at most k among the sets Cn can be
non-empty. Moreover, at most ξ(N) among the balls centered at points of Sn overlap. It turns
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out that F ′ = {B(x, ρ(x)) : x ∈ Sn, n ∈ N0} =: {B(xj , ρj)} is a countable subcovering of RN

and if ξ′ = k ξ(N) then at most ξ′ balls of F ′ overlap.
To estimate the number of overlapping doubled balls {B(xj , 2ρj)} we proceed as in [41, Lemma
2.2]. Let B(xi, ρi) ∈ F ′ be fixed and set J(i) = {j ∈ N : B(xi, 2ρi) ∩ B(xj , 2ρj) 6= ∅}. If
j ∈ J(i) it turns out that |ρi − ρj | ≤ 2L(ρi + ρj), because |xi − xj | ≤ 2(ρi + ρj), yielding
1−2L
1+2Lρi ≤ ρj ≤

1+2L
1−2Lρi. Thus, the balls B(xj , ρj), j ∈ J(i), are contained in B(xi, 5+2L

1−2Lρi). Since
at most ξ′ of the balls B(xj , ρj) overlap, we obtain(

1− 2L
1 + 2L

)N
ρNi card J(i) ≤

∑
j∈J(i)

ρNj ≤ ξ′
(

5 + 2L
1− 2L

)N
ρNi ,

which implies card J(i) ≤ ξ′
(

(5+2L)(1+2L)
(1−2L)2

)N
, so that the number of overlapping doubled balls

is an integer ζ, with ζ ≤ 1 + ξ′
(

(5+2L)(1+2L)
(1−2L)2

)N
.

The following simple lemma is a straightforward consequence of assumption (H1’) and it will
be useful to prove Proposition 1.4.5 below.

Lemma 1.4.3 Assume that (H1’) holds. Then there exist ε > 0 and two constants a, b > 0,
depending on α, σ, µ, such that for all x0 ∈ RN

aV (x) ≤ V (x0) ≤ bV (x), for every x ∈ B(x0, 3εr(x0)) ,

with

(1.4.2) r(x0) := (1 + |x0|2)µ/2V σ−1(x0).

Proof. We remark that from the choice of the parameters µ and σ and since V ≥ 1 then

(1.4.3) (1 + |x|2)µ/2V σ−1(x) ≤ 1 + |x| ,

for every x ∈ RN . Moreover, (H1’) is equivalent to one of the following inequalities

(1.4.4)
|DV σ−1(x)| ≤ α(1− σ)

(1 + |x|2)µ/2
, σ < 1 ,

|D log V (x)| ≤ α

(1 + |x|2)µ/2
, σ = 1 .

We prove the thesis assuming σ < 1, the case σ = 1 being analogous.
Fix x0 ∈ RN and write r in place of r(x0).
Suppose first that |x0| < 1. From (1.4.3) and (1.4.2) it follows that B(x0, 3εr) ⊂ B(0, 2), for

every 0 < ε ≤ 1/6. Moreover, since V is a continuous function and V ≥ 1, we have also that
there exist ω1, ω2 > 0, independent of x0, such that

ω1 = inf
y∈B(0,2)

1
V (y)

≤ inf
y∈B(x0,3εr)

1
V (y)

≤ V (x0)
V (x)

≤ sup
y∈B(0,2)

V (y) = ω2 , x ∈ B(x0, 3εr).

Let us now deal with the case |x0| ≥ 1. By (1.4.3) one has r(y) ≤ 1 + |y|, y ∈ RN , so that for
every 0 < ε ≤ 1/6

sup
|y|≥1

1 + |y|2

1 + (|y| − 3εr)2
< +∞ .

Therefore, there exist ε ≤ 1/6 and τ both independent of x0, such that

3εα(1− σ)(1 + |x0|2)µ/2

(1 + (|x0| − 3εr)2)µ/2
≤ τ < 1 ,
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where α and σ are as in (H1’). Thus, by the mean value theorem and (1.4.4) it follows that for
every x ∈ B(x0, 3εr)

V σ−1(x0)(1− τ) ≤ V σ−1(x) ≤ V σ−1(x0)(1 + τ)

and, multiplying by V 1−σ(x)V 1−σ(x0),

(1.4.5) V 1−σ(x)(1− τ) ≤ V 1−σ(x0) ≤ V 1−σ(x)(1 + τ) .

Therefore the statement is proved with a = inf{ω1, (1− τ)
1

1−σ } and b = sup{ω2, (1 + τ)
1

1−σ }.

The following algebraic lemma is useful to prove Proposition 1.4.5.

Lemma 1.4.4 If (H1’) holds, with (σ, µ) 6= (1
2 , 0), then for every δ > 0 there exists cδ > 0 such

that

(1.4.6) |DV | ≤ δV 3/2 + cδ .

Proof. If 1
2 < σ ≤ 1, then (1.4.6) trivially follows by Young’s inequality, with cδ depending only

on σ, α and cα. If instead σ = 1
2 , then by assumption µ > 0. For all δ > 0 choose Rδ > 0 such

that (1 + |x|2)µ/2 ≥ α/δ for every x ∈ RN \BRδ . Hence

|DV | ≤ α V 3/2

(1 + |x|2)µ/2
≤ δV 3/2 + α sup

x∈BRδ
V 3/2(x) .

In the following proposition we extend to the case p 6= 2 the estimate of the second order
derivatives stated in (1.5.1) in the case p = 2.

Proposition 1.4.5 Assume (H1’), (H2’), (H4’), (H5) with constants satisfying (1.1.7). If u ∈
Dp then

(1.4.7)
∫

RN
(|V u|p + |〈F,Du〉|p + |D2u|p) dx ≤ c

∫
RN

(|Au|p + |u|p) dx ,

with c depending only on N , p, ν0, M , ‖qij‖∞, ‖Dqij‖∞ and the constants in (H1’), (H2’), (H4’)
and (H5).

