
Introduction

Linear elliptic and parabolic operators with regular and bounded coefficients have nowadays
a satisfactory theory including existence, uniqueness and regularity for the solutions to the cor-
responding equations in several functional spaces, such as Lp spaces, Hölder spaces and so on.
Recently, the literature shows an increasing interest towards operators with unbounded or sin-
gular coefficients. Motivations come from probability and in particular from stochastic analysis.
Indeed, there is a strong connection between second order differential operators and Markov pro-
cesses. We briefly describe it. Let Ξ = {ξt} be a Markov process in a probability space (Ω,F , P ),
with state space RN . The corresponding transition probabilities p(t, x,B), for t > 0, x ∈ RN , B
Borel set of RN , represent the probability that Ξ reaches the set B at time t starting from x at
t = 0. Given the initial distribution µ of Ξ, in order to reconstruct the process it is sufficient to
determine the family of measures p(t, x, ·) since, by the formula of total probability, one has

P (ξt ∈ B) =
∫

RN
p(t, x,B)µ(dx).

Setting (U(t)µ)(B) :=
∫

RN p(t, x,B)µ(dx), one obtains a semigroup in the space of all positive
finite Borel measures in RN . This fact leads to look for an equation satisfied by p(t, x,B). Such
an equation actually exists and it is known as Kolmogorov backward equation. Unfortunately, it
requires strong regularity to the function p(t, x,B). This is the reason why it is more convenient
to consider the adjoint semigroup (T (t)) in the space of all bounded continuous functions in
RN . Under suitable assumptions on the process Ξ, it turns out that the generator of (T (t))
is a second order differential operator A with unbounded coefficients. By means of A, we can
reconstruct the semigroup (T (t)) and therefore, by duality, the transition probabilities p(t, x,B).
The prototype of differential operators with unbounded coefficients is the Ornstein-Uhlenbeck
operatorAu = Tr (QD2u)+〈Bx,Du〉, whereQ is a real, symmetric and nonnegative matrix andB
is a real, nonzero matrix. The associated Markov semigroup (T (t)) has an explicit representation
formula, due to Kolmogorov (see [16]).

For such a class of operators, it is not obvious to derive existence, uniqueness or regularity
results similar to the classical ones. The well-known Calderon Zygmund estimate shows that
the Laplacian ∆, endowed with domain W 2,p(RN ), generates a strongly continuous analytic
semigroup in Lp(RN ), for every p ∈ ]1,∞[. By adding an unbounded lower order term, the picture
of the situation changes radically, since the new term cannot be treated as a small perturbation
of the Laplacian. To be definite, we mention two quite meaningful cases. Let V be a nonnegative
function in L2

loc(RN ) and consider the Schrödinger operator A = ∆ − V . By making use of
the theory of quadratic forms, one can show that A generates a strongly continuous analytic
semigroup in L2(RN ), which can be extended to Lp(RN ), for every 1 ≤ p < ∞. A natural
question is whether the domain in Lp(RN ), when p > 1, coincides with the intersection of the
domains of ∆ and V , i.e. W 2,p(RN ) ∩ D(V ), where D(V ) = {u ∈ Lp(RN ) | V u ∈ Lp(RN )}.
This further information is not automatic as in the classical case, where V is bounded. In order
to get it one needs to require an additional assumption on V , namely, the oscillation condition
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|DV | ≤ γV 3/2, where γ is a sufficiently small positive constant (see [43], [41]). We remark that
even for p = 2 the domain of A as generator can be strictly larger than W 2,2(RN ) ∩ D(V ) if
in the previous condition the constant γ is too big (see [41]). On the other hand, the potential
V (x, y) = x2y2 does not satisfy |DV | ≤ γV 3/2, for any γ, nevertheless the domain of ∆ − V is
W 2,2(RN )∩D(V ) (see [42]). Surprisingly enough, the situation is much better in L1(RN ) where
the domain of ∆− V is always the intersection of the domains.

Now, let us consider the case when the Laplacian is perturbed by adding a first order term.
For simplicity, we consider the Ornstein Uhlenbeck operator in one dimension, Au = u′′+xu′. It
is readily seen that, if 1 < αp ≤ p+ 1, the function u(x) = (x2 + 1)−

α
2 sinx belongs to W 2,p(RN )

but xu′ is not in Lp(RN ). Therefore W 2,p(RN ), which is the domain of the Laplacian, is strictly
larger than {u ∈ W 2,p(R) | xu′ ∈ Lp(R)}, which is the domain on which A generates a strongly
continuous semigroup. The same one dimensional operator is also a counterexample to analyticity
(see [40]).

