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Introduzione

Operatori differenziali lineari ellittici e parabolici con coefficienti limitati e regolari sono stati
oggetto di uno studio vasto e accurato negli ultimi decenni, il quale ha prodotto una teoria
completa ed esauriente che comprende risultati di esistenza, unicita e regolarita per le soluzioni
delle equazioni associate in vari spazi funzionali, come spazi LP, spazi di Holder e altri. Al
momento, la letteratura dimostra un crescente interesse verso operatori con coefficienti illimitati o
singolari, che generalizzano in modo naturale quelli classici. Tale interesse ¢ sicuramente motivato
dalle applicazioni alla probabilita e specialmente alle equazioni differenziali stocastiche e alla
matematica finanziaria. Tra D’altro, il prototipo di questi operatori, I'operatore di Ornstein-
Uhlenbeck, proviene proprio dalla probabilita.

Bisogna osservare subito che i risultati forniti dalla teoria classica non si estendono in modo
ovvio al caso di coefficienti illimitati. Per esempio, ¢ ben noto che il Laplaciano con dominio
W2P(RY) genera un semigruppo analitico fortemente continuo in LP(RY) (1 < p < o0). Lo
strumento principale per stabilire questo risultato ¢ rappresentato dalla stima fondamentale di
Calderon-Zygmund. Aggiungiamo al Laplaciano un termine di ordine zero illimitato, consideri-
amo pertanto un operatore di Schréodinger A=A —V. Se V ¢ in LfOC(RN) ed ¢ positivo, allora,
mediante il metodo delle forme quadratiche non ¢ difficile provare che A, con il dominio D(A)
dettato dalla forma associata, genera un semigruppo analitico in L?(R™M). E naturale a questo
punto chiedersi se D(A) coincide con l'intersezione dei domini dei singoli addendi di A oppure
no. Se il potenziale V verifica la condizione di oscillazione |DV| < 4V3/2, con una costante -y
abbastanza piccola, allora la risposta ¢ affermativa e lo stesso risultato vale peraltro anche con
p # 2. Ma c’® un esempio in [41] di un operatore di Schrodinger in L?(R?) il cui potenziale
verifica la condizione precedente con una costante v non sufficientemente piccola e che genera
un semigruppo con dominio che contiene propriamente l'intersezione dei domini. Chiaramente
la condizione |DV| < 4V3/2 consente una crescita polinomiale, che non costituisce una piccola
perturbazione della parte principale di A, ossia del Laplaciano.

L’esempio prodotto rivela il fatto che la teoria degli operatori a coefficienti illimitati presenta
degli aspetti abbastanza diversi, e non ancora completamente chiari, da quelli della teoria classica.

L’obiettivo di questa tesi € lo studio di proprieta di regolarita di operatori ellittici del secondo
ordine a coefficienti regolari, ma illimitati in RV o in suoi sottoinsiemi aperti illimitati.

Nel primo capitolo consideriamo il seguente operatore ellittico in forma divergenza

N
A= " Di(g;;D;)+ (F,D) =V,

ij=1

in LP(RM), 1 < p < 0o e studiamo condizioni sui coefficienti che assicurano che I'operatore genera
un semigruppo fortemente continuo in LP(RY) con caratterizzazione del dominio. In particolare,
dimostriamo che, sotto opportune ipotesi sui coefficienti e sulle loro derivate, I’'operatore (A4, D,)
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genera un semigruppo, dove (D, || - ||p,) ¢ lo spazio di Banach cosi definito

D, = {u € W2P(R") : (F,Du) € L*(RY),Vu € LP(RM)},
lullp, = llullw2r@yy + [[{F, Du)||Le@ny + [Vl o @y -

Cio implica risultati di regolarita ottimale per le soluzioni dell’equazione ellittica Au — Au = f,
poiche supponendo soltanto u, \u — Au € LP(RY), si ricava che u € W2P(RN), (F, Du), Vu €
LP(RYN). Un passo fondamentale nella dimostrazione di questo risultato ¢ costituito da stime a
priori della forma

lullp, < C(lullpe@yy + | Aull e @),

con u € D, e C costante indipendente da u. Quella per le derivate seconde ¢ esattamente 1’analogo
della stima di Calderon-Zygmund per il Laplaciano e come questa e delicata da provare. Le stime
precedenti implicano facilmente la chiusura dell’operatore (A4, D,). Segue anche in modo semplice
la quasi-dissipativita di A, cioe la dissipativita di A — w, per un’opportuna costante w € R. Per
applicare il teorema di generazione di Hille-Yosida, rimane solo da verificare la suriettivita di
A — A da D, su LP(RY), per X abbastanza grande. Cid & provato mediante un procedimento
di approssimazione che sfrutta casi gia noti in letteratura. Tale procedimento distingue il caso
p = 2 da quello p # 2. Questo fatto tuttavia risulta abbastanza frequente. I risultati ottenuti
sono ispirati dai lavori [41] e [37], ma offrono anche nuovi casi non presenti in letteratura.
Nel secondo capitolo 'attenzione & rivolta all’operatore in forma non divergenza

N
.AZ Z L]ijDZ‘j + <F,D> — V,

ij=1

nello spazio delle funzioni continue e limitate in Q, Cy(Q), dove Q & un aperto illimitato di R,
L’ambientazione in un aperto generico e non in tutto lo spazio costituisce un elemento di novita,
giacche il caso Q = RY & quello pinl largamente studiato in letteratura. Risulta altresi significativo
I’approccio puramente analitico, visto che spesso risultati affini sono ottenuti mediante metodi
probabilistici. Lo scopo del capitolo ¢ quello di fornire delle ipotesi sui coefficienti di A affinche
il problema di Neumann

u(t,z) — Au(t,z) =0 t>0, z€Q

(0.0.1) g:;(t,x) =0 t>0, xedQ
u(0,z) = f(x) req

abbia un’unica soluzione classica limitata il cui gradiente spaziale soddisfa delle stime opportune.
Il metodo usato per provare l'esistenza di tale soluzione consiste nel considerare una successione
di soluzioni di problemi di Neumann in aperti limitati invadenti Q, e nel far vedere che tale
successione converge. La scelta di condizioni al bordo di Neumann non permette di avere una
successione monotona (contrariamente al caso di condizioni di Dirichlet). Dunque, lo strumento
principale usato per provare la convergenza ¢ rappresentato dalle stime classiche di Schauder. La
funzione limite cosi ottenuta ¢ I'unica soluzione classica limitata del problema (0.0.1) (I'unicita &
assicurata dall’ipotesi che esista una funzione di Liapunov opportuna). Associando ad ogni dato
iniziale la soluzione costruita, & possibile definire un semigruppo di operatori lineari e limitati
(Py)i>0 in Cp(Q), non fortemente continuo in generale (questo fatto ¢ tipico per semigruppi
associati ad operatori con coefficienti illimitati). Pertanto non si puo definire il generatore in
senso classico. Tuttavia, si puo introdurre il cosiddetto generatore “debole”, che nella situazione
considerata, coincide con l'operatore di partenza.



La parte piu importante del capitolo consiste nel provare delle stime sul gradiente del semi-
gruppo. La prima stima e

Cr
Vi
che viene provata con il metodo di Bernstein. Sostanzialmente, si tratta di applicare il principio

del massimo alle funzioni z,, = u% + at\Dun|27 dove u,, & la successione approssimante P, f e a &
un opportuno parametro positivo. Per far questo, il punto cruciale consiste nell’assumere che €2

(0.0.2) |DP,f(x)] < flle 0<t<T, z€Q,

sia convesso per dimostrare che ogni z, ha derivata normale non positiva al bordo. Si ottengono
cosi delle stime per |Du,|, che al tendere di n all’infinito forniscono la stima (0.0.2). Nel caso di
un dato iniziale piu regolare, lo stesso metodo produce anche la seguente stima

IDPf(2)] < Cr([flloc + | Dfllc) 0<t<T, z€Q

la quale implica che il dominio del generatore ¢ contenuto in Cg (€2). A differenza del caso L?, in
questo contesto non abbiamo la caratterizzazione del dominio, di conseguenza, anche i risultati
di regolarita che se ne possono dedurre sono parziali. Oltre a stime uniformi nello stesso capitolo
dimostriamo anche stime puntuali per il gradiente di P;f. Queste ultime sono utili nello studio
della realizzazione del semigruppo negli spazi LP(2, u), dove pu € la misura invariante di (P;)
(quando esiste).

Nel terzo capitolo proviamo stime uniformi per il gradiente delle soluzioni di problemi pa-
rabolici del tipo (0.0.1) in domini illimitati 2, con condizioni al bordo di Dirichlet. Se da un
lato ¢ immediato provare ’esistenza della soluzione classica limitata, per approssimazione, come
nel caso precedente, dall’altro e piu delicato provare la stima (0.0.2). La difficolta consiste nel
fatto che non & dato conoscere il valore al bordo delle funzioni alle quali si applica il metodo di
Bernstein. Per superare tale ostacolo, mediante il confronto con un operatore unidimensionale,
proviamo dapprima una stima al bordo per il gradiente della soluzione del problema in tutto €.
Quindji, con il metodo di Bernstein proviamo la stima anche all’interno di 2. C’¢ da notare che
questa procedura richiede delle ipotesi ulteriori di regolarita per la soluzione. Per trattare il caso
generale ricorriamo ancora una volta ad una tecnica di approssimazione.

Nel capitolo successivo, studiamo l'operatore unidimensionale Au = au” +bu’ in Cy(R), spazio
delle funzioni continue e limitate in R e in C(R), spazio delle funzioni continue aventi limiti finiti
a Foo. Il risultato principale dimostra, in ciascuno dei due casi, che I'operatore genera un
semigruppo con dominio costituito dall’intersezione dei domini di ogni addendo dell’operatore.
Purtroppo il metodo impiegato resta genuinamente unidimensionale e conferma la difficolta di
avere informazioni sul dominio quando p = oo e si € in piu dimensioni.

Infine, 'ultimo capitolo raccoglie prevalentemente alcuni fatti noti su misure invarianti asso-
ciate a semigruppi di Feller in C3(RY). La trattazione poteva essere fatta in maggiore generalita,
ma é stato scelto un livello pit vicino al caso concreto maggiormente ricorrente, che ¢ quello di
semigruppi di Feller generati da operatori differenziali ellittici del secondo ordine.