Proof. By Lemma 1.3.1 we may reduce to consider u ∈ C∞c (RN ). Moreover, for the sake of
simplicity and without loss of generality, we can prove the statement assuming cβ = 0.
Set f = Au. We claim that the assumptions of Lemma 1.3.5 hold. Since |divF | ≤

√
N |DF | then

(H2’) implies

(1.4.8) divF + βV ≥ 0

with β < p because of (1.1.7).
Moreover, (H1’) and (H4’) imply (1.1.8), that is

|〈F,DV 〉| ≤ αθV 2 .

If (σ, µ) = (1
2 , 0), then (H1) trivially follows from (H1’) and (1.1.8) implies (1.3.9). If instead

σ > 1
2 or µ > 0, then by Lemma 1.4.4 (H1) holds, with α and cα replaced by δ and cδ, respectively,

with δ arbitrarily small. Choose δ, depending only on N, p,M and on the constants in (H1’),
(H2’), (H4’) and (H5), such that

(1.4.9)
M

4
(p− 1)δ2 +

β

p
+ αθ

p− 1
p

< 1 .
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Thus, (1.3.9) holds and Lemma 1.3.5 implies

(1.4.10)
∫

RN
|V u|p dx ≤ c

∫
RN

(|f |p + |u|p) dx .

It remains to estimate the Lp-norms of |D2u| and 〈F,Du〉. We begin by considering the
second order derivatives of u. Then, by difference, we obtain the estimate of 〈F,Du〉.
For every x0 ∈ RN , let ε and r = r(x0) be as in Lemma 1.4.3. We point out that ε is independent
of x0.
Define y0 equal to λx0, with λ := V 1/2(x0). We consider two cut-off functions η and ϕ in
C∞c (RN ), 0 ≤ η, ϕ ≤ 1, satisfying the following conditions

η ≡ 1 in B(y0, ελr) , supp η ⊂ B(y0, 2ελr) ,

ϕ ≡ 1 in B(y0, 2ελr) , suppϕ ⊂ B(y0, 3ελr) ,

|Dη|2 + |D2η|+ |Dϕ|2 + |D2ϕ| ≤ L

λ2r2
,(1.4.11)

for some L > 0, depending on ε, but neither on x0 nor on y0. For every x ∈ RN , define y = λx

and consider v(y) = u
(
y
λ

)
. Then v satisfies the equation

N∑
i,j=1

Dyi(q̃ijDyjv)(y) +
1
λ
〈F̃ (y), Dyv(y)〉 − 1

λ2
Ṽ (y)v(y) =

1
λ2
f̃(y), y ∈ RN

with q̃ij(y) = qij
(
y
λ

)
, F̃ (y) = F

(
y
λ

)
, Ṽ (y) = V

(
y
λ

)
and f̃(y) = f( yλ ).

Setting w(y) = η(y)v(y) we deduce that

(1.4.12)
N∑

i,j=1

Dyi(q̃ij(y)Dyjw(y)) +
1
λ
〈F̃ (y), Dyw(y)〉 − 1

λ2
Ṽ (y)w(y) = g(y)

with g defined as follows

(1.4.13) g(y) :=
1
λ2
η(y)f̃(y) + 2〈q̃(y)Dη(y), Dv(y)〉+ div(q̃Dη)(y)v(y) +

1
λ
〈F̃ (y), Dη(y)〉v(y),

y ∈ RN . Since suppw ⊂ B(y0, 2ελr), equation (1.4.12) is equivalent to

N∑
i,j=1

Dyi(q̃ij(y)Dyjw(y)) +
1
λ
ϕ(y)〈F̃ (y), Dyw(y)〉 − 1

λ2
ϕ(y)Ṽ (y)w(y) = g(y), y ∈ RN .

Now, let us define the operator

(1.4.14) Ã =
N∑

i,j=1

Dyi(q̃ijDyj ) +
1
λ
ϕ 〈F̃ ,Dy〉 −

1
λ2
ϕ Ṽ .

Claim 1. 1
λ2ϕ Ṽ and

∣∣∣〈 1
λϕF̃ ,Dq̃ij〉

∣∣∣ are bounded in RN and 1
λϕ F̃ is globally Lipschitz in RN

with
∥∥∥ 1
λ2ϕ Ṽ

∥∥∥
∞

,
∥∥∥〈 1

λϕF̃ ,Dq̃ij〉
∥∥∥
∞

and the Lipschitz constant of 1
λϕ F̃ independent of x0.

Proof of claim 1. The main tool is Lemma 1.4.3. Recalling the definition of λ, Ṽ and the
relationship between y and x, from Lemma 1.4.3 it follows that

sup
y∈RN

1
λ2
ϕ(y) Ṽ (y) ≤ sup

x∈B(x0,3εr)

V (x)
V (x0)

≤ 1
a
,
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Taking into account assumptions (H2’), (H4’) and (1.4.11), we have that

sup
y∈RN

∣∣∣∣ 1λDy

(
ϕ(y) F̃ (y)

)∣∣∣∣ = sup
y∈B(y0,3ελr)

∣∣∣∣ 1
λ2

(DxF )
( y
λ

)
ϕ(y) +

1
λ
F
( y
λ

)
Dyϕ(y)

∣∣∣∣
≤ sup

x∈B(x0,3εr)

βV (x)
V (x0)

+ L sup
x∈B(x0,3εr)

|F (x)|
r V (x0)

≤ β sup
x∈B(x0,3εr)

V (x)
V (x0)

+ Lθ sup
x∈B(x0,3εr)

(1 + |x|2)
µ
2 V σ(x)

(1 + |x0|2)
µ
2 V σ(x0)

Using Lemma 1.4.3 and equation (1.4.3) we infer that

sup
y∈RN

∣∣∣∣ 1λDy

(
ϕ(y) F̃ (y)

)∣∣∣∣ ≤ β

a
+
Lθ

aσ
[1 + (|x0|+ 3εr)2]

µ
2

(1 + |x0|2)
µ
2

≤ β

a
+
Lθ 8

µ
2

aσ

which implies that 1
λϕ F̃ is globally Lipschitz in RN , uniformly with respect to x0.