We remark that also second order operators in the complete form, namely with both first
and zero order terms, are object of investigation. For instance, the operator ∆− 〈DΦ, D〉 in the
weighted space Lp(RN , e−Φdx) is isometric to a complete second order operator in the unweighted
space Lp(RN ). Hence, several properties for the former can be deduced by studying the latter.

In this thesis, we focus our attention on regularity properties of solutions to partial differential
equations involving second order elliptic operators with regular, (possibly) unbounded coefficients.
Even though stochastic calculus is an useful tool to treat such operators, our approach is purely
analytic. We cite the recent book of S. Cerrai [13] for an exhaustive analysis of what can be
proved by stochastic methods.

We start in Chapter 1 by considering the following elliptic operator in divergence form

(0.0.3) A =
N∑

i,j=1

Di(qijDj) + 〈F,D〉 − V,

in Lp(RN ), with 1 < p < ∞. The coefficients are always supposed to be real valued. If, in
addition, qij are in C1

b (RN ) and Fi, V are measurable and bounded, then it is well known that
(A,W 2,p(RN )) generates a strongly continuous analytic semigroup. As a consequence, one obtains
optimal regularity for the solutions to the resolvent equation λu−Au = f , when λ is sufficiently
large. This means that assuming only u, λu − Au ∈ Lp(RN ), one deduces u ∈ W 2,p(RN ). Our
first aim is to generalize such a result to the case where the lower order coefficients of the operator
are unbounded. More precisely, we look for conditions on qij , Fi, V which allow to prove that
the operator A endowed with its natural domain generates a strongly continuous semigroup in
Lp(RN ). We consider as natural the domain given by the intersection of the domains of each
addend of A, i.e. {u ∈ W 2,p(RN ) | 〈F,Du〉, V u ∈ Lp(RN )}. We have pointed out that such a
domain may be strictly contained in W 2,p(RN ).

There are several approaches to show that elliptic operators with unbounded coefficients gen-
erate strongly continuous semigroups in Lp (see [11], [12], [19], [35], [37], [41] and the list of
references therein), but only some of them give a precise description of the domain. Besides, in
some cases the problem is investigated only for p = 2 (see [17], [18] and in [50]). Our work gets in-
spiration essentially from [37] and [41]. In [37] the case V = 0 and F globally Lipschitz continuous
is considered. Under the further assumption 〈F,Dqij〉 ∈ L∞(RN ), i, j = 1, ..., N , it is proved that
the corresponding operator A, endowed with the domain

{
u ∈W 2,p(RN ): 〈F,Du〉 ∈ Lp(RN )

}
,

generates a strongly continuous semigroup in Lp(RN ), for every 1 < p < ∞. Here, the charac-
terization of the domain follows from regularity results for the solution to the non homogenous
Cauchy problem associated with A.

In [41], a second order operator in the complete form is considered and the description of the
domain of the generator in Lp(RN ) is given assuming that V is strictly positive and that the
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following conditions hold: |DV | ≤ γV 3/2, |F | ≤ κV 1/2 and divF + βV ≥ 0, where γ, κ, β are
sufficiently small constants. We observe that the first two assumptions are the same of Cannarsa
and Vespri in [12], whereas the last one replaces an additional bound on the constant κ assumed
in [12]. In [41], with a more direct approach, it is proved that A generates a strongly continuous
analytic semigroup in Lp(RN ), (1 < p < ∞), with domain

{
u ∈W 2,p(RN ) : V u ∈ Lp(RN )

}
.

An interpolatory estimate allows to control the Lp norm of 〈F,Du〉 by the Lp norms of V u and
D2u. The assumption |DV | ≤ γV 3/2 is the essential ingredient to determine the domain and,
as observed at the beginning in the case of Schrödinger operators, it is optimal. The condition
|F | ≤ κV 1/2 is the best possible to yield analyticity. Finally, we observe that the cases p = 1 and
p =∞ are also considered.

We formulate new conditions on F , V and their first order derivatives to show that (A,Dp)
generates a strongly continuous semigroup in Lp(RN ) (1 < p <∞), where Dp is defined as

Dp := {u ∈W 2,p(RN ) : 〈F,Du〉 ∈ Lp(RN ), V u ∈ Lp(RN )} .

We observe that for suitable choices of the parameters involved, our framework covers [37] or
[41]. Thus, our results can be seen as a continuous interpolation between them. We also cover
new cases. For instance, we allow the conditions |F | ≤ θV , |DV | ≤ αV , |DF | ≤ βV .