Lecce, 16 aprile 2004
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Introduction

Linear elliptic and parabolic operators with regular and bounded coefficients have nowadays
a satisfactory theory including existence, uniqueness and regularity for the solutions to the cor-
responding equations in several functional spaces, such as LP spaces, Holder spaces and so on.
Recently, the literature shows an increasing interest towards operators with unbounded or sin-
gular coefficients. Motivations come from probability and in particular from stochastic analysis.
Indeed, there is a strong connection between second order differential operators and Markov pro-
cesses. We briefly describe it. Let E = {&;} be a Markov process in a probability space (92, F, P),
with state space RY. The corresponding transition probabilities p(t, z, B), for t > 0,2 € RN, B
Borel set of RY, represent the probability that = reaches the set B at time ¢ starting from z at
t = 0. Given the initial distribution p of =, in order to reconstruct the process it is sufficient to
determine the family of measures p(t,x, ) since, by the formula of total probability, one has

P e = [

p(t, x, B)u(dz).
RN

Setting (U(t)u)(B) := [pn p(t,z, B)u(dx), one obtains a semigroup in the space of all positive
finite Borel measures in RY. This fact leads to look for an equation satisfied by p(t,x, B). Such
an equation actually exists and it is known as Kolmogorov backward equation. Unfortunately, it
requires strong regularity to the function p(¢,z, B). This is the reason why it is more convenient
to consider the adjoint semigroup (7'(¢)) in the space of all bounded continuous functions in
RY. Under suitable assumptions on the process =, it turns out that the generator of (7'(t))
is a second order differential operator A with unbounded coefficients. By means of A, we can
reconstruct the semigroup (7'(t)) and therefore, by duality, the transition probabilities p(¢, x, B).
The prototype of differential operators with unbounded coefficients is the Ornstein-Uhlenbeck
operator Au = Tr (Q D*u)+(Bz, Du), where @ is a real, symmetric and nonnegative matrix and B
is a real, nonzero matrix. The associated Markov semigroup (7'(¢)) has an explicit representation
formula, due to Kolmogorov (see [16]).

For such a class of operators, it is not obvious to derive existence, uniqueness or regularity
results similar to the classical ones. The well-known Calderon Zygmund estimate shows that
the Laplacian A, endowed with domain W2P?(RYM), generates a strongly continuous analytic
semigroup in LP(RY), for every p € |1, 00[. By adding an unbounded lower order term, the picture
of the situation changes radically, since the new term cannot be treated as a small perturbation
of the Laplacian. To be definite, we mention two quite meaningful cases. Let V' be a nonnegative
2 (RY) and consider the Schrodinger operator A = A — V. By making use of
the theory of quadratic forms, one can show that A generates a strongly continuous analytic
semigroup in L?(RY), which can be extended to LP(RY), for every 1 < p < oco. A natural
question is whether the domain in LP(RY), when p > 1, coincides with the intersection of the
domains of A and V, i.e. W2P(RY) N D(V), where D(V) = {u € LP(RY) | Vu € LP(RM)}.
This further information is not automatic as in the classical case, where V' is bounded. In order

function in L

to get it one needs to require an additional assumption on V', namely, the oscillation condition
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|DV| < 4V3/2 where v is a sufficiently small positive constant (see [43], [41]). We remark that
even for p = 2 the domain of A as generator can be strictly larger than W22(R™) n D(V) if
in the previous condition the constant v is too big (see [41]). On the other hand, the potential
V(z,y) = 2%y? does not satisfy |DV| < yV3/2, for any 7, nevertheless the domain of A — V is
W2Z(RN)N D(V) (see [42]). Surprisingly enough, the situation is much better in L'(RY) where
the domain of A — V' is always the intersection of the domains.

Now, let us consider the case when the Laplacian is perturbed by adding a first order term.
For simplicity, we consider the Ornstein Uhlenbeck operator in one dimension, Au = v +zu’. It
is readily seen that, if 1 < ap < p+1, the function u(x) = (22 + 1)~ 2 sinx belongs to W2P(RY)
but zu’ is not in LP(RY). Therefore W2P(RY), which is the domain of the Laplacian, is strictly
larger than {u € W2P(R) | zu’ € LP(R)}, which is the domain on which A generates a strongly
continuous semigroup. The same one dimensional operator is also a counterexample to analyticity
(see [40]).

We remark that also second order operators in the complete form, namely with both first
and zero order terms, are object of investigation. For instance, the operator A — (D®, D) in the
weighted space LP(RY, e~®dx) is isometric to a complete second order operator in the unweighted
space LP(RY). Hence, several properties for the former can be deduced by studying the latter.

In this thesis, we focus our attention on regularity properties of solutions to partial differential
equations involving second order elliptic operators with regular, (possibly) unbounded coefficients.
Even though stochastic calculus is an useful tool to treat such operators, our approach is purely
analytic. We cite the recent book of S. Cerrai [13] for an exhaustive analysis of what can be
proved by stochastic methods.

We start in Chapter 1 by considering the following elliptic operator in divergence form

N
(0.0.3) A= " Di(g;;D;)+ (F,D) =V,

ij=1

in LP(RY), with 1 < p < oco. The coefficients are always supposed to be real valued. If, in
addition, ¢;; are in C} (RN) and F;,V are measurable and bounded, then it is well known that
(A, W?2P(RN)) generates a strongly continuous analytic semigroup. As a consequence, one obtains
optimal regularity for the solutions to the resolvent equation Au — Au = f, when A is sufficiently
large. This means that assuming only u, \u — Au € LP(RY), one deduces u € W2P(RY). Our
first aim is to generalize such a result to the case where the lower order coefficients of the operator
are unbounded. More precisely, we look for conditions on ¢;;, F;, V' which allow to prove that
the operator A endowed with its natural domain generates a strongly continuous semigroup in
LP(RM). We consider as natural the domain given by the intersection of the domains of each
addend of A, i.e. {u € W2P(RN) | (F,Du), Vu € LP(RY)}. We have pointed out that such a
domain may be strictly contained in W2P(RY).

There are several approaches to show that elliptic operators with unbounded coefficients gen-
erate strongly continuous semigroups in LP (see [11], [12], [19], [35], [37], [41] and the list of
references therein), but only some of them give a precise description of the domain. Besides, in
some cases the problem is investigated only for p = 2 (see [17], [18] and in [50]). Our work gets in-
spiration essentially from [37] and [41]. In [37] the case V' = 0 and F' globally Lipschitz continuous
is considered. Under the further assumption (F, Dg;;) € L>(RY), i,j = 1,..., N, it is proved that
the corresponding operator A, endowed with the domain {u € W2?(RY): (F,Du) € LP(RN)},
generates a strongly continuous semigroup in LP(RY), for every 1 < p < oo. Here, the charac-
terization of the domain follows from regularity results for the solution to the non homogenous
Cauchy problem associated with A.

In [41], a second order operator in the complete form is considered and the description of the
domain of the generator in LP(RY) is given assuming that V is strictly positive and that the
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following conditions hold: |DV| < 4V3/2, |F| < kV/2 and divF + BV > 0, where v, k,  are
sufficiently small constants. We observe that the first two assumptions are the same of Cannarsa
and Vespri in [12], whereas the last one replaces an additional bound on the constant x assumed
in [12]. In [41], with a more direct approach, it is proved that A generates a strongly continuous
analytic semigroup in LP(RY), (1 < p < c0), with domain {u € W2P(RY) : Vu € LP(RV)}.
An interpolatory estimate allows to control the LP norm of (F, Du) by the L? norms of Vu and
D?u. The assumption |DV| < 4V3/2 is the essential ingredient to determine the domain and,
as observed at the beginning in the case of Schrodinger operators, it is optimal. The condition
|F| < kV'/2 is the best possible to yield analyticity. Finally, we observe that the cases p = 1 and
p = oo are also considered.

We formulate new conditions on F', V' and their first order derivatives to show that (A, Dp)
generates a strongly continuous semigroup in LP(R”Y) (1 < p < o), where D, is defined as

D, = {u e W?P(R"Y) : (F,Du) € L*(RY),Vu € LP(RM)}.

We observe that for suitable choices of the parameters involved, our framework covers [37] or
[41]. Thus, our results can be seen as a continuous interpolation between them. We also cover
new cases. For instance, we allow the conditions |F| < 6V, |DV| < oV, |DF| < gV.

The first step to achieve our aim consists of proving a priori estimates of the form

(0.0.4) [ullwzr@x) + [{F, Du) || Lo @ny + [Vulle@yy < Cllullr@yy + [[Au]| Lo @y)),

for every v € D, and for some constant C' > 0 independent of u. For every test function
u we prove the corresponding estimates for ||[Vul|z»gyy and ||Dul|pr@~y using the variational
method, which relies on suitable integrations by parts and other elementary tools. The same
technique yields the estimate of the second order derivatives when p = 2, too, and therefore
(0.0.4) is completely proved, since the last term |[(F, Du)|| 2z~ can be estimated by difference.
Of course, the method fails for p # 2. The Calderon Zygmund estimate cannot be proved by
means of integrations by parts. Thus a different method has to be used, but it requires stronger
assumptions. This is the reason why we treat the cases p = 2 and p # 2 separately. When
p # 2, the idea is to get first local estimates. To this aim, we localize the equation Au = f by
multiplying it by cutoff functions supported in certain balls B(zg,r(zo)), and then we make a
change of variables, which is determined by the potential. This technique produces a family of
new operators {A;,} which satisfy the assumptions of [37], up to a bounded perturbation. Then,
to each operator A, we can apply the a priori estimate for the second order derivatives proved
in [37], so that in the original setting we find out the following local estimates

(0.0.5) / ID2ulP < c/ (ul? + [Aul? + [Vul? + [VY2Duf?
B(zo0,r(z0)) B(zo,2r(x0))

A crucial point is to make the dependence of the constant C precise. In particular, in order to
apply a covering argument and to obtain a global estimate starting with (0.0.5), we need C' to
be independent of xy. In this way we deduce that

/ |D2ul? < C/ [ul? + [Aul? + [Vul? + [V Dul?,
RN RN
and then, using known results

ID*ull @y < Cllull Loy + [ Aull o)),

as required. The last estimate among (0.0.4), namely the one for (F, Du), follows by difference.
Hence (0.0.4) are verified for every test function u. By density, they can be extended to D, and
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this yields, without any further effort, the closedness of (A4,D,) in LP(RY). It is also an easy
task to prove that (A, D)) is quasi dissipative.

The second step of our procedure consists of proving the surjectivity of A — A from D, onto
LP(RY), for sufficiently large A. This is done, once again, differently when p = 2 or p # 2.
In the first case, we find the solution of the equation \u — Au = f in Dy as the limit of a
sequence of solutions of the same equation in balls with increasing radii and Dirichlet boundary
conditions. This argument does not work for p # 2. In this case, we check the surjectivity of
A — A approximating A by a family of operators which belong to the class studied in [37]. At this
point, we can apply the Hille Yosida generation theorem and we show that (A, D,) generates a
strongly continuous semigroup, which is positive, but not analytic in general.