Finally, assumption (H5) yields

sup
y∈RN

∣∣∣∣〈 1λϕ(y)F̃ (y), Dy q̃ij(y)〉
∣∣∣∣ ≤ sup

y∈B(y0,3ελr)

∣∣∣∣〈 1λF̃ (y), Dy q̃ij(y)〉
∣∣∣∣

≤ sup
x∈B(x0,3εr)

1
λ2
|〈F (x), Dqij(x)〉|

≤ κ sup
x∈B(x0,3εr)

V (x)
V (x0)

+ cκ sup
x∈B(x0,3εr)

1
V (x0)

≤ κ

a
+ cκ ,

because of Lemma 1.4.3 and V ≥ 1.

Claim 2. The function g in (1.4.13) satisfies the estimate
(1.4.15)∫

RN
|g(y)|p dy ≤ C

λ2p−N

∫
B(x0,2εr)

(
|u(x)|p + |f(x)|p + |V (x)u(x)|p + |V 1/2(x)Du(x)|p

)
dx ,

for some C depending on ε, but not on x0.

Proof of claim 2. We separately consider each term of g. The constants occurring in the
estimates may depend on ε.
The first term in (1.4.13) is the easiest to estimate, in fact

(1.4.16)
∫

RN

∣∣∣∣ 1
λ2
η(y)f

( y
λ

)∣∣∣∣p dy ≤ 1
λ2p

∫
B(y0,2ελr)

∣∣∣f ( y
λ

)∣∣∣p dy =
1

λ2p−N

∫
B(x0,2εr)

|f(x)|p dx .

Using (1.4.11) we can estimate the Lp-norm of the next two terms as follows∫
RN
|2〈q̃(y)Dyη(y), Dyv(y)〉|p dy ≤ C1

λ2prp

∫
B(y0,2ελr)

∣∣∣Du( y
λ

)∣∣∣p dy
=

C1

λ2p−Nrp

∫
B(x0,2εr)

|Du(x)|p dx =
C1

λ2p−N

∫
B(x0,2εr)

V p(1−σ)(x0)
(1 + |x0|2)pµ/2

|Du(x)|p dx

and ∫
RN
|div(q̃Dη)(y)v(y)|p dy ≤ C2

λ2p r2p

∫
B(y0,2ελr)

|v(y)|p dy

=
C2

λ2p−Nr2p

∫
B(x0,2εr)

|u(x)|p dx =
C2

λ2p−N

∫
B(x0,2εr)

V 2p(1−σ)(x0)
(1 + |x0|2)pµ

|u(x)|p dx ,
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with C1 and C2 independent of x0.
Recalling that V ≥ 1, σ ≥ 1

2 , µ ≥ 0 and using Lemma 1.4.3, we obtain∫
B(x0,2εr)

V p(1−σ)(x0)
(1 + |x0|2)pµ/2

|Du(x)|p dx ≤
∫
B(x0,2εr)

|V 1/2(x0)Du(x)|p dx

≤ bp/2
∫
B(x0,2εr)

|V 1/2(x)Du(x)|p dx

and ∫
B(x0,2εr)

V 2p(1−σ)(x0)
(1 + |x0|2)pµ

|u(x)|p dx ≤
∫
B(x0,2εr)

|V (x0)u(x)|p dx

≤ bp
∫
B(x0,2εr)

|V (x)u(x)|p dx .

Hence, there exists C3 independent of x0 such that the following inequality holds∫
RN

(|2〈q̃(y)Dyη(y), Dyv(y)〉|p + |div(q̃Dη)(y)v(y)|p) dy ≤(1.4.17)

≤ C3

λ2p−N

∫
B(x0,2εr)

(|V (x)u(x)|p + |V 1/2(x)Du(x)|p) dx .

Concerning the last term in (1.4.13), we use again assumption (H4’) and we get∫
RN

∣∣∣∣ 1λ 〈F̃ (y), Dη(y)〉v(y)
∣∣∣∣p dy ≤ c

λ2p−N

∫
B(x0,2εr)

|F (x)|p|u(x)|p

rp
dx(1.4.18)

≤ c θp

λ2p−N

∫
B(x0,2εr)

∣∣∣∣ (1 + |x|2)µ/2V σ−1(x)
(1 + |x0|2)µ/2V σ−1(x0)

∣∣∣∣p |V (x)u(x)|p dx

≤ C4

λ2p−N

∫
B(x0,2εr)

|V (x)u(x)|p dx

where C4 is not depending on x0. Thus, the claim is proved since collecting (1.4.16)-(1.4.18),
inequality (1.4.15) follows.

Let us now prove (1.4.7). Applying Theorem 1.2.1 with B replaced by Ã, we have∫
RN
|D2w(y)|p dy ≤ K

∫
RN

(|w(y)|p + |g(y)|p) dy ,

with K independent of x0. By the definition of w it follows that∫
B(y0,ελr)

|D2v(y)|p dy ≤ K
∫
B(y0,2ελr)

(|v(y)|p + |g(y)|p) dy

and consequently, since y = λx,

1
λ2p−N

∫
B(x0,εr)

|D2u|p dx ≤

≤ K1 λ
N

∫
B(x0,2εr)

|u|p dx+K1
1

λ2p−N

∫
B(x0,2εr)

(
|u|p + |f |p + |V u|p + |V 1/2Du|p

)
dx .