The first step to achieve our aim consists of proving a priori estimates of the form

(0.0.4) ‖u‖W 2,p(RN ) + ‖〈F,Du〉‖Lp(RN ) + ‖V u‖Lp(RN ) ≤ C(‖u‖Lp(RN ) + ‖Au‖Lp(RN )),

for every u ∈ Dp and for some constant C > 0 independent of u. For every test function
u we prove the corresponding estimates for ‖V u‖Lp(RN ) and ‖Du‖Lp(RN ) using the variational
method, which relies on suitable integrations by parts and other elementary tools. The same
technique yields the estimate of the second order derivatives when p = 2, too, and therefore
(0.0.4) is completely proved, since the last term ‖〈F,Du〉‖L2(RN ) can be estimated by difference.
Of course, the method fails for p 6= 2. The Calderon Zygmund estimate cannot be proved by
means of integrations by parts. Thus a different method has to be used, but it requires stronger
assumptions. This is the reason why we treat the cases p = 2 and p 6= 2 separately. When
p 6= 2, the idea is to get first local estimates. To this aim, we localize the equation Au = f by
multiplying it by cutoff functions supported in certain balls B(x0, r(x0)), and then we make a
change of variables, which is determined by the potential. This technique produces a family of
new operators {Ax0} which satisfy the assumptions of [37], up to a bounded perturbation. Then,
to each operator Ax0 we can apply the a priori estimate for the second order derivatives proved
in [37], so that in the original setting we find out the following local estimates

(0.0.5)
∫
B(x0,r(x0))

|D2u|p ≤ C
∫
B(x0,2r(x0))

|u|p + |Au|p + |V u|p + |V 1/2Du|p

A crucial point is to make the dependence of the constant C precise. In particular, in order to
apply a covering argument and to obtain a global estimate starting with (0.0.5), we need C to
be independent of x0. In this way we deduce that∫

RN
|D2u|p ≤ C

∫
RN
|u|p + |Au|p + |V u|p + |V 1/2Du|p,

and then, using known results

‖D2u‖Lp(RN ) ≤ C(‖u‖Lp(RN ) + ‖Au‖Lp(RN )),

as required. The last estimate among (0.0.4), namely the one for 〈F,Du〉, follows by difference.
Hence (0.0.4) are verified for every test function u. By density, they can be extended to Dp and
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this yields, without any further effort, the closedness of (A,Dp) in Lp(RN ). It is also an easy
task to prove that (A,Dp) is quasi dissipative.

The second step of our procedure consists of proving the surjectivity of λ − A from Dp onto
Lp(RN ), for sufficiently large λ. This is done, once again, differently when p = 2 or p 6= 2.
In the first case, we find the solution of the equation λu − Au = f in D2 as the limit of a
sequence of solutions of the same equation in balls with increasing radii and Dirichlet boundary
conditions. This argument does not work for p 6= 2. In this case, we check the surjectivity of
λ−A approximating A by a family of operators which belong to the class studied in [37]. At this
point, we can apply the Hille Yosida generation theorem and we show that (A,Dp) generates a
strongly continuous semigroup, which is positive, but not analytic in general.

The generation result just proved holds whenever 1 < p < ∞. If p = ∞, in spaces of
continuous functions, the situation is more delicate and the explicit description of the domain
is more complicated. However, useful information can be obtained if gradient estimates hold.
To be definite, in the second chapter, we consider the second order differential operator in non
divergence form

(0.0.6) A =
N∑
i,j1

qijDij +
N∑
i=1

FiDi − V,

in a smooth open unbounded subset Ω of RN . Ω may be the whole space RN , but in this case
several results are already known. We deal with the Cauchy-Neumann problem

(0.0.7)


ut(t, x)−Au(t, x) = 0 t > 0, x ∈ Ω,

∂u

∂η
(t, x) = 0 t > 0, x ∈ ∂Ω,

u(0, x) = f(x) x ∈ Ω,

where f is a continuous and bounded function in Ω and η is the outward unit normal vector to
∂Ω. Our aim is to determine conditions on the coefficients of A and on the domain Ω such that
(0.0.7) admits a unique bounded classical solution u, whose spatial gradient verifies the following
estimate