The generation result just proved holds whenever 1 < p < oco. If p = oo, in spaces of
continuous functions, the situation is more delicate and the explicit description of the domain
is more complicated. However, useful information can be obtained if gradient estimates hold.
To be definite, in the second chapter, we consider the second order differential operator in non
divergence form

N N
(0.0.6) A= ZQijDij + ZFiDi -V,
it i=1

in a smooth open unbounded subset Q of RY. Q may be the whole space R, but in this case
several results are already known. We deal with the Cauchy-Neumann problem

w(t, ) — Au(t,z) =0 t>0, z€q,
ou
0.0.7 ou .\ _ 0
( ) an(t’x> 0 t>0, x €N,
u(0,z) = f(z) r € Q,

where f is a continuous and bounded function in § and 7 is the outward unit normal vector to
0. Our aim is to determine conditions on the coefficients of A and on the domain €2 such that
(0.0.7) admits a unique bounded classical solution u, whose spatial gradient verifies the following
estimate

Cr
Vi

0 <t<T,x e Q. Estimate (0.0.8) has been deeply investigated in the literature, expecially

(0.0.8) |Du(t, z)| < —= || flloo

by means of probabilistic tools. Our approach is purely analytic and allows to treat unbounded
domains which do not coincide with the whole space. We proceed as follows. We consider the
solutions u,, of Cauchy-Neumann problems with initial datum f, in a nested sequence of bounded
regular domains {Q,}, whose union is Q. Since Neumann boundary conditions do not imply
monotonicity (unlike Dirichlet boundary conditions), the main tool to prove the convergence of
(up,) is given by the classical Schauder estimates together with a compactness argument. The
limit function u is not yet the classical solution to (0.0.7), since the continuity at (0, x), when
x € 09, is not ensured. To solve this problem we prove sharp estimates for the gradient of w,,.
More precisely, we consider the function z, = u2 + at|Du,|?> and we prove that the differential
inequality (D; — A)z, < 0 holds for a suitable choice of the parameter a independent of n. To do
this, we assume a dissipativity condition on the drift F'; a bound from below for V' and that V'
grows at most exponentially. Moreover, assuming that {2 is convex and choosing all the domains
Q, to be convex, we deduce that z,, has nonpositive normal derivative on 9€2,,. This is the crucial
point of our procedure. The classical maximum principle implies that |Du,| < C7t™ 2| |0,
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where Cr is a constant independent of n. This estimate leads to the continuity of w in {0} x 9
as well as to the gradient estimate (0.0.8), as soon as n tends to co. The method used is known as
Bernstein’s method. Tt was used by A.Lunardi in [34] to prove (0.0.8) in the whole RY, whereas the
same result is proved in [13] by means of probabilistic tools. A Liapunov type condition ensures
that a maximum principle holds, hence the function u, produced by the previous approximation
argument, is the unique bounded classical solution to (0.0.7).

Setting (P.f)(z) = u(t, =), we obtain a semigroup of linear bounded operators in Cj,(2). Such
a semigroup is not strongly continuous, in general, hence we cannot consider the generator in
the classical sense, but only the so called weak generator. We also note that (P;) is neither
analytic in C,(€2), otherwise estimate (0.0.8) could be deduced from the analyticity estimate
| AT () flloo < C't71]|f]loo by an interpolation argument. We show that, in our situation, the weak
generator coincides with the realization of A in Cy(Q)) with homogeneous Neumann boundary
conditions, i.e. with the operator A endowed with the domain

— — 0
D(A)Z{u € Cp(2)N ﬂ W2P(QN Bg) forall R > 0: Au € Cy(Q), —u‘ = O}.
onlea
1<p<oo
The weak generator shares several properties with the generators of strongly continuous semi-
groups. In particular, since we assume V > 0, we have that (0,400) C p(A). Therefore, for
every f € Cy(Q) and A > 0 there exists a unique solution in D(A) of the elliptic problem

Au(x) — Au(z) = f(x) x € 1,
Oou
6—77(:5) =0 x € 0.

A consequence of (0.0.8) is that the domain of A is contained in C{(£2). This can be interpreted
as a partial regularity result for the solutions of the elliptic problem above.

Assuming that V = 0, we derive further gradient estimates of pointwise type. More precisely,
if p>1and f e CHQ) with f/0n =0 on 09, then

(0.0.9) |DP,f(z)|P < e P(|DfIP) (),

where ¢, is a real constant depending on the coefficients of A, N and p. If ¢;; = &;;5, then the
previous estimate is true also when p = 1. This case is almost optimal, since in [58] it is proved
that (0.0.9) with p = 1 holds in R if and only if Dygi; + Djqri + Diqr; = 0, for every 4,7, k.
Following the ideas of [7] for p = 2, we deduce that

aguo_l

(0.0.10) DPs@P < (52 ) P,

for all p > 2, where vy is the ellipticity constant of A. An analogous estimate holds when
1 < p < 2. Also in this case the thesis fails if p = 1, even for the heat semigroup. The
previous estimate with p = 2 improves the first global gradient estimate (0.0.8), which can be
now reformulated in the form

1
Vy 02
1Dl < (5722 ) Il

Therefore, if oo < 0, a Liouville type theorem for the operator A holds and it implies that if
f € D(A) and Af =0, then f is constant. Other interesting consequences can be deduced if an
invariant measure exists. We say that a probability Borel measure p is invariant for (P;) if for
every bounded Borel function f and every ¢t > 0

/QPtfdu:/Qfdu.
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In this case, (P;) can be extended to a strongly continuous semigroup in LP(Q2, u) for every
1 < p < oo and, integrating estimate (0.0.10) with respect to u, one gets an analogous estimate
in the L? norm. This implies that the domain of the generator of (P;) in LP(, i) is continuously
embedded in WP (Q, p).

Moreover, one can derive the hypercontractivity of P; in the space L?(€, 1) and logarithmic
Sobolev inequalities (this is the well known Bakry-Emery criterion). Finally, (0.0.9) with p = 2
and oo < 0 implies the Poincaré inequality in W12(£2, ) and the spectral gap for the generator
As of (P;) in L*(Q, ), which means that o(Az2) \ {0} € {\ € C | ReA < —C}, for some C > 0.

In the case Q = RY, estimates (0.0.9) and (0.0.10) with p = 2 and ¢;; = J;; were proved
respectively in [6] and [7] in the setting of abstract Markov generators, for functions belonging
to a suitable algebra of smooth functions which is required to be invariant under the generator.
Estimate (0.0.9) was proved also in [56] by probabilistic methods. A probabilistic approach is
used in [49] too, for establishing estimate (0.0.9) in the case of a compact Riemannian manifold
with convex boundary or of a complete manifold without boundary.

Dissipativity conditions are of crucial importance to get gradient estimates. Indeed, we give a
counterexample to estimate (0.0.8) for an operator A = A + > F;D; where F is not dissipative.

In the third chapter we deal with Cauchy-Dirichlet problems

w(t, ) — Au(t,z) =0 t>0, ze€Q,
(0.0.11) u(t,z) =0 t>0, €09,
u(0,2) = f(x) req,

where A is defined by (0.0.6) and f is continuous and bounded in 2. Our aim is again to derive
gradient estimates for bounded classical solutions to (0.0.11). Our approach is slightly different
from the previous case. Indeed, if (u,) is a sequence of solutions of Cauchy-Dirichlet problems
in bounded domains, whose union is 2, then it is not difficult to show that (u,) converges to a
solution of (0.0.11). But, if we set z,, = u2 +at|Du,|? and we try to apply the maximum principle
to z,, it is not clear what happens to z, at 0f), even when € is a halfspace. To overcome this
difficulty, we proceed in the following way. The existence of a bounded classical solution u to
(0.0.11) can be proved completely by approximation. We note that in this case we do not expect
that the solution is continuous at (0,z), for © € 9Q. The uniqueness follows once again from a
generalized version of the classical maximum principle. Afterwards, we observe that since u = 0
on 012, only the normal derivative of u can be different from zero on 0€2. This suggests us the
comparison with certain one dimensional operators. In fact, following this idea and assuming a

suitable control on F' near to the boundary of €2, we can prove the following estimate for Du on

00
Cr

Vit
Taking such an estimate into account, we can apply the maximum principle to the function
z = u? + at|Du|? and we obtain

[Du(t, )l < —=[fllee; 0 <t <T, £ €09

Cr
Vit

We note that the technique allows to have a precise control of the constant C'p. Unfortunately,

(0.0.12) 1Du(t,z)| < “L(flle 0<t<T, z €.

the last step works if one already knows that u is smooth enough. This is not our case, even
though the initial datum f is smooth. Therefore, we use a trick, which consists in introducing
an auxiliary potential W. We take W big enough to control the growth of the drift term F
and then we consider the perturbed operators A, = A — eW. We show that the realization of
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A, with homogeneous Dirichlet boundary conditions generates a strongly continuous analytic
semigroup (Tp(t)) in LP(Q2), for p > 2 and we characterize the domain. Choosing a large p and
using Sobolev embeddings we prove that u.(t,z) = T}, -(¢) f(x) is the bounded classical solution
of (0.0.11), with A replaced by A, and f smooth. Moreover, we are allowed to apply the previous
gradient estimate to each u., obtaining

C
|Du.(t,z)| < ﬁ\\fﬂw 0<t<T, x€,

with Cr independent of £. A suitable extracted sequence of u. converges to the bounded classical
solution u of (0.0.11) and estimate (0.0.12) follows by taking the limit. Finally, by a standard
approximation argument we prove estimate (0.0.12) for every continuous and bounded function
fin Q. We point out that we do not need convexity assumptions on €2 to carry out this program.
At the moment, the same procedure seems to be useful to remove the convexity of €2 in the case
where Neumann boundary condition is considered. But this is a work in progress. As far as
local gradient estimates for (3.0.1) are concerned, we mention [54], which establishes them in the
Riemannian setting, and [15], [53] for the case when € is an open subset of a Hilbert space and A
is an Ornstein-Uhlenbeck operator. Moreover in [57], see also [31], connections between estimates
(0.0.12) and some isoperimetric inequalities are investigated.

In Chapter 4 we study the second order ordinary differential operator Au = au” + bu’ and
we characterize the domains on which A generates semigroups in C3(R) and in C(R), the space
of continuous functions having finite limits at +00. Unfortunately, the technique used cannot be
extended to higher dimensions. We just cite [41], where a complete description of the domain is
given in Cy(RY) when the operator contains a potential term which balances the growth of the
drift coefficient. We refer to [34] for the case of Holder spaces.

Minimal assumptions on the coefficients of A guarantee that A endowed with the domain

Diax(A) := {u € Cy,(R) N C*(R) | Au € Cy(R)}
generates a semigroup in Cy,(R), which is not strongly continuous in general and A with domain
Dn(A) :={uec C(R)NC*(R) | Au € C(R)}

generates a strongly continuous semigroup in C(R). Hence, we have only to describe explicitly
such domains. Our aim is to show that under suitable assumptions on a and b

Diax(A) = {u € CZ(R) | au”,bu’ € Cy(R)}
and
Dn(A) = {u e C*R) | bu’ € C(R)}.

As a consequence, we derive optimal regularity for the solutions to the elliptic equations A\u—Au =
f both in C,(R) and in C(R). Let us consider the first case. Set D = {u € CZ(R) | au”,bu’ €
Cy(R)}. Since D C Dpax(A) and XA — A is bijective from Dyyax(A) onto Cp(R), to prove the
statement it is sufficient to show that A — A is surjective from D onto C,(R). Once again, a
crucial point is represented by a priori estimates. More precisely, assuming that ab’ < ¢; + cgb?,
we prove that for every u € C?([—«, a]) with «/(+a) = 0, we have

(0.0.13) 100/ || ([~ aa)) < CUlAUllc(—asa)) + 1ullc=a,an);

with C independent of a. Then, we construct a solution v € D of the equation Au — Au = f, for
f € Cy(R), by approximation, considering the solutions of the equation Au — Au = f in [—n, n]
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with Neumann boundary conditions and using (0.0.13). In a similar way, but requiring slightly
stronger assumptions on a, b, we prove the statement in C (K)

The last chapter is devoted to the collection of some known results concerning invariant mea-
sures for Feller semigroups in C,(R™). We present this argument in a quite general context, which
is not the most general possible, but is close to the main concrete situation where this concept
arises, namely the theory of second order differential operators with unbounded coefficients. In
the last section we study the operator

B =div(¢D) — (¢D®, D) + (G, D)

in the space LP(RY 1), 1 < p < oo, where du = e~ ®dx. Via the transformation v = e_%w the
operator B on LP(RY | 1) is similar to an operator A of the form (0.0.3) in the unweighted space
LP(RY). Suitable assumptions on the coefficients ¢, ®, G allow to apply the generation results
of Chapter 1 to the transformed operator so that, via the inverse transformation, we can deduce
that B, endowed with the domain

(0.0.14) D, = {uc W*P(RY 1) | (G, Du) € LP(RY, 1)}

generates a strongly continuous semigroup (7'(t)) on LP(R”Y 1). We note that, in particular, the
measure g can be the invariant measure of (T'(¢)).