Multiplying both sides of the previous inequality by λ2p−N and recalling that λ = V 1/2(x0) we
obtain∫

B(x0,εr)

|D2u|p dx ≤

≤ K1

∫
B(x0,2εr)

|V (x0)u(x)|p dx+K1

∫
B(x0,2εr)

(
|u|p + |f |p + |V u|p + |V 1/2Du|p

)
dx ,
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which implies

(1.4.19)
∫
B(x0,εr)

|D2u|p dx ≤ K2

∫
B(x0,2εr)

(
|u|p + |f |p + |V u|p + |V 1/2Du|p

)
dx ,

because of Lemma 1.4.3. Now, in order to apply Proposition 1.4.1 we need to verify the Lipschitz
continuity of the radius ε r with respect to x0. To this aim, we remark that from assumption
(H1’) it follows that

|D(εr)(x)| = ε
∣∣∣µ(1 + |x|2)

µ
2−1xV σ−1(x) + (σ − 1)(1 + |x|2)

µ
2 V σ−2(x)DV (x)

∣∣∣
≤ ε

{
1

(1 + |x|2)
1−µ

2 V 1−σ(x)
+ (1− σ)(1 + |x|2)

µ
2 V σ−2(x)|DV (x)|

}
≤ ε {1 + (1− σ)α}

which is less than 1/2, choosing a smaller ε if necessary. Let {B(xj , εrj)} be the covering of RN

yielded by Proposition 1.4.1. Applying (1.4.19) to each xj and summing over j, it follows that∫
RN
|D2u|p dx ≤

∑
j∈N

∫
B(xj ,εrj)

|D2u|p dx

≤ K2

∑
j∈N

∫
B(xj ,2εrj)

(
|u|p + |f |p + |V u|p + |V 1/2Du|p

)
dx

= K2

∫
RN

(
|u(x)|p + |f(x)|p + |V (x)u(x)|p + |V 1/2(x)Du(x)|p

)∑
j∈N

χB(xj ,2εrj)(x) dx

≤ ζ K2

∫
RN

(
|u|p + |f |p + |V u|p + |V 1/2Du|p

)
dx ,

where ζ is given by Proposition 1.4.1. Now, [41, Proposition 2.3] yields two constants γ0, c > 0
(independent of u) such that for all 0 < γ ≤ γ0

‖V 1/2Du‖p ≤ γ‖D2u‖p +
c

γ
‖V u‖p.

Choosing γ sufficiently small and taking into account (1.4.10) it turns out that∫
RN
|D2u|p dx ≤ c

∫
RN

(|f |p + |u|p) dx ,

for some c > 0 depending on the stated quantities.
Once that the estimate of the second order derivatives is available, by difference we get the
estimate for 〈F,Du〉, that is∫

RN
|〈F,Du〉|p dx ≤ c

∫
RN

(|f |p + |u|p) dx .

1.5 Generation of a C0-semigroup in L2(RN)

In this section we prove Theorem 1.1.1, which states that the operator (A,D2) (see (1.1.3))
generates a C0-semigroup in L2(RN ), which turns out to be contractive if cβ = 0.
The proof goes as follows. As a by-product of Lemma 1.3.1 we deduce that the a priori estimates
proved in Section 1.3, with p = 2 extend to D2. More precisely, it follows from Lemma 1.3.1,
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Remark 1.3.3, Lemmas 1.3.5 and 1.3.6 that if u ∈ D2 and (H1), (H2), (H3), (H4), (1.1.5) and
(1.1.6) hold, then

(1.5.1)
∫

RN
(|Du|2 + |V u|2 + |D2u|2) dx ≤ c

∫
RN

(|Au|2 + |u|2) dx ,

for some c depending only on N, ν0, α, β, τ,M, ‖Dqij‖∞. By difference, since Au is in L2(RN ),
then

(1.5.2)
∫

RN
|〈F,Du〉|2 dx ≤ c

∫
RN

(|Au|2 + |u|2) dx ,

with a possibly different c.
Estimates (1.5.1) and (1.5.2) allow to prove that (A,D2) is closed in L2(RN ). Clearly, it is
densely defined. If cβ = 0, then (A,D2) is also dissipative. In order to apply the Hille-Yosida
Theorem, it remains to prove that λ−A : D2 → L2(RN ) is bijective for sufficiently large λ. This
is proved through a standard procedure, namely by approximating the solution of the elliptic
equation λu − Au = f , f ∈ L2(RN ), with a sequence of solutions of the same equation in balls
with increasing radii and satisfying Dirichlet boundary conditions.

Lemma 1.5.1 Suppose that (H1), (H2), (H3), (H4), (1.1.5) and (1.1.6) hold. Then (A,D2) is
closed in L2(RN ). Moreover, (A− cβ

2 ,D2) is dissipative.

Proof. If u ∈ D2, then ‖u‖A ≤ c1‖u‖D2 , ‖ · ‖A being the graph norm of A, for some positive
c1 depending on ‖qij‖∞ and ‖Dqij‖∞. Moreover, from (1.5.1) and (1.5.2) there exists c2 > 0
such that ‖u‖D2 ≤ c2‖u‖A. This proves that ‖ · ‖D2 is equivalent to ‖ · ‖A; since D2 is obviously
complete with respect to the former, it turns out that D2 is also complete with respect to the
latter, which just means that (A,D2) is closed.
Finally, taking into account Remark 1.3.4 and Lemma 1.3.1, we conclude that (A − cβ

2 ,D2) is
dissipative.