(0.0.8) |Du(t, x)| ≤ CT√
t
‖f‖∞

0 < t ≤ T, x ∈ Ω. Estimate (0.0.8) has been deeply investigated in the literature, expecially
by means of probabilistic tools. Our approach is purely analytic and allows to treat unbounded
domains which do not coincide with the whole space. We proceed as follows. We consider the
solutions un of Cauchy-Neumann problems with initial datum f , in a nested sequence of bounded
regular domains {Ωn}, whose union is Ω. Since Neumann boundary conditions do not imply
monotonicity (unlike Dirichlet boundary conditions), the main tool to prove the convergence of
(un) is given by the classical Schauder estimates together with a compactness argument. The
limit function u is not yet the classical solution to (0.0.7), since the continuity at (0, x), when
x ∈ ∂Ω, is not ensured. To solve this problem we prove sharp estimates for the gradient of un.
More precisely, we consider the function zn = u2

n + at|Dun|2 and we prove that the differential
inequality (Dt−A)zn ≤ 0 holds for a suitable choice of the parameter a independent of n. To do
this, we assume a dissipativity condition on the drift F , a bound from below for V and that V
grows at most exponentially. Moreover, assuming that Ω is convex and choosing all the domains
Ωn to be convex, we deduce that zn has nonpositive normal derivative on ∂Ωn. This is the crucial
point of our procedure. The classical maximum principle implies that |Dun| ≤ CT t

−1/2‖f‖∞,
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where CT is a constant independent of n. This estimate leads to the continuity of u in {0} × ∂Ω
as well as to the gradient estimate (0.0.8), as soon as n tends to∞. The method used is known as
Bernstein’s method. It was used by A.Lunardi in [34] to prove (0.0.8) in the whole RN , whereas the
same result is proved in [13] by means of probabilistic tools. A Liapunov type condition ensures
that a maximum principle holds, hence the function u, produced by the previous approximation
argument, is the unique bounded classical solution to (0.0.7).

Setting (Ptf)(x) = u(t, x), we obtain a semigroup of linear bounded operators in Cb(Ω). Such
a semigroup is not strongly continuous, in general, hence we cannot consider the generator in
the classical sense, but only the so called weak generator. We also note that (Pt) is neither
analytic in Cb(Ω), otherwise estimate (0.0.8) could be deduced from the analyticity estimate
‖AT (t)f‖∞ ≤ C t−1‖f‖∞ by an interpolation argument. We show that, in our situation, the weak
generator coincides with the realization of A in Cb(Ω) with homogeneous Neumann boundary
conditions, i.e. with the operator A endowed with the domain

D(A)=
{
u ∈ Cb(Ω) ∩

⋂
1≤p<∞

W 2,p(Ω ∩BR) for all R > 0 : Au ∈ Cb(Ω),
∂u

∂η

∣∣∣
∂Ω

= 0
}
.

The weak generator shares several properties with the generators of strongly continuous semi-
groups. In particular, since we assume V ≥ 0, we have that (0,+∞) ⊂ ρ(A). Therefore, for
every f ∈ Cb(Ω) and λ > 0 there exists a unique solution in D(A) of the elliptic problem

λu(x)−Au(x) = f(x) x ∈ Ω,

∂u

∂η
(x) = 0 x ∈ ∂Ω.

A consequence of (0.0.8) is that the domain of A is contained in C1
b (Ω). This can be interpreted

as a partial regularity result for the solutions of the elliptic problem above.
Assuming that V ≡ 0, we derive further gradient estimates of pointwise type. More precisely,

if p > 1 and f ∈ C1
b (Ω) with ∂f/∂η = 0 on ∂Ω, then

(0.0.9) |DPtf(x)|p ≤ eσptPt(|Df |p)(x),

where σp is a real constant depending on the coefficients of A, N and p. If qij = δij , then the
previous estimate is true also when p = 1. This case is almost optimal, since in [58] it is proved
that (0.0.9) with p = 1 holds in RN if and only if Dkqij + Djqki + Diqkj = 0, for every i, j, k.
Following the ideas of [7] for p = 2, we deduce that

(0.0.10) |DPtf(x)|p ≤
(

σ2ν
−1
0

2(1− e−σ2t)

)p
2

Pt(|f |p)(x),

for all p ≥ 2, where ν0 is the ellipticity constant of A. An analogous estimate holds when
1 < p < 2. Also in this case the thesis fails if p = 1, even for the heat semigroup. The
previous estimate with p = 2 improves the first global gradient estimate (0.0.8), which can be
now reformulated in the form

‖DPtf‖∞ ≤
(

ν−1
0 σ2

2(1− e−σ2 t)

) 1
2

‖f‖∞.