Lecce, 16 april 2004
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Chapter 1

Elliptic operators in LP(R™Y):
characterization of the domain

In this chapter we consider the following linear second order elliptic operator in divergence

form
(1.0.1) Au = Aogu + (F, Du) — Vu,
where
N
Aou = Z DZ(QUD]U) .
ij=1

As usual, we will refer to F' and V' as the drift and the potential term, respectively, and neither
F nor V will be assumed to be bounded.

Our aim is to prove a generation result for A4 in LP(RY) (1 < p < +o00) with respect to the
Lebesgue measure, providing an explicit description of the domain of the generator. Precisely,
we show that such a domain is the intersection of the domains of each addend of A in (1.0.1).

This problem is classical and well-known in the case of elliptic operators with regular and
bounded coefficients. We refer to the book of Lunardi [32] for a detailed analysis of the subject.
On the other hand, there are several approaches to show that elliptic operators with unbounded
coefficients generate strongly continuous semigroups in L? (see [11], [12], [19], [35], [37], [41] and
the list of references therein), but only some of them give a precise description of the domain.
Besides, in some cases the problem is investigated only for p = 2 (see [17], [18] and in [50]).

Here we prove that if (D,, [ - ||p,), with 1 < p < 400, is the Banach space defined as

D, = {u € W2P(R") : (F,Du) € L*(RN),Vu € LP(RM)},
[ullp, = llullwzr@yy + [{(F, Du)|| Lr@ny + [[Vull Lo @ny

then (A, D,) generates a Co-semigroup in LP(RY), if suitable growth conditions on F, V and
their first order derivatives are assumed. As a by-product, one can deduce regularity results for
the solution of the elliptic equation associated with A.

The precise description of the domain relies on a priori estimates of the form

(1.0.2) [ullzp + (s Dullp + [[Vull, < Cllullp + [[Aullp),

for every p € (1,00) and every test function u and for some constant C' > 0 independent of w.
We prove the estimates for ||Vul|, and ||Du|, using basically integrations by parts and other
elementary tools. In the particular case p = 2, we also get an estimate for the second order
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derivatives of u (see Section 1.3). For p # 2, the variational method fails to estimate ||D?ul|,
and we have to employ a different technique, which works under stronger assumptions. This is
done in Section 1.4, where we use an a priori estimate for the second order derivatives in the case
where the involved operator has globally Lipschitz drift coefficient and bounded potential term
(we prove such an estimate together with a generation result as a preliminary step in Section
1.2). Once the second order derivatives are estimated, the last term ||(F, Du)||, in (1.0.2) can be
estimated easily by difference.

Using a density argument, (1.0.2) turns out to be true also for functions in D,. As a conse-
quence, we establish the closedness of (A, D,) in LP(RY). Moreover, it is easily seen that (4, D,)
is quasi dissipative in LP(R"). Therefore, in order to apply the Hille-Yosida generation theorem
and to get the desired result, it remains to prove that A — A is surjective from D, onto LP(RY),
for A large. Sections 1.5 and 1.6 are devoted to this aim. We proceed differently in the case
p =2 and p # 2. In the first case, we find the solution of the equation Au — Au = f in the
whole space as the limit of a sequence of solutions of the same equation in balls with increasing
radii and Dirichlet boundary conditions. In the second case, we check the surjectivity of A — A
by approximating A with a family of operators whose drift coefficient is globally Lipschitz and
whose potential term is bounded. We note that, once again, the first method works under weaker
assumptions and this is the reason why we treat the case p = 2 separately.

Finally, in Section 1.7 we describe some properties of the above semigroups. We prove that
they are positive, not analytic in general, consistent with respect to p. Moreover if V tends to
+00 as |z] — 400, then (A, D,) has compact resolvent.

1.1 Assumptions and statement of the main results

In the following ¢(z) = (g;j(x)) is a N x N symmetric real matrix such that ¢;; € C}(RY)
and

N
(L.1.1) (q(2)€, &) = Z qi(x) &5 > wol¢f?, vp >0,

ij=1

for every x,& € RY. Moreover, we consider F € C*(RY;RM) and V € C*(RY) and we assume
that V' is bounded from below. Without loss of generality, we suppose that V' > 1. We deal with
the elliptic operator

(1.1.2) Au = Agu + (F, Du) — Vu,

where Agu(z) := 2., Di(qij(z)Dju(x)).

ij=1
For 1 < p < 400, we define the space (D,, || - [|p,) as

(1.1.3) D, = {uecW*PRN): (F Du)c LP(RY),Vu € LP(RN)},
(1.1.4) [ullp, l2,p + [[(E, Dudlp + [[Vul|p -

[Ju

We endow D,, also with the graph norm of the operator A, namely
[ulla == | Aullp + [[ullp -

In the case p = 2, besides the previous assumptions on the coefficients, we require that the
following growth conditions hold

(H1) |DV| < aV3/2 4 ¢,,
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N
(H2) divF + BV > —c5, Y DiFj(@)6i&; <7V (@)Ef’ + e |éf*, & w e RY,

i,j=1
(H3) (F,DV) +~V? > —c,,
(H4) |F(2)| <01+ [2)2V(2) +co ,

with o, 3,7, 7,0 > 0 and ca, cg, ¢y, ¢r, o > 0 satisfying

g

(1.1.5) 1—§—T>0,
and

M By
1.1. —+E+ <1
(1.1.6) 4a +2+2<,

where M := sup,cp~y max|ej—1(q(2)¢, ). We note that the second inequality in (H2) is a dissipa-
tivity condition for the function F.
The following generation result holds.

Theorem 1.1.1 (p=2) Suppose that (H1), (H2), (H3), (H}), (1.1.5) and (1.1.6) hold. Then
the operator (A, Dy) generates a Cy-semigroup on L*(RN). If cg = 0, then the semigroup is
contractive.

In Section 1.6 we prove an analogous result in the general case p > 1. To this aim we use a
different technique, which works under more restrictive assumptions on the coefficients of A.
Precisely, we replace assumptions (H1), (H2) and (H4) with the following ones

, V27a(x)
(HD") [DV ()] < QW’

(H2) [DF| < X (BV + cs).
(HE) [F(2)] < 01+ 2202V (@),

respectively, where DF denotes the Jacobian matrix of F' and |[DF|? = Zgizl |DF;)?, o, 3,6 >
0, cg >0, % <o <1and0<pu<1. Moreover, we suppose that for every z € R

(H5) [(F(z), Dgij(2))| < &V (2) + cx,
holds, with constants x > 0 and ¢, > 0.

Analogously to the case p = 2, also in this case a smallness condition on the coefficients is
required. Let

%(p—l)OéQ, if (O',/.L): (%7O)a
w =
0, otherwise.

Then we assume that

VNab 1
wiva BEVNal Pl i cp<n,
p

(1.1.7) L
w+¢§(ﬁ+\/ﬁa9) (p+\/ﬁ> <1, ifp>2.

The following generation result holds.
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Theorem 1.1.2 (1<p<+o0) Suppose that (H1’), (H2’), (H4{’), (H5) and (1.1.7) are satisfied,
for some 1 < p < co. Then the operator (A,D,) generates a Cy-semigroup on LP(RN), which
turns out to be contractive if cg = 0.

Remark 1.1.3 We observe that (1.1.7) for p > 2 implies (1.1.7) for 1 < p < 2, since

\/iﬁ—i_iﬁae—&-cwp;lS\@(ﬁ—i—\/ﬁ(w)(;—i—\;ﬁ), p>1.

Moreover, we note that when p = 2, (1.1.7) is not equivalent to (1.1.6), but it is stronger. This
fact relies on the different technique employed in the general case and, in particular, on the fact
that we need that other suitable operators verify our assumptions. For further details we refer
to Section 1.6. In any case, the two methods yield the same semigroup in L?(RY).

Finally, we point out that in Theorem 1.1.2 we do not explicitly assume (H3), since (H1’) and
(H4’) imply

(1.1.8) [(F,DV)| < afV?2.

Remark 1.1.4 Hypothesis (H1) is essential to determine the domain. In fact in [41, Example
3.7) the authors exhibit a Schrédinger operator A = A —V in L?(R3) such that (H1) holds with
a too large constant a and the domain is not W22(R3) N D(V'). Moreover in [41] it is observed
that (H1) holds for example for any polynomial whose homogenous part of maximal degree is
positive definite. (H1) fails for the function U = 1 + 2%y

Remark 1.1.5 We note that making particular choices of the parameters p and o, we may cover
cases already known or discuss new ones. For example, if 4 =0 and 0 = %, then we get exactly
the framework of [41]

|F| <6VY/2  |DV| < aV3/?

and therefore of [12]. If we take V constant, then we reduce to the case where F is globally
Lipschitz continuous studied in [37]. Setting ¢ = 0 and o = 1 we have the case

Fl<6v, |DV|<aV,

which, according to our knowledge, seems to be new. From the second condition above, one
deduces that V' grows at most exponentially. In particular, we can treat in this way polynomials
V as in Remark 1.1.4.

If we optimize assumption (H4’) choosing p = o = 1, analogously to (H4) in the case p = 2,
then (H1’) becomes |DV (z)| < a%, which is much more restrictive than (H1). This
shows that the cases p = 2 and p # 2 are quite different. Such a difference is also confirmed by
the fact that when p = 2 we do not require any condition on (Dg;;, F).

The assumptions for p # 2 are determined by our approach to estimate the second order
derivatives of a test function w in terms of u and Au. The idea is to get first local estimates. To
this aim we change variables and localize the equation Au = f in certain balls B(zg,r(xg)). The
new operator produced by this technique (see (1.4.14)) has a globally Lipschitz continuous drift
term and a bounded potential. The radius r(zg) has to grow at most linearly with respect to
|zo| in order to use a covering argument and to obtain global estimates. So, roughly speaking,
we must require that r(xg) < 1+ |zo| and that V(z) is "close” to V(zo) if |x — zo| < r(xo).
This is exactly guaranteed by assumptions (H4’) (see (1.4.2)) and (H1’) (see Lemma 1.4.3). The
Lipschitz continuity of the transformed drift coefficient follows from (H2’). All the details are
given in Section 1.6.
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1.2 Operators with globally Lipschitz drift coefficient and
bounded potential term

In this section we collect all the results concerning operators with globally Lipschitz drift
coefficient and bounded potential term that will be used in the sequel. We first prove an a priori
estimate for the second order derivatives of a test function u, using the same technique of [37]
but specifying how the constants involved depend on the operator. Then, we show a generation
result, giving an explicit description of the domain.