In the proposition below we study the surjectivity of the operator λ− A, for positive λ. We
remark that the injectivity for λ > cβ

2 follows from the dissipativity stated in Lemma 1.5.1.

Proposition 1.5.2 Suppose that (H1), (H2), (H3), (H4), (1.1.5) and (1.1.6) hold. Then for
every f ∈ L2(RN ) and for every λ > cβ/2, there exists a solution u ∈ D2 of

(1.5.3) λu−Au = f, in RN .

Moreover,

(1.5.4) ‖u‖2 ≤
(
λ− cβ

2

)−1

‖f‖2 .

Proof. We deal with the case cβ = 0 only, since the remaining case cβ 6= 0 is analogous.
For each ρ > 0 consider the Dirichlet problem

(1.5.5)


λu−Au = f, in Bρ

u = 0, on ∂Bρ ,

with λ > 0 and f ∈ L2(RN ). According to [26, Theorem 9.15] there exists a unique solution uρ
of (1.5.5) in W 2,2(Bρ) ∩W 1,2

0 (Bρ). Let us prove that the dissipativity estimate

λ‖uρ‖L2(Bρ) ≤ ‖f‖L2(RN )
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holds. Multiplying

(1.5.6) λuρ −Auρ = f

by uρ and integrating by parts with similar estimates as in the proof of Lemma 1.3.2, taking into
account that uρ = 0 on ∂Bρ, we get

λ

∫
Bρ

u2
ρ dx+ ν0

∫
Bρ

|Duρ|2 dx+
1
2

∫
Bρ

divF u2
ρ dx+

∫
Bρ

V u2
ρ dx ≤

∫
Bρ

fuρ dx

and by (H2) it follows

λ

∫
Bρ

u2
ρ dx+ ν0

∫
Bρ

|Duρ|2 dx+
(

1− β

2

)∫
Bρ

V u2
ρ dx ≤

(∫
Bρ

u2
ρ dx

)1/2(∫
Bρ

f2 dx

)1/2

.

Then we have

(1.5.7) ‖uρ‖L2(Bρ) ≤ λ−1‖f‖L2(RN ) , ‖Duρ‖L2(Bρ) ≤ ν
−1/2
0 λ−1/2‖f‖L2(RN ) .

Multiplying (1.5.6) by V uρ, with analogous estimates as in the proof of Lemma 1.3.5 we get the
inequality

(1.5.8) ‖V uρ‖L2(Bρ) ≤ c‖f‖L2(RN ) ,

with c independent of ρ.
Let ρ1 < ρ2 < ρ. By [26, Theorem 9.11] and (1.5.7) we obtain

‖uρ‖W 2,2(Bρ1 ) ≤ c1
(
‖f‖L2(Bρ2 ) + ‖uρ‖L2(Bρ2 )

)
≤ c2‖f‖L2(RN ),

with c1 and c2 independent of ρ. Thus, {uρ} is bounded in W 2,2
loc (RN ), hence there is a sequence

{uρn}, ρn < ρn+1, weakly convergent to u in W 2,2
loc (RN ) and strongly in L2

loc(RN ). Actually,
{uρn} strongly converges to u in W 2,2

loc (RN ). In fact, fixed s and t, 0 < s < t, for every n,m such
that ρn, ρm > t, by [26, Theorem 9.11] again,

‖uρn − uρm‖W 2,2(Bs) ≤ c(s, t)‖uρn − uρm‖L2(Bt) ,

since both uρn and uρm satisfy λu−Au = f in Bt. The convergence of {uρn} to u in L2(Bt) proves
that {uρn} is a Cauchy sequence in W 2,2(Bs) and so the assertion follows. As a consequence, u
is a solution of (1.5.3) for a.e. x ∈ RN .

In order to conclude, it remains to prove that u ∈ D2. First, we prove that u ∈ W 1,2(RN )
and V u ∈ L2(RN ), then that 〈F,Du〉 ∈ L2(RN ). Finally, by difference from (1.5.3) and using
classical L2-regularity, it follows that u ∈W 2,2(RN ).
By (1.5.7) and (1.5.8) we get that, fixed R < ρn,∫

BR

u2
ρn dx ≤

∫
Bρn

u2
ρn dx ≤ λ

−2

∫
RN

f2 dx ,

∫
BR

|Duρn |2 dx ≤
∫
Bρn

|Duρn |2 dx ≤ ν−1
0 λ−1

∫
RN

f2 dx

and ∫
BR

(V uρn)2 dx ≤
∫
Bρn

(V uρn)2 dx ≤ c
∫

RN
f2 dx .
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Since c does not depend on ρn and R, letting first n → +∞ and then R → +∞, we get (1.5.4)
and ∫

RN
(|Du|2 + |V u|2) dx ≤ c

∫
RN

f2 dx .

In particular, u ∈W 1,2(RN ) and V u ∈ L2(RN ).
Now, let η ∈ C∞c (RN ) such that 0 ≤ η ≤ 1, η ≡ 1 in B1, supp η ⊂ B2 and |Dη|2 + |D2η| ≤ L.
Set ηn(x) = η(x/n). We have

(1.5.9) A(ηnu)− ηnAu =
N∑

i,j=1

qijDjuDiηn +Di(qijuDjηn) + 〈F,Dηn〉u .

Observe that A(ηnu) − ηnAu → 0 as n → +∞ in the L2-norm. In fact,
∑N
i,j=1(qijDjuDiηn

+Di(qijuDjηn)) goes to 0 in the L2-norm, since u ∈ W 1,2(RN ) and, arguing as in (1.3.1), we
obtain the convergence to 0 for the last term in (1.5.9), too. Since ηnAu → Au in L2, then
A(ηnu)→ Au, too. Being ηnu ∈ D2, by the equivalence of the two norms ‖ ·‖D2 and ‖ ·‖A proved
in Lemma 1.5.1 we get

‖〈F,Du〉ηn‖L2(RN ) ≤ c
(
‖A(ηnu)‖L2(RN ) + ‖ηnu‖L2(RN )

)
+ ‖〈F,Dηn〉u‖L2(RN ).