Therefore, if σ2 ≤ 0, a Liouville type theorem for the operator A holds and it implies that if
f ∈ D(A) and Af = 0, then f is constant. Other interesting consequences can be deduced if an
invariant measure exists. We say that a probability Borel measure µ is invariant for (Pt) if for
every bounded Borel function f and every t ≥ 0∫

Ω

Ptfdµ =
∫

Ω

fdµ .
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In this case, (Pt) can be extended to a strongly continuous semigroup in Lp(Ω, µ) for every
1 ≤ p < ∞ and, integrating estimate (0.0.10) with respect to µ, one gets an analogous estimate
in the Lp norm. This implies that the domain of the generator of (Pt) in Lp(Ω, µ) is continuously
embedded in W 1,p(Ω, µ).

Moreover, one can derive the hypercontractivity of Pt in the space L2(Ω, µ) and logarithmic
Sobolev inequalities (this is the well known Bakry-Émery criterion). Finally, (0.0.9) with p = 2
and σ2 < 0 implies the Poincaré inequality in W 1,2(Ω, µ) and the spectral gap for the generator
A2 of (Pt) in L2(Ω, µ), which means that σ(A2) \ {0} ⊆ {λ ∈ C | Reλ ≤ −C}, for some C > 0.

In the case Ω = RN , estimates (0.0.9) and (0.0.10) with p = 2 and qij = δij were proved
respectively in [6] and [7] in the setting of abstract Markov generators, for functions belonging
to a suitable algebra of smooth functions which is required to be invariant under the generator.
Estimate (0.0.9) was proved also in [56] by probabilistic methods. A probabilistic approach is
used in [49] too, for establishing estimate (0.0.9) in the case of a compact Riemannian manifold
with convex boundary or of a complete manifold without boundary.

Dissipativity conditions are of crucial importance to get gradient estimates. Indeed, we give a
counterexample to estimate (0.0.8) for an operator A = ∆ +

∑
FiDi where F is not dissipative.

In the third chapter we deal with Cauchy-Dirichlet problems

(0.0.11)


ut(t, x)−Au(t, x) = 0 t > 0, x ∈ Ω,

u(t, x) = 0 t > 0, x ∈ ∂Ω,

u(0, x) = f(x) x ∈ Ω,

where A is defined by (0.0.6) and f is continuous and bounded in Ω. Our aim is again to derive
gradient estimates for bounded classical solutions to (0.0.11). Our approach is slightly different
from the previous case. Indeed, if (un) is a sequence of solutions of Cauchy-Dirichlet problems
in bounded domains, whose union is Ω, then it is not difficult to show that (un) converges to a
solution of (0.0.11). But, if we set zn = u2

n+at|Dun|2 and we try to apply the maximum principle
to zn, it is not clear what happens to zn at ∂Ω, even when Ω is a halfspace. To overcome this
difficulty, we proceed in the following way. The existence of a bounded classical solution u to
(0.0.11) can be proved completely by approximation. We note that in this case we do not expect
that the solution is continuous at (0, x), for x ∈ ∂Ω. The uniqueness follows once again from a
generalized version of the classical maximum principle. Afterwards, we observe that since u = 0
on ∂Ω, only the normal derivative of u can be different from zero on ∂Ω. This suggests us the
comparison with certain one dimensional operators. In fact, following this idea and assuming a
suitable control on F near to the boundary of Ω, we can prove the following estimate for Du on
∂Ω

|Du(t, ξ)| ≤ CT√
t
‖f‖∞, 0 < t ≤ T, ξ ∈ ∂Ω.

Taking such an estimate into account, we can apply the maximum principle to the function
z = u2 + at|Du|2 and we obtain

(0.0.12) |Du(t, x)| ≤ CT√
t
‖f‖∞ 0 < t ≤ T, x ∈ Ω.

We note that the technique allows to have a precise control of the constant CT . Unfortunately,
the last step works if one already knows that u is smooth enough. This is not our case, even
though the initial datum f is smooth. Therefore, we use a trick, which consists in introducing
an auxiliary potential W . We take W big enough to control the growth of the drift term F

and then we consider the perturbed operators Aε = A − εW . We show that the realization of
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Aε with homogeneous Dirichlet boundary conditions generates a strongly continuous analytic
semigroup (Tp,ε(t)) in Lp(Ω), for p ≥ 2 and we characterize the domain. Choosing a large p and
using Sobolev embeddings we prove that uε(t, x) = Tp,ε(t)f(x) is the bounded classical solution
of (0.0.11), with A replaced by Aε and f smooth. Moreover, we are allowed to apply the previous
gradient estimate to each uε, obtaining