Let
N N
(1.2.1) B= Y Di(ai;D;)+ Y biDi—c
i,j=1 i=1

and assume that
(i) aij = aji € CH(RY), foj:l aij&i&5 > volél?,
(ii) b = (by,...,bx) is globally Lipschitz in RY,
(iii) ¢ € L>®(RY),
(iv) supyepn [(Daij(x),b(x))| < +o00, ¢,j=1,..,N.
The following a priori estimate is a crucial point for our aims.

Theorem 1.2.1 There exists a constant C' > 0 depending on p, N, vo,||aij || oc,|| Daij|| oo, l| (Daij, b} | oo
llclloo and the Lipschitz constant of b, denoted by [bly, such that for all u € C2°(RY)

(1.2.2) / D2l do < c/ (|Bul? + [ul?) dz.
RN RN

PRrROOF. We split the proof in two steps.
Step 1. We assume that the operator B is written in the non-divergence form
N N
B = Z al—jDij +szDl — C

ij=1 i=1
and that b € C?(RY; RY) with bounded first and second order derivatives, besides assumptions
(1), (i3), (zi7) and (iv).

Let u € C2°(RY). Then u solves the equation

Dy — Bu=f inRN*L

with f = —Bu. Let us consider the ordinary Cauchy problem in RY

¢
(1.2.3) o e, tER
£(0) = z.

Since b is globally Lipschitz, for all z € RY there is a unique global solution £(t, z) of (1.2.3) and
the identity

(1.2.4) =€t E(—tx)), teR, zeRY
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holds. Moreover, from [36, Section 2.1] it follows that if £, denotes the Jacobian matrix of the

derivatives of £ with respect to x, then
|Ex(t, )| < ellIPPle ¢ e R, z € RN

(1.2.5) €2 (t, )| < || Db|| el IPblle -t e R, 2 € RN

‘gtéz(t,f(—t,x»‘ < [1Dbloce™ 1P, € R, 2 € RY.

With analogous notation we have also that

(1.2.6)
2
(€an(t, )| < el 1D8lc (elelIDblc _ ) [Pl v
- il
’ax_@(t,g(—t,x))‘ < 3IHHIDPlloo (oI _ 1)””Db”|°°, teR, zeRY, i=1,..N.

In the case where b is constant, one should replace % by [t|. In particular, all the above

functions are bounded in [T, T] x R¥, for every T' > 0. Finally, the matrix &, is invertible with

determinant bounded away from zero in every strip [-7,T] x R¥.
Setting v(t,y) = u(&(—t,y)), a straightforward computation shows that

Dtvfévzf, in RNV+!

with f(t,y) = f(§(—t,y)) and

N
ag;(t, y)quzyj + Z bi(t,y)Dy, — ¢,

!
M=

B =

1,];1 =1

aij(tvy) = Z Dzhgi(tvf(_t?y))ahk(f(_tvy))Dmkgj(taf(_t7y))
k=1

_ N

bi(t7y) = Z Dmhxkfi(t>§(_t>y))a‘hk(g(_t?y))y
hok=1

E(t7y) = C(f(*t,y)).

Since the coefficients a;; belong to C} (RY) and satisfy (iv), then (t,y) — a;;(£(—t,y)) is bounded
and differentiable with bounded derivatives in [~7,7T] x RY. Taking into account (1.2.5) and
(1.2.6) it follows that for all (t,y) € [~T,T] x RY we have

(@i (t, y)| + |Didiij(t, )| + [ Dy (t,y)| + [bi(t.y)| < L, 4,5,k =1,..N,

where L depends on T, N, ||aij|| oo, || Daij|lscs |{Daij, b}l oo, | Dbl o, || D?b]|oo. Moreover

N
> it y)ming = %olnl*, m,y € RN, t € [-T,T],

ij=1

with 7y depending on vy, T, || Db||. Finally, the modulus of continuity of @;; depends only on
T, N, |laij|lcos [|Daijlloo, |{Daij, b)|loos || Dbllos || D?b]| oo Therefore D, — B is a uniformly parabolic
operator in [T, T] x RV, for every T > 0. Applying the classical LP-estimates available from
the theory of uniformly parabolic operators (see e.g. [30, Section IV.10]) we have that

1/2 1 ~
a2n [0 ] (pptap + e <5 [ (Fenr s r

—1/2
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where K depends on p, N, %, [[s; [lso; || Daijllocs | Diisllocs [9:loc |l oo, hence on p, N, v, [la oo,
[Daijllo: [{Daij, b)lloo, [ Dbl Dbl lle]loo-

In order to come back to the function u, we observe that, setting (S(t)p)(x) = p(£(t,z)) then,
for every fixed t, S(t) maps W2P(RY) into itself and

/ (SO @Pde < () / o(u)[Pdy,
RN RN

/ ID.(S())(@)Pdr < as(t) / IDyo(y)Pdy,
RN RN

IN

[ Ip2s0p@pes
RN

IN

a(t) | (D3]l + Dol )y,
with aq(t), aa(t), as(t) depending on t,p, N, supgpn~ | (—t, )| and as(t) depending also on supgw
|€xz(—1, )| Tt follows that t — «;(t), ¢ = 1,2, 3, are uniformly bounded in ¢ in the interval [—1, 1].

In the sequel we denote by «; the respective upper bounds. Moreover, by (1.2.4) each S(t) is
invertible with S(t)~! = S(—t). Now, recalling that u = S(t)v, for every ¢, we have

/ D2u(a)Pdr < a / (ID2u(t, 9)I” + [Dyo(t. v)/?)dy.
RN RN

Integrating from —1/2 to 1/2 and taking into account (1.2.7) we obtain

1 ~
[ p2u@par < ok [ [ (feor -+l
RN —1JrY

IN

20105 [ (1f(@)P + Jula) )

which is the claim.

Step 2. Take B in the general form (1.2.1) and assume that the coefficients satisfy (), (i4), (i)
and (iv). Then we can write

N N /N
B = Z aile'j + Z <ZD1GU —+ b]> Dj — C.
i,j=1 j=1 \i=1
Let n € C°(RN), supp n C By, 7 >0, [pvn =1 and set b=0bxn. If we define
N N
B = Z aijDij + ijDj - ¢,
ij=1 j=1

then B satisfies all the assumptions of the previous step. Indeed, since b is Lipschitz continuous,
b — b is bounded:

Ib(z) — b(a)| < /

Ib(z) — bz — y)n(y)dy < (B / lyln(w)dy = colbl1.
RN RN

Then

|(Daij(z),b(x))| + [(Dag;(x), b(x) — b(x))]
[{Daij, b)lloo + (| Daijllcccn[blr,

|(Dayj(@), b(x))|

IA A

and N
[ Db]|oe < [0

10?000 < [Bl1]| Dl
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From the first step it follows that there exists a constant C' > 0 depending on N,p,vp,[aijc0s
| Daijlloos [[{aijs b) loos[b]1,]lc]l s such that for all u € C2°(RY)

I1D?ull, < C(|Bully + llullp)-
Therefore
I1D?ull, < C(||Bully + | Bu — Bull, + [[ull,) < Cr([|[Bullp + || Dull, + [|ull,),

with C7 depending on the stated quantities. Using the interpolatory estimate || Dul|, < Co ||u|\11,/2-

|\D2u||11,/2 we conclude the proof. O

Next, we show that the operator B endowed with the domain
D= {uecW>?RN) : (b, Du) € LP(RY)}

generates a Co-semigroup on LP(RY), 1 < p < 400 (see also [37]). The following lemma is useful
(see [37, Lemma 2.1]).

Lemma 1.2.2 Let 1 < p < 400 and u € W2P(Br) N Wy*(Bg). If n € C'(Bg) is nonnegative,
then

N
ululP~? Z a;jDyuD;n
R

ij=1

N
< —/ nu|ulP 2 Z D;(a;;jDju).
Br

4,j=1

N
Z ai; DiuDju X {uz0} +/
i.j=1 B

(128) (-1 /B P2

PROOF. Suppose first p > 2. In this case the function u|u|?~2 belongs to W4(Bg), where ¢
is the conjugate exponent of p. Indeed, it is obvious that u|u|P=2 is in LY(Bg). Concerning the
first order derivatives, we have D(u|u|P~2) = (p — 1)|u[P~2Du. Then, using Hélder’s inequality

with exponent % > 1 we get
2 % ra(p—2) 1_%
[ oepae < pap) ([ )
Br Br Br
9 1—4
(L) ()
Br Br

Therefore, integration by parts is allowed in the right hand side of (1.2.8) and the statement is
verified with equality.

Assume now 1 < p < 2. Let first u € C%(Bgr) N Co(Bgr). For every § > 0 we have

IN

N N
—/ nu(u®+8)%! Z D;(a;;Dju) :/ nu® +6)22((p — 1)u? + 6) Z a;jDiyuDju
Br

ij=1 Br ij=1

N
(1.2.9) +/ w(u? 4 06)5 1 Z a;;DyuD;n.
Br

ij=1
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Then, from Fatou’s Lemma we have

N
(p— 1)/3 nlulP~? Z a;jDiuDju X fuz0y
R

ij=1
< lignjélf< / nu(u? +68)%! Z D;(ai;Dju) / w(u? +68)5! Z ai;D; uDﬂ)
i,j=1 ,j=1
N
= 7/ nulu|P2 Z D;(a;;D;u) —/ wlu|P2 Z ai; DiuDjn.
Br i,j=1 Br i,j=1

It follows that the function n|u|P—2 Z?’;:l aijDsuDju X{uz0y belongs to L'(Bg) and, letting
d — 01in (1.2.9), by dominated convergence (1.2.8) holds with equality. In the general case where
u € W2P(Bg) N Wy (Bg), we can consider a sequence (u,) in C2(Bg) N Cy(Bg) such that
uy, converges to u in W2P?(Bg). In particular, we can find a subsequence (u,,) and functions
h1,ha, hs € LP(Bg) such that u,, , Du,, , D*u,, converge to u, Du and D?u, respectively, almost
everywhere and

un, ()] < ha(2),
|Dup, ()] < ho(z),
|D?up, (2)] < hs(a)

(see [10, Teorema IV.9]. Taking the previous step into account and applying again Fatou’s
Lemma, we get

(1) /B nlulr=2 Z 4y DauD Y uoy

i,j=1

< liminf <_/ nunklunklp 2 Z D aZJD unk)
Br

k——+oo =
(1.2.10) 7/ Uy Uy, [P Z ai; D; unijn>
Br ,j=1
Using Young’s inequality one has
N
tny 723 DilaggDyuny)| < ealun, |7 (1D, | + (D, )
ij=1
< CQ(‘”"}«‘I] + (|Dunk‘ + |D2“nk|)p)
< coffum P + 1Dty P + 1D, )
< o (h'f FRE+ hg) e L'(Bp),

where ¢z depends on ||a;;||oo, [[Daijl|lo and p. In the same way, one can estimate the remaining
term, hence estimate (1.2.8) follows from (1.2.10) using dominated convergence. O

Proposition 1.2.3 (B, D) generates a strongly continuous semigroup T(t) in LP(RN), 1 < p <
00. Moreover, setting A, := —inf, cgpw (% div b(x) + c(a:)), for all X >\, and f € LP(RY), there

ezists a unique solution u € D of Au — Bu = f and the estimate

(1.2.11) lullpy < A= 2) M IS
is satisfied.
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PROOF. It is sufficient to prove the statement when c¢ is equal to zero, since in the general case,
the thesis easily follows from a perturbation argument (see [21, IIL.1.3]).