Letting n→ +∞, one then establishes

‖〈F,Du〉‖L2(RN ) ≤ c
(
‖Au‖L2(RN ) + ‖u‖L2(RN )

)
.

By difference,
∑N
i,j=1Di(qijDju) belongs to L2(RN ). Thus, by (1.1.1) and L2 elliptic regularity

the second order derivatives of u are in L2, which implies that u ∈W 2,2(RN ) and u ∈ D2.

The proof that the operator (A,D2) generates a strongly continuous semigroup in L2(RN ) is
now a straightforward consequence of the above results.

Proof of Theorem 1.1.1. It is easily seen that (A,D2) is densely defined, then the assertion
follows from the Hille-Yosida Theorem (see [21, Theorem II.3.5]). If cβ = 0 then (A,D2) is
dissipative and therefore the generated semigroup is contractive.

1.6 Generation of a C0-semigroup in Lp(RN)

The present section is devoted to the proof of Theorem 1.1.2. As in the case p = 2 treated
in Section 1.5, the a priori estimates given by Proposition 1.4.5 allow to prove that ‖ · ‖Dp and
‖ · ‖A are equivalent norms. This easily implies the closedness of (A,Dp). Moreover, it is readily
seen that (A,Dp) is quasi dissipative. It remains to show that λ−A is surjective for λ large and
this is, actually, the main result of the section. The proof is different from that of Proposition
1.5.2, which does not work for p 6= 2. Here we approximate the coefficients of the operator A.
Moreover, we clarify the reason why we require assumption (1.1.7), which is stronger than the
corresponding one for p = 2. In fact, also the operators Aε defined in the proof of Proposition
1.6.2 must satisfy our hypotheses.

The proof of the following Lemma is the same as the one of Lemma 1.5.1 and we omit it.

Lemma 1.6.1 Suppose that (H1’), (H2’), (H4’) and (H5) hold, with constants satisfying (1.1.7).
Then (A,Dp) is closed in Lp(RN ). Moreover, (A− cβ

p ,Dp) is dissipative.

Proposition 1.6.2 Suppose that (H1’), (H2’), (H4’) and (H5) hold, with constants satisfying
(1.1.7). Then for every f ∈ Lp(RN ) and for every λ > cβ

p a unique solution u ∈ Dp of

λu−Au = f, in RN
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exists. Moreover,

(1.6.1) ‖u‖p ≤
(
λ− cβ

p

)−1

‖f‖p .

Proof. Uniqueness and estimate (1.6.1) immediately follow from (1.3.7). As far as the existence
is concerned, for fixed ε > 0, let us define Fε : RN → RN and Vε : RN → R as

Fε :=
F

1 + εV
, Vε :=

V

1 + εV
.

It is easy to prove that (H1’), (H2’), (H4’) and (H5) imply

(Hε1) |DVε(x)| ≤ α V 2−σ
ε (x)

(1+|x|2)µ/2
,

(Hε2) |DFε| ≤
√

2( β√
N

+ αθ)Vε +
√

2
N cβ ,

(Hε4) |Fε(x)| ≤ θ(1 + |x|2)µ/2V σε (x),

(Hε5) |〈Fε(x), Dqij(x)〉| ≤ κVε(x) + cκ ,

respectively.
Assumptions (Hε1), (Hε2) and (Hε4) yield

(1.6.2) divFε +
√

2(β +
√
Nαθ)Vε +

√
2 cβ ≥ 0 , |〈Fε, DVε〉| ≤ αθV 2

ε

and
N∑

i,j=1

DiF
j
ε (x)ξiξj ≤

√
2
(

β√
N

+ αθ

)
Vε(x)|ξ|2 +

√
2
N

cβ |ξ|2 , ξ, x ∈ RN .

Notice that Vε is bounded and Fε is globally Lipschitz in RN . Precisely,

||Vε||∞ ≤
1
ε
, and ||DiF

j
ε ||∞ ≤

1
ε

(
β√
N

+ αθ

)
+

cβ√
N
, 1 ≤ i, j ≤ N .

Moreover, if (σ, µ) 6=
(

1
2 , 0
)

arguing as in the proof of Lemma 1.4.4 and observing that Vε ≤ V ,
we have that for every δ > 0 there exists cδ ≥ 0 such that

(1.6.3) |DVε| ≤ δV 3/2
ε + cδ , for every ε > 0 .

Therefore, the above inequality and (1.1.7) imply that there exists δ > 0 independent of ε such
that

(1.6.4)
M

4
(p− 1)δ2 +

√
2
β +
√
Nαθ

p
+ αθ

p− 1
p

< 1 .

Let us consider the operator

Aε := A0 + 〈Fε, D〉 − Vε

where, as previously defined, A0 stands for
∑N
i,j=1Di(qijDj).

Define Dp,ε and its norms ‖ · ‖Dp,ε and ‖ · ‖Aε analogously to Dp, ‖ · ‖Dp and ‖ · ‖A, respectively,
that is

Dp,ε :=
{
u ∈W 2,p(RN ) : 〈Fε, Du〉 ∈ Lp(RN )

}
,

‖u‖Dp,ε := ‖u‖2,p + ‖Vεu‖p + ‖〈Fε, Du〉‖p ,
‖u‖Aε := ‖Aεu‖p + ‖u‖p .
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Since the constants involved in (Hε1), (Hε2), (Hε4), (Hε5) and (1.6.4) are independent of ε, from
Lemma 1.6.1 we get that there exist k1 and k2, independent of ε, such that

(1.6.5) k1‖u‖Aε ≤ ‖u‖Dp,ε ≤ k2‖u‖Aε .