|Duε(t, x)| ≤ CT√
t
‖f‖∞, 0 < t ≤ T, x ∈ Ω,

with CT independent of ε. A suitable extracted sequence of uε converges to the bounded classical
solution u of (0.0.11) and estimate (0.0.12) follows by taking the limit. Finally, by a standard
approximation argument we prove estimate (0.0.12) for every continuous and bounded function
f in Ω. We point out that we do not need convexity assumptions on Ω to carry out this program.
At the moment, the same procedure seems to be useful to remove the convexity of Ω in the case
where Neumann boundary condition is considered. But this is a work in progress. As far as
local gradient estimates for (3.0.1) are concerned, we mention [54], which establishes them in the
Riemannian setting, and [15], [53] for the case when Ω is an open subset of a Hilbert space and A
is an Ornstein-Uhlenbeck operator. Moreover in [57], see also [31], connections between estimates
(0.0.12) and some isoperimetric inequalities are investigated.

In Chapter 4 we study the second order ordinary differential operator Au = au′′ + bu′ and
we characterize the domains on which A generates semigroups in Cb(R) and in C(R), the space
of continuous functions having finite limits at ±∞. Unfortunately, the technique used cannot be
extended to higher dimensions. We just cite [41], where a complete description of the domain is
given in C0(RN ) when the operator contains a potential term which balances the growth of the
drift coefficient. We refer to [34] for the case of Hölder spaces.

Minimal assumptions on the coefficients of A guarantee that A endowed with the domain

Dmax(A) := {u ∈ Cb(R) ∩ C2(R) | Au ∈ Cb(R)}

generates a semigroup in Cb(R), which is not strongly continuous in general and A with domain

Dm(A) := {u ∈ C(R) ∩ C2(R) | Au ∈ C(R)}

generates a strongly continuous semigroup in C(R). Hence, we have only to describe explicitly
such domains. Our aim is to show that under suitable assumptions on a and b

Dmax(A) = {u ∈ C2
b (R) | au′′, bu′ ∈ Cb(R)}

and
Dm(A) = {u ∈ C2(R) | bu′ ∈ C(R)}.

As a consequence, we derive optimal regularity for the solutions to the elliptic equations λu−Au =
f both in Cb(R) and in C(R). Let us consider the first case. Set D = {u ∈ C2

b (R) | au′′, bu′ ∈
Cb(R)}. Since D ⊂ Dmax(A) and λ − A is bijective from Dmax(A) onto Cb(R), to prove the
statement it is sufficient to show that λ − A is surjective from D onto Cb(R). Once again, a
crucial point is represented by a priori estimates. More precisely, assuming that ab′ ≤ c1 + c2b

2,
we prove that for every u ∈ C2([−α, α]) with u′(±α) = 0, we have

(0.0.13) ‖bu′‖C([−α,α]) ≤ C(‖Au‖C([−α,α]) + ‖u‖C([−α,α])),

with C independent of α. Then, we construct a solution u ∈ D of the equation λu−Au = f , for
f ∈ Cb(R), by approximation, considering the solutions of the equation λu − Au = f in [−n, n]
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with Neumann boundary conditions and using (0.0.13). In a similar way, but requiring slightly
stronger assumptions on a, b, we prove the statement in C(R).

The last chapter is devoted to the collection of some known results concerning invariant mea-
sures for Feller semigroups in Cb(RN ). We present this argument in a quite general context, which
is not the most general possible, but is close to the main concrete situation where this concept
arises, namely the theory of second order differential operators with unbounded coefficients. In
the last section we study the operator

B = div(qD)− 〈qDΦ, D〉+ 〈G,D〉

in the space Lp(RN , µ), 1 < p < ∞, where dµ = e−Φdx. Via the transformation v = e−
Φ
p u, the

operator B on Lp(RN , µ) is similar to an operator A of the form (0.0.3) in the unweighted space
Lp(RN ). Suitable assumptions on the coefficients q,Φ, G allow to apply the generation results
of Chapter 1 to the transformed operator so that, via the inverse transformation, we can deduce
that B, endowed with the domain

(0.0.14) Dµ = {u ∈W 2,p(RN , µ) | 〈G,Du〉 ∈ Lp(RN , µ)}

generates a strongly continuous semigroup (T (t)) on Lp(RN , µ). We note that, in particular, the
measure µ can be the invariant measure of (T (t)).

Lecce, 16 april 2004
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