Let us consider (B,C°(RY)). Proceeding as in the forthcoming Lemma 1.3.1, it can be
proved that C2°(RY) is dense in D with respect to its natural norm

lullp = [lullz,p + [[{b; Du)[p-
The interpolatory estimate ||Dull, < k(||lull, + ||D?ul|,) and estimate (1.2.2) yield immediately
1Dully < C(llull, + | Bully), v e C(RY).

Therefore, we have

< C(ID*ully + [ Dullp + | Bully) < Cllullp + | Bully)-
P

N
> Di(ai;Dju) — Bu

4,j=1

16, Dulp =

Collecting all the estimates so far, we have established that for every u € C°(R™), hence, by
density, for every u € D

[ullz,p + 1[{b; Dwlp < C(l[ullp + ([ Bullp)-

Since the other inequality is obvious, we have that || - ||p and the graph norm of B, || - ||, are
equivalent. Therefore, (D, |- ||p) is complete and as a consequence (B, D) is closed in LP(RY).
Let us prove that (B — Ao, C2°(RY)) is dissipative in LP(RY), where

1
Ao = —— inf divb.
D RN

In this case, we say that (B, C>°(RY)) is quasi-dissipative. Let A > \g and u € C°(RY) be fixed.
Multiplying the equation Au — Bu = f by u|u[P~2 and integrating by parts we deduce

N
1
A |u|Pdx + (p — 1)/ |u|P~2 g aijDiuDjuda:—&—];/ divb |u|Pdx :/ fuluP~2dz
RN RN RN RN

i,j=1
and then
1
()\—AO)/ |ulPdz < / (A+divb> |u\de+u0(p—1)/ | Dul?|u|P~2dx
RN RN p RN
1 1—1
< (/ |f|de) (/ u|pdx> .
RN RN

Dividing by [ul2~" we get (A — Xo)|lull, < [[Au — Bul, as claimed. Therefore, the operator
(B,C(RY)) is quasi-dissipative.

The next step is to show that (A — B)C°(RY) is dense in LP(R™) for some large \. Let ¢ be
the conjugate exponent of p and let w € LI(RY) be such that

(1.2.12) / (Ap — Bp)wdz =0, Y o € C(RYN).
RN

We claim that w = 0. By a classical result concerning local regularity of distributional solutions to
elliptic equations (see [5] and the references therein), it turns out that w € W24(RN). Therefore
we are allowed to integrate by parts in (1.2.12) and we deduce that

N
(1.2.13) / Aw @ dx —/ Z D;(a;jDjw)p dx +/ divbw ¢ dx +/ (b, Dw)p dx = 0.
RN RN RN RN

ij=1
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Using an approximation argument, it can be seen that the equation in this form is satisfied also by
any function ¢ of LP(RY) with compact support. Indeed, if ¢ is such a function, set ¢,, = 0, * ¢,
where g, is a standard sequence of mollifiers. Then ,, € C°(RY) and ¢,, converges to ¢ in
LP(RY), as n — o0o. Moreover, we can find R > 0 sufficiently large in such a way that suppyp,
and suppy are contained in Bpg, for every n € N. Each ¢,, satisfies (1.2.13) and letting n — oo,
we obtain that ¢ verifies (1.2.13), too.

Now, let 1 be in C°(RY) such that n = 1 in B;, 0 < < 1,7 =0in RN \ By and set
M (2) = n(£). Plugging wlw|?~?n2 into (1.2.13) and using (1.2.8) we deduce

N
[ Attt =0 [ adel Y ayDwDiw xus

ij=1

N
w2 [ w2, 3 DD+ [ diblulad+ [ Dwpulul
RN RN RN

ij=1

N
< [ Mot = [ 3 DitagDupelel 2+ [ divojuptd
RN RN RN

ij=1
+/ (b, Dw>w|w|q_2 77721 =0.
RN

Then, using the ellipticity condition and integrating by parts we get

N
/ )\|w|q77,2L + vo(p — 1)/ ni\w|q_2|Dw|2 X{w£0} + 2/ w|w\q_2nnz a;; DiwDjny,
RN RN RN

ij=1

1 2
—|—/ divb |w|? ni — 7/ divh |wl]? i — f/ (b, D) |w|¥m, < 0.
RN q JrRN q JrN

Therefore
1 . _
a1 [ (ne T aw) el - 1) [ Rl DR sy < 5o
where
N
Il = —2/ w|w|q72’r]" Z aijD,;ijnn dx
RN “
7,7=1

2
I, = 7/ (b, Dnp)|w|? ny, dex.
q JRN

From Holder’s inequality it follows that
L < 2NK [ Dol 1D ot ds
RN

2N HDn”ooK

1.2.15 <
(215 <

[ Dl T2 01072 iy da

|Dn|le NK
n

Dnlec NK _
P20l T8 [ s iDuPlul™ xqusop do -+ ol dr,
R

RN
where K = max; ; ||ai;||co. Concerning I», we observe that since b is Lipschitz continuous in R,
there exists a constant L > 0 such that |b(x)| < L(1 + |z]), for every = € RY. Therefore

2
(1.2.16) L] < */ 1 (2)[b(2)] [ D ()| [w(2)[* de
q Jn<|z|<2n
2Dyl oo L 1
< UL g,
q n<|z|<2n n
6 [ Dl L

IN

/ ()7 da.
q n<|z|<2n
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Taking (1.2.15) and (1.2.16) into account, (1.2.14) gives

1 Dills NK _
/ ()\+ - d1vb> w|®n + (uo(p— 1) - ”n”) / M w| T2 Dwl* X w0y
RN p n RN

Dnllec N K Do L
_ 1] o U2 [ g,
q n

B n RN <|z|<2n

_ IDnllec N K
n

For n large vp(p — 1) > 0 and if A > A\g we have

Dijlloe N K Dl
(Aon)/ ]2 < L/ |w|qczx+M/ ol da.
RN n RN q n<|z|<2n

Letting n — 400 we infer w = 0.

From the Lumer Phillips Theorem [21, Theorem II.3.15] it follows that the closure (B, D(B))
of (B, C*(RY)) generates a strongly continuous semigroup in LP(RY). Since (B, D) is closed
and C°(RY) C D, we find that (B, D) extends (B, D(B)). Conversely, if f € D, then there exists
a sequence (f,,) in C°(RY) such that f,, converges to f with respect to || -||p, which is equivalent
to ||-||g. This implies, by definition, that f € D(B) and Bf = Bf. Therefore (B, D(B)) coincides
with (B, D).

As far as the last part of the statement is concerned, we observe that as a consequence of
the generation result, for A\ large, the resolvent equation A\u — Bu = f admits a unique solution
u € D, for every f € LP(RN). In order to determine the lower bound of )\, as before we have to
multiply the equation A\u — Bu = f by u|u[’~2 and to integrate by parts. In this way we find
that A has to be strictly larger than A, = —inf (% divd + c) and that estimate (1.2.11) holds, as
stated. L]

1.3 A priori estimates of |Vul|,, |[Dul|, and || D?ul|s

From now on, for clarity of exposition, we assume that co, = ¢cg = ¢, = ¢ = cp = 0

in conditions (H1), (H2), (H3) and (H4). This is always possible, keeping the same constants
a, 3,7, T, just replacing V with V' 4+ X and choosing A large enough (this implies possibly different
constants in the statements).
In this section we provide, as a preliminary step, some a priori estimates for the solutions of the
elliptic equation Au — Au = f. Precisely, via integrations by parts and other elementary tools,
we prove that for all v € D, the LP-norms of Vu and Du may be estimated by the LP-norms of
Au and wu itself, with constants independent of u. If p = 2, we also deduce an analogous estimate
for the second order derivatives of wu.

Let us first show that C2°(R”) is dense in (D, ||-|lp,), 1 < p < +0o0, so that all our estimates
will be proved on test-functions.

Lemma 1.3.1 Suppose that (Hj) holds. Then C2°(RY) is dense in (D, ]| - ||p,)-
PROOF. Let 1 be a cut-off function such that 0 < n < 1, 7 = 1 in By, suppn C By and
|Dn|? + |D?*n| < L. We write n,,(z) in place of n(z/n).

Suppose that u € D,. It is easy to see that |n,u — ul|p,, as n — oco. In fact, n,u — u in
W2P(RY) and Vn,u — Vu in LP(RY), by dominated convergence. Moreover,

<F7D(77nu)> = 77n<F7 Du> + u(F, D77n> :
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As before, the first term in the right hand side converges to (F, Du) in LP(RY), as n goes to
infinity. The second term tends to 0 since from (H4) it follows that

1 4 2 P/2
/ [ulP|(F, Dn,)|P dz < LW@P/ VP 1+4n” e
RN Ban\Bn n2

5P/2 P2 91’/ [VulP de.
RN\B,,

(1.3.1)

IN

This shows that the set of functions in D,, having compact support, denoted by D, ., is dense in
D

-

Suppose now that w € Dp.. A standard convolution argument shows the existence of a
sequence of smooth functions with compact support converging to u in D,. Thus, the density of
C(RY) in (Dp, || - |1p,) follows. O

We state that, under rather weak assumptions, the operator (4,C2°(RY)) is dissipative in
LP(RY), for any 1 < p < +o0.

Lemma 1.3.2 Suppose that

(1.3.2) divF +pV > 0.

Then (A,C(RN)) is dissipative in LP(RY).

PROOF. We have to prove that for all A > 0 and for all u € C>°(R") one has
(1.3.3) lully < e~ Au],.

Let A > 0 be fixed. If u € C°(RY) we set u* = u|u|P~2 and recall that
(1.3.4) D(u*) = (p—1)|u[P"?Du, D(|ul’) = pu*Du.

Set Au — Au = f. Multiplying both sides of this equation by u* and integrating by parts, we
obtain

1
/\/ |ulP + (p — 1)/ (qDu, Du)|u|P~2 dx + 7/ div F|ul? dx —|—/ ViulP de = / fu*dx.
RN RN P Jry RN RN

By (1.1.1) we get
(p— 1)/ (qDu, Du)|ulP~2dz > (p — 1)1/0/ | Duf?[ulP~2dz >0
RN RN

and taking (1.3.2) into account it turns out that
1 1—1
P P
)\/ |u|p§/ futdx < (/ f|pdx> (/ |u|pdx> .
RN RN RN RN
Multiplying by ||ul|,~? we get (1.3.3). O

Remark 1.3.3 It is noteworthy observing that if (1.3.2) holds, 1 < p < 2 and u € C2°(RY) then
(1.3.5) / \Duf < c/ (AUl + [u[?) dz,
RN RN
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where ¢ = ¢(vg,p) > 0. In fact, from the proof of Lemma 1.3.2, with A = 1, we deduce that

1
1.3.6 / DullulP~2dz < (/ u—Aupda:>
(136 [ 1DuPl 5 ([ = au
< c/ (|AulP + |ul?) dz,
RN

: -3
(/ |u|P dx)
RN

where ¢ = ¢(vg,p) > 0. If p = 2, we are done. If 1 < p < 2, Young’s inequality with exponent
2/p yields

[ prde= [ (1Dapla ) T de e, [ (DuPluP ) do
{uz0} {uz0} {uz0}
and (1.3.5) follows by (1.3.6).