Since the operator Aε satisfies the assumptions of Proposition 1.2.3, for every λ >
√

2 cβp one has

λ ∈ ρ(Aε) and ‖R(λ,Aε)‖ ≤
(
λ−
√

2 cβp
)−1

. In fact, using the inequality Vε ≥ (1 + ε)−1, the

first estimate in (1.6.2) and noting that (1.1.7) implies
√

2 β+
√
Nαθ
p < 1, we get

− inf
x∈RN

(
1
p

divFε(x) + Vε(x)
)
≤ 1

1 + ε

(
√

2
β +
√
Nαθ

p
− 1

)
+
√

2
cβ
p
<
√

2
cβ
p
.

Therefore, if λ >
√

2 cβ
p then for every f ∈ Lp(RN ) and for all ε > 0, there exists a unique

uε ∈ Dp,ε such that

(1.6.6) λuε −Aεuε = f, in RN

and

(1.6.7) ‖uε‖p ≤
(
λ−
√

2
cβ
p

)−1

‖f‖p .

Using (1.6.5), (1.6.6) and (1.6.7) we obtain

(1.6.8) ‖uε‖Dp,ε ≤ k2 (‖Aεuε‖p + ‖uε‖p) ≤ k2

(
1 +

λ+ 1
λ−
√

2 cβp

)
‖f‖p .

In particular, we have that {uε} is bounded in W 2,p(RN ), thus there exist u ∈ W 2,p(RN ) and a
sequence {uεn} converging to u weakly in W 2,p(RN ) and strongly in W 1,p

loc (RN ). Therefore, up
to a subsequence, uεn → u and Duεn → Du a.e. in RN . From (1.6.8) we obtain in particular
that ‖Vεnuεn‖p + ‖〈Fεn , Duεn〉‖p ≤ c‖f‖p, which implies, using Fatou’s Lemma, that

‖V u‖p + ‖〈F,Du〉‖p ≤ c‖f‖p .

Thus, u ∈ Dp.
It remains to prove that u solves λu−Au = f a.e. in RN . From (1.6.6) and the definition of

Aεn we infer that
λuεn −A0uεn = fεn ,

where fεn = f + 〈Fεn , Duεn〉 − Vεnuεn ∈ Lp(RN ). Applying the classical local Lp-estimates (see
[26, Theorem 9.11]) it follows that for every 0 < ρ1 < ρ2

(1.6.9) ‖uεn‖W 2,p(Bρ1 ) ≤ C(‖fεn‖Lp(Bρ2 ) + ‖uεn‖Lp(Bρ2 )),

with C depending on ρ1, ρ2 but independent of n. Since uεn and fεn converge to u and f +
〈F,Du〉−V u, respectively, in Lploc(RN ) as n→∞, by applying (1.6.9) to the difference uεn−uεm
we get that {uεn} is a Cauchy sequence in W 2,p(Bρ1). This implies that uεn converges to u in
W 2,p

loc (RN ) and then, letting n → ∞ in the equation solved by uεn , it follows that u satisfies
λu−Au = f a.e. in RN .

To conclude the proof it remains to show that λ − A is surjective also when λ >
cβ
p . This

follows from the dissipativity of the operator A − cβ
p , stated in Lemma 1.6.1, and the fact that

λ− (A− cβ
p ) is surjective for λ > (

√
2− 1)cβ/p. Thus λ− (A− cβ

p ) is also surjective for λ > 0,
which means that λ−A is surjective for λ > cβ

p , as claimed.
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We are ready to prove Theorem 1.1.2.

Proof of Theorem 1.1.2. Since C∞c (RN ) ⊂ Dp ⊂ Lp(RN ), it follows that Dp is a dense subset
in Lp(RN ). Moreover, (A,Dp) is closed, by Lemma 1.6.1. By Proposition 1.6.2 and (1.6.1), for
every λ > cβ

p , λ−A : Dp → Lp(RN ) is bijective and

‖(λ−A)−1f‖p ≤
(
λ− cβ

p

)−1

‖f‖p .

The thesis follows from the Hille-Yosida Theorem.

1.7 Comments and consequences

In this final section we establish some further properties of the semigroup Tp(·) generated by
(A,Dp) on Lp(RN ). We note that since all the assumptions of Theorem 1.1.2 for p = 2 imply
those of Theorem 1.1.1, the semigroup T2(·) is uniquely determined.
We point out that the semigroups given by Theorem 1.1.2 are not analytic, in general. A coun-
terexample is the Ornstein-Uhlenbeck semigroup, as shown below (see e.g. [35, Example 4.4]).

Example 1.7.1 Let Au = u′′ + xu′ be the Ornstein Uhlenbeck operator in one dimension. We
prove that the semigroup T (t) generated by A with domain D(A) = {u ∈W 2,p(R) | xu′ ∈ Lp(R)}
in Lp(R) is not differentiable and hence, a fortiori, it is not analytic. To this aim it is sufficient
to prove that T (t) is not continuous from Lp(R) in D(A). For every u ∈ Lp(R), t > 0 and x ∈ R,
the Ornstein Uhlenbeck semigroup can be represented by

(T (t)u)(x) =
1√

2π(e2t − 1)

∫
R
e
− y2

2(e2t−1)u(etx− y)dy.