Remark 1.3.4 We note that condition (H2’), with c¢g = 0, together with (1.1.7) implies con-
dition (1.3.2), so that Lemma 1.3.2 still holds. If c¢g # 0, then the same computations of
Lemma 1.3.2 show that (A — Cf,Cg"(RN)) is dissipative in LP(R"), which means that oper-
ator (A, C°(RY)) is quasi-dissipative. Explicitly, one has

(13.7) wus(x—f)_mx—mmu,uecway

In the following lemma we prove an estimate of the LP-norm of Vu.

Lemma 1.3.5 Let 1 < p < 4+o00. Assume that (H1), (H3) and

(1.3.8) divF 4+ 3V >0
hold with

M I} p—1
1.3.9 —(p-1Da?+ = +y— <1,
(1.3.9) 1 ( ) » ’

where M := sup,cp~ max‘§\=1<Q($)§v £)-
If u € C(RY), then

(1.3.10) / [VulP dx < c/ (|Aul? + |u|?) dx
RN RN

for some ¢ > 0 depending only on p, M,vy and on the constants in (H1), (H3) and (1.3.8).

PROOF. Let u € C°(RY). We recall that if u* = u|u[P~2, then (1.3.4) holds.
Integrating by parts one deduces

/ (Aou)VP—lu* dr = _/ <un’D(Vp—1u*)> dx

RN RN

-y / (gDu, Dy VP ulP ™ da — (p — 1)/ (gDu, DVYV?~2|ulP~2y dx
RN N

and
1
/ Vp_l(F,Du>u*dx:f/ VP=YF, D(|ul|P)) dx
RN P JrN

1 1
_ _7/ VP ldivF|ulP de — p—/ VP=2{E, DV)|ulP da .
P JrN p RN
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Thus, multiplying (1.1.2) by V?~!'u* and integrating, we obtain
(1.3.11) (p— 1)/ (qDu, Du)VP~ |u[P~2 da —|—/ [Vul? dx

RN RN

1
= —/ (Au)VP~ 1" do — 7/ VPl divF|ul? do
RN P Jrwy
-1
—p—/ VP=2{(E, DV)|ulP da: — (p — 1)/ (¢Du, DVYVP~2|u[P~2y da.
p RN RN

Now, assumptions (1.3.8) and (H3) imply

(1.3.12) —/ VPl divF|ul? de < ﬂ/ |[VulP dx
RN RN
and
(1.3.13) —/ VP2(B, DV ul? dx Sv/ WVl da
RN RN
respectively.

By (1.1.1) and (H1) the last term in (1.3.11) can be estimated as follows

IN

(1.3.14)/ (gDu, DV)VP~2|u|P~ 2y dx / (gDu, Du)'/2(qDV, DV )Y/ 2V P2 |u[P~t du
RN RN

IN

avM (gDu, Duy'/2VP=1/2|y|P~1 dg:
RN

Setting Q* := [ (¢Du, Du)VP~Hu|P~2 dz and R? := [y [VulP dz, from Holder’s inequality it
follows

(1.3.15) / (gDu, Du)/2VP=1/2)yP~1 dz < QR.
]RN

Thus, collecting (1.3.11)—(1.3.14) we obtain

-1
(p—1)Q*+ (1 - g - W) R? < alp—1)VMQR+ / (Au)VP~ " do
RN
— a2
< -z B M pe
+ / (Au)VP~ly* da | .
RN
Since
/ (Au)VP~ly* da| < / |Au||Vu|P~ dz < eR% + CE/ |Aul? dz

RN RN RN

the thesis follows from (1.3.9) and by choosing e small enough. O

The next result provides an LP-estimate of V|Du|, with p > 2. In particular, since V' > 1, it
extends estimate (1.3.5) to the case p > 2. We explicitly notice that we need a further assumption
on F', namely the dissipativity condition.

Lemma 1.3.6 Let p > 2. Assume that (H1), (H2), (H3) and (1.3.9) hold and that 8 satisfies
also the inequality

(1.3.16) 1-5—7>0.



If u € C2(RY), then
(1.3.17) / V|Du|pdx+/ |Du|p’2|D2u|2dx§c/ (JAuf? + [uf?) dz,
RN RN RN

with ¢ depending on N,p, vy, o, 8,7, M, || Dgijl oo -

ProOOF. We divide the proof in two steps: in the first step we consider the supplementary
assumption that ¢;; € C? (R™M), in the second one we remove this condition via an approximation
procedure.

Step 1. Suppose that ¢;; € CZ(RY) N CHRY), for every 1 < 4,5 < N. Let u € C*(RY) and
define f = Au — Au, with A > 0 to be chosen later. With a fixed k € {1,..., N}, we differentiate
with respect to x, so that

N N N
(1.3.18) )\Dku - Z Di(Dkqiiju) - Z Di(qiijku) - Z D;CFiDiu
4,j=1 i,j=1 i=1

N
—> FiDiwu+uDyV + VDyu = Dy f.
=1

Multiplying (1.3.18) by Dju|Du|P~2, summing over k = 1,..., N and integrating on RY we get

(1.3.19) A/ |Du|de+11+12+13+14+15+/ V|Du|pdx:/ (Df, Du)|DulP~2 da,
RN RN RN

where
N
Il = —/ Z Di(Dkqiiju) Dku‘DU|p72 d.]?,
RN k=1
N
IQ = —/ Z Dz(q”DJkU)DkU|DU|p72 dl’,
RN jk=1
N
Iy = —/ > DyF; Diju Dyu|DulP~ da,
RN k=1
N
I4 = —/ Z FZ Diku DkU|DU|p72 d.I,
RN =1

I5:/ (DV, Du)u|DulP~? dx .
RN

Let us estimate the integrals above. Since t — t[t|P=2 is in C*(R™;RY), integrating by parts and
applying Holder’s and Young’s inequalities we have

N
-2
|Il| = /RN Z Dkqij DJ’U,D,L]CU‘D’U,FD

i,j,k=1

N
+(p —2) / > Digij DjuDuDypuDipu|DulP
RN . .
i,5,k,h=1

< 01/ |Du\p_1|D2u|d;v:c1/ | Duf’2(| Du|®=2/2| D2y]) do
RN RN
< 4 |Du\pdx+015/ | DulP~2|D?u|? dx
g JrN RN
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where ¢1 = ¢1 (p, N, || Dgij|loo) and € > 0 is arbitrary. Consequently
(1.3.20) L > _a |Du|? dx — ¢; 5/ | DulP~2| D?u|? dx .
g JrN RN

Assumption (1.1.1) allows to estimate the second integral, after an integration by parts; indeed

N

IQ = / Z qij Djku Diku|Du|p_2 dx
RY i gk=1

N
p—2 _
+— /RN § ¢i; Dj(|Dul?) D;(|Du?)|DulP~* dx

i,j=1

_9 2
> 1/0/ |D?ul?| DulP~2 dx + V()p / ‘D(|Du\2)‘ | DulP~* dz .
Since the last term is nonnegative we deduce that
(1.3.21) I > 1,0/ | DulP~2| D?u|? dz.
RN
From (H2) it follows immediately that

(1.3.22) I3 > —1 V|Dul? dx.
RN

As far as I, is concerned, integrating by parts, it turns out that

N N
I, = / > DiF, (Dyu)? |DufP~* d + / > F; Dyu Digu | DufP™* da
RN T RY k=1

N
+(p—2)/N Y Fi(Dyu)® Dyu Dipu |DufP™* da
RY ; k,h=1

s

= / divF |DulPdx — I, — (p — 2)14
RN
which implies by (H2) that

1
(1.3.23) I = f/ divF |Du|? dx > —é/ V|DulP dx.
P Jry P Jry

Applying (H1) and Young’s inequality, we get
< o[ VDU e =a [ (] Dul )V D) ds
RN RN

g/ \Vu|2|Du|p72dx—|—€oz/ V|Du|? dx
g JrN RN

IN

IN

02/ |VulP dx + 02/ |DulP dx + Ea/ V|Dul? dx

RN RN RN

with ¢a = ea(e,p, ). Then

(1.3.24) Is > —cz/ [VulP de — 02/ |Dul|? dx — 504/ V|Dul? dx.
RN RN RN

We are left to estimate the integral in the right hand side in (1.3.19). Integrating by parts and
arguing as before we obtain
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N
< =03 [ U1IPuP D da

h,k=1

/ (Df, Du)|Du|P~2 dx
RN

N
—2 —2
= - [ 171047 |DulF Y Dl da
R

h,k=1

03/ |f|2 |Du\p*2d:z:+€(p71)/ |Du|p*2|D2u|2 dz ,
RN RN

IN

with ¢3 = ¢3(p, N, €). Applying Young’s inequality we have finally

< 04/ |f|pdx+04/ | Du|? dx:
RN RN

+e(p — 1)/ | DulP~2|D*ul? dx |
RN

(1.3.25) ‘ / (Df, Du)|Du|P~2 dx
]RN

with ¢4 = ¢4(p, N, €). Collecting (1.3.20)—(1.3.25) from (1.3.19) we obtain

(/\—66—1—02—64)/RN|Du|pda:

+(VQ—(cl+p—1)8)/ |\ DulP=2|D?uf? dx
RN

+ (1 _8 —T—5a> V|DulP dx
p RN

SCQ/ |Vu|pda:+04/ |f|P da .
RN RN

From (1.3.16) and (1.3.10), choosing first a small £ and then a large A, we deduce that
/ (|Du|p+V|Du\p)d1;+/ | DulP~2| Dul? dz §c/ (AUl + [uf?) dz,
RN RN RN

where the constant ¢ depends on p, N, vy, M, ||Dg;j]|c and the constants in (H1), (H2), (H3).

Step 2. Let ¢ be a standard mollifier and set, as usual, p.(z) = N (%) If ¢5; = qij * e and

N
Ay = Z Di(¢5;Dju) + (F, Du) — Vu,

ij=1

then by Step 1, noticing that ||¢;;[lec < [|@ijlloo, [Dg;llec < |Dgijlloc and that (gf;) satisfy (1.1.1)
with the same constant v, it follows that

/ (|Du|? + V|Du|P) dx +/ | DulP~2| D?ul? dx < c/ (|A%ul? + |ulP) dz,
RN RN RN

with ¢ independent of €. Since ||A*u — Au||, — 0 as € goes to 0, we get the thesis. O

1.4 A priori estimates of || D?ul|,, ||(F, Du)||,

In the present section, we estimate the LP norm of the second order derivatives of a solution
u € D, of Au = f, f € LP(RY). The proof is more involved than that of the case p = 2
given in Section 1.3, since the variational method fails. Thus, we employ a different technique,
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which works under more restrictive assumptions on the coefficients of A, precisely we replace
assumptions (H1) and (H4) with (H1’) and (H4’), respectively. As noticed in Section 1.1, these
assumptions imply (1.1.8). Moreover, (H5) is assumed.