Let un = χ[n,n+1]. Then

(T (t)un)(x) =
1√

2π(e2t − 1)

∫ etx−n

etx−n−1

e
− y2

2(e2t−1) dy

and consequently

d

dx
(T (t)un)(x) =

et√
2π(e2t − 1)

(
e
− (etx−n)2

2(e2t−1) − e−
(etx−n−1)2

2(e2t−1)

)
,

d2

dx2
(T (t)un)(x) =

e2t√
2π(e2t − 1)3

(
− (etx− n)e−

(etx−n)2

2(e2t−1) + (etx− n− 1)e−
(etx−n−1)2

2(e2t−1)

)
.

It follows that∥∥∥∥ d2

dx2
(T (t)un)

∥∥∥∥
p

=
e2t√

2π(e2t − 1)3

(∫
R

∣∣∣y e− y2

2(e2t−1) − (y − 1) e−
(y−1)2

2(e2t−1)

∣∣∣pe−tdy) 1
p

≤ e2t21− 1
p√

2π(e2t − 1)3

(∫
R
|y|p e−

p y2

2(e2t−1) e−tdy

+
∫

R
|y − 1|p e−

p(y−1)2

2(e2t−1) e−tdy

) 1
p

≤ 2 e2t− t
p√

2π(e2t − 1)3

(∫
R
|y|p e−

p y2

2(e2t−1) dy

) 1
p

= cp
et(2− 1

p )

(e2t − 1)1− 1
2p
.
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Hence
∥∥∥ d2

dx2 (T (t)un)
∥∥∥
p

can be estimated indipendently of n. Moreover we have∥∥∥∥x d

dx
(T (t)un)

∥∥∥∥p
p

=
1

(2π(e2t − 1))
p
2

∫
R
|y + n|p

∣∣∣e− y2

2(e2t−1) − e−
(y−1)2

2(e2t−1)

∣∣∣pe−tdy.
Since y2 ≤ (y − 1)2 if y ≤ 1/2, by Fatou’s Lemma we deduce that

lim inf
n→+∞

∥∥∥∥x d

dx
(T (t)un)

∥∥∥∥p
p

≥ e−t

(2π(e2t − 1))
p
2

∫
{0≤y≤ 1

2}
lim inf
n→+∞

(y + n)p e−
p y2

2(e2t−1) dy = +∞.

Thus we have found a sequence (un) in Lp(R) such that ‖un‖p = 1 but lim
n→+∞

‖AT (t)un‖p = +∞,

for every fixed t > 0.

In the following proposition we prove the consistency of Tp(·).

Proposition 1.7.2 Assume that the assumptions of Theorem 1.1.2 hold for some p and q, with
1 < p, q < +∞. If f ∈ Lp(RN ) ∩ Lq(RN ) then Tp(t)f = Tq(t)f , for all t ≥ 0.

Proof. By [21, Corollary III.5.5] we have only to prove that the resolvent operators of (A,Dp),
(A,Dq) are consistent, for λ large, i.e. that for every f ∈ Lp(RN ) ∩ Lq(RN ) there exists u ∈
W 2,p(RN )∩W 2,q(RN ) such that λu−Au = f . This follows from the proofs of Proposition 1.6.2
and [37, Theorem 2.2] since the same property holds for uniformly elliptic operators.

Now we prove the positivity of Tp.

Proposition 1.7.3 Tp(·) is positive, i.e. if f ∈ Lp(RN ), f ≥ 0, then Tp(t)f ≥ 0, for all t ≥ 0.

Proof. The positivity of the semigroup Tp is equivalent to the positivity of the resolvent (λ−A)−1

for all λ sufficiently large. By the proof of Proposition 1.6.2 this last property turns out to be
true once that each Aε is shown to have a positive resolvent. From [37, Theorem 2.2] this holds
because the operators Aε can be approximated by uniformly elliptic operators.

In the following proposition we show the compactness of the resolvent of (A,Dp) assuming
that the potential V tends to infinity as |x| → +∞. This result is similar to [41, Proposition 6.4]
and we give the proof for the sake of completeness.

Proposition 1.7.4 If lim|x|→+∞ V (x) = +∞ then the resolvent of (A,Dp) is compact.

Proof. Let us prove that Dp is compactly embedded into Lp(RN ). Let F be a bounded subset
of Dp. By the assumption, given ε > 0 there exists R > 0 such that V (x) ≥ ε−1, if |x| ≥ R. It
follows that

(1.7.1)
∫
|x|>R

|f(x)|p dx ≤ εp
∫
|x|>R

|V (x)f(x)|p dx ≤ εpC = ε′

for every f ∈ F . Since the embedding of W 2,p(BR) into Lp(BR) is compact, the set F ′ =
{f|BR | f ∈ F}, which is bounded in W 2,p(BR), is totally bounded in Lp(BR). Therefore there
exist r ∈ N and g1, ..., gr ∈ Lp(BR) such that

(1.7.2) F ′ ⊆
r⋃
i=1

{g ∈ Lp(BR) | ‖g − gi‖Lp(BR) < ε′}.

Set

g̃i =
{
gi in BR
0 in RN \BR.

Then g̃i ∈ Lp(RN ) and from (1.7.1) and (1.7.2) it follows that

F ⊆
r⋃
i=1

{g ∈ Lp(RN ) | ‖g − g̃i‖p < 2ε′}.

This implies that F is relatively compact in Lp(RN ) and the proof is complete.
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Finally, as a corollary of the estimates proved in the previous sections we prove an interpola-
tory estimate for the functions in Dp.

Corollary 1.7.5 For every u ∈ Dp the following estimate

‖Du‖p ≤ c‖u‖1/2p ‖λu−Au‖1/2p

holds for every λ sufficiently large.

Proof. By density it is sufficient to consider u ∈ C∞c (RN ). The thesis easily follows from (1.4.7),
(1.6.1) and the inequality

‖Du‖p ≤ c‖u‖1/2p ‖D2u‖1/2p .
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