The estimate of the second order derivatives is proved in Proposition 1.4.5. The idea is
to define, via a change of variables and a localization argument, a family of operators, say
{Az, }ooery, with a globally Lipschitz drift coefficient and a bounded potential term. Then
we apply Theorem 1.2.1 to each A, to obtain local estimates of the LP-norm of the second
order derivatives of u. In order to get global estimates, we use a covering argument based on
Besicovitch’s Covering Theorem (see Proposition 1.4.1 below). We just note that the transformed
operators { A, } turn out to be uniformly elliptic if and only if we require that |F| < /2 which
is the case of [41].

Once that the estimate of the second order derivatives is available, by difference we get the
estimate for (F, Duj).

Proposition 1.4.1 Let F = {B(x, p(x))}zery be a collection of balls such that
(1.4.1) lp(x) = p(y)| < Llz —y|, z,y RV,

with L < %. Then there exist a countable subcovering {B(z,,p(z,))} and a natural number

¢ =((N, L) such that at most ¢ among the doubled balls { B(xy,2p(x,))} overlap.

The above proposition relies on the following version of the Besicovitch covering theorem, (see
e.g. [4, Theorem 2.18]).

Proposition 1.4.2 There exists a natural number §(N) satisfying the following property. If
Q C RV is a bounded set and p : Q — (0,4+00), then there is a set S C §Q, at most countable,
such that  C U B(z, p(z)) and every point of RN belongs at most to £(N) balls B(z, p(z))

z€eS
centered at points of S.

We turn now to the proof of Proposition 1.4.1.

PRrROOF OF PROPOSITION 1.4.1. If L = 0 then the radii are constant and the statement easily
follows.

If L > 0, we consider the sets

0, = B(o, 20(0)(1 + L)") \B(o, 20(0)(1 + L)"—l), n>1
Applying Proposition 1.4.2 we have that for all n € Ny there exists a (at most) countable subset
Sp C §,, such that Q,, C U B(z,p(x)) =: Cy. Since (1.4.1) implies p(x) < p(0) + L|z|, it is

€S,
easy to prove that

C, C B(o,p(O)(2(1 F Ly g 1)) \B(O,p(())(?(l L)1+ L) - 1)), n>1.

Note that 2(1 + L)""'(1 — L) — 1 > 0 for all n > 1 because L < %. Since 1+ L > 1, there exists
k = k(L) € N such that for all n > k

21— L) A+ L)" ' —1>2(1 + L)" 1 41,

which implies that C,, N C,,_,, = 0. Hence the intersection of at most k among the sets C,, can be
non-empty. Moreover, at most {(NN) among the balls centered at points of S, overlap. It turns
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out that 7' = {B(x,p(z)) : © € Sn, n € No} =: {B(zj,p;)} is a countable subcovering of R
and if ¢ = k&(N) then at most ¢’ balls of F’ overlap.

To estimate the number of overlapping doubled balls {B(x;,2p;)} we proceed as in [41, Lemma
2.2]. Let B(z;,pi) € F' be fixed and set J(i) = {j € N : B(x;,2p;) N B(zj,2p;) # 0}.

j € J(i) it turns out that |p; — p;| < 2L(p; + p;), because |x; — ;| < 2(p; + p;), vielding
h_gfpl < p;j < 2L p,. Thus, the balls B(z, p;), j € J(i), are contained in B(z;, 52Lp;). Since
at most & of the balls B(x;, pj) overlap, we obtain

1-2L 5+20\N o
(1+2L) N card J (i Z pJ <¢ ( ) pi

JEJ(2)

N
which implies card J(z) < ¢’ (%) , so that the number of overlapping doubled balls

is an integer ¢, with ( <1+4¢’ (%2(;;2@) _ =

The following simple lemma is a straightforward consequence of assumption (H1’) and it will
be useful to prove Proposition 1.4.5 below.

Lemma 1.4.3 Assume that (H1’) holds. Then there exist € > 0 and two constants a,b > 0,
depending on o, o, j1, such that for all g € RN

aV(x) < V(xg) <bV(x), for everyx € B(xg,3er(zo)),
with
(1.4.2) r(zo) == (14 |zoH)*/ 2V (z0).
PRrROOF. We remark that from the choice of the parameters p and o and since V' > 1 then
(1.4.3) (14 |z[H* 2Vl (z) <1+ |z,

for every € RN. Moreover, (H1’) is equivalent to one of the following inequalities

1—o0)
pyo-ig) < 0= <1,
(1.4.4) ol e

4. a

We prove the thesis assuming o < 1, the case o = 1 being analogous.

Fix 2o € RN and write r in place of r(zo).

Suppose first that |zg| < 1. From (1.4.3) and (1.4.2) it follows that B(xo,3er) C B(0,2), for
every 0 < € < 1/6. Moreover, since V is a continuous function and V' > 1, we have also that
there exist wy,ws > 0, independent of xg, such that

1 V(zo)

1
w1 = inf < inf — < < sup V(y) =was, x € B(xg,3er).
' yGB(O 2) V( )~ y€B(z0.3er) V(y) V() y€B(0,2) ) ? (o )

Let us now deal with the case |zg| > 1. By (1.4.3) one has r(y) < 1+ |y|, y € RY, so that for
every 0 <e<1/6
1+ Jyf?

Sup ———————5 < +00.
=1 L+ (|y] — 3er)?

Therefore, there exist ¢ < 1/6 and 7 both independent of xg, such that

_ 2\u/2
3ea(l —o)(1 + |xo|?)» <r<i,
(1 + (|wo| — 3er)2)w/2 —
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where « and o are as in (H1’). Thus, by the mean value theorem and (1.4.4) it follows that for
every x € B(zo, 3er)

Vo o)1 —7) < VI Ha) < VT (m)(1 4 7)
and, multiplying by V179 (2)V1=7(zy),
(1.4.5) VIZo(2)(1 —7) S VI9(2) < VIo(2)(1 4 7).
Therefore the statement is proved with ¢ = inf{ws, (1 — T)ﬁ} and b = sup{wo, (1 + T)ﬁ} O
The following algebraic lemma is useful to prove Proposition 1.4.5.

Lemma 1.4.4 If (H1’) holds, with (o, p) # (3,0), then for every § > 0 there exists cs > 0 such
that

(1.4.6) |IDV| < 6V3/2 4 ¢5.

Proor. If % < 0 <1, then (1.4.6) trivially follows by Young’s inequality, with ¢5 depending only
on o, a and c,. If instead o = %7 then by assumption g > 0. For all § > 0 choose Rs > 0 such
that (1 + |z[?)*/2 > /6 for every x € RN \ Bg,. Hence

3/2

|IDV] <« <6V o sup V32(x).

L+ [Py = S

O]

In the following proposition we extend to the case p # 2 the estimate of the second order
derivatives stated in (1.5.1) in the case p = 2.

Proposition 1.4.5 Assume (H1’), (H2’), (H4’), (H5) with constants satisfying (1.1.7). If u €
D, then

(1.4.7) / (|Vu|p+\(F,Du)|p+|D2u|p)d$§c/ (|Aul? + |u|P) dz,
RN RN

with ¢ depending only on N, p, vo, M, ||qij|loc, || Dgijllec and the constants in (H1’), (H2’), (H4’)
and (H5).

PROOF. By Lemma 1.3.1 we may reduce to consider u € C2°(RY). Moreover, for the sake of
simplicity and without loss of generality, we can prove the statement assuming cg = 0.

Set f = Au. We claim that the assumptions of Lemma 1.3.5 hold. Since |div F| < v/N|DF]| then
(H2’) implies

(1.4.8) divF + BV >0

with 8 < p because of (1.1.7).
Moreover, (H1’) and (H4’) imply (1.1.8), that is

|(F,DV)| < afV?.

If (o, 1) = (3,0), then (H1) trivially follows from (H1’) and (1.1.8) implies (1.3.9). If instead
o> % or > 0, then by Lemma 1.4.4 (H1) holds, with « and ¢,, replaced by § and cs, respectively,

with § arbitrarily small. Choose §, depending only on N,p, M and on the constants in (H1’),
(H2"), (H4’) and (H5), such that

p

M p—1
1.4.9 —(p-1)+= +a0—— < 1.
( ) 4(29 ) v »
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Thus, (1.3.9) holds and Lemma 1.3.5 implies

(1.4.10) / [Vul? de < c/ (If1P + |u|P) dz
RN RN

It remains to estimate the LP-norms of |D?u| and (F, Du). We begin by considering the
second order derivatives of u. Then, by difference, we obtain the estimate of (F, Du).
For every g € RV let € and 7 = r(z¢) be as in Lemma 1.4.3. We point out that ¢ is independent
of Zo-
Define yo equal to Azg, with X\ := V/2(zy). We consider two cut-off functions 1 and ¢ in
C=(RY), 0 < n,p < 1, satisfying the following conditions

n = lin B(yo,eAr), suppn C B(yo,2eAr),
¢ = 1lin B(yo,2eAr), suppp C B(yo,3eAr),
L
(1.4.11) |Dnl* + |D*n| + Dol + [D*0| < 15,
for some L > 0, depending on &, but neither on xy nor on yy. For every x € RN, define y = Az

and consider v(y) = u ( ) Then v satisfies the equation

N

3 D@Dy ) ) + 5 (F), Dyow) = 35V hw) = 350,y €RY
with G;;(y) = i (%), F (%), V(y) =V (%) and f(y) = £(%)
Setting w( )= n(y)v(y) we deduce that
N
(1412) 37 D@Dy 0) + 5 (Fl), Dy ) - 55V 0wly) = 9(o)

with ¢ defined as follows

(1.4.13) g(y) = %n(y)f(y) +2(q(y) Dn(y), Dv(y)) + div(gDn)(y)v(y) +

y € RY. Since suppw C B(yo, 2eAr), equation (1.4.12) is equivalent to

N
> Dy, (G (y) Dy, w(y)) + %s@(y)@(y), Dyw(y)) — %w(y)f/(y)w(y) =g(y), yeRV.

i,j=1

Now, let us define the operator

- N 1 - 1 -

(1.4.14) A= Z Dy, (Gi;Dy,) + 1 (F,D,) — —¢V.
i,j=1

Claim 1. %gpf/ and ’(%ch,D@j)‘ are bounded in RY and %gpﬁ is globally Lipschitz in RY

|

Proof of claim 1. The main tool is Lemma 1.4.3. Recalling the definition of A, V and the
relationship between y and z, from Lemma 1.4.3 it follows that

with '

%gﬁ 1% (%@F, Dg;;) Hoo and the Lipschitz constant of %gpﬁ' independent of xg.

1 - V(x)
sup < (y)V(y) < sup
yERN A2 z€B(xo,3¢er) V(xo)

IN
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Taking into account assumptions (H2’), (H4’) and (1.4.11), we have that

1 ~ 1 Y
sup |=D,(p(y) F(y = sup DF()cpy+F()Dg0y'
JERN )\ y( ( ) ( )) e B(yo.3e)r) AQ( ) )\ ( ) A )\ Yy ( )
F
e V@ F@)
x€B(xo,3er) V( ) z€B(xo,3er) ’I“V(.Io)
1% 1 5V
< VO gy, OEDEVE
x€B(z0,3eT) V(LCQ) z€B(z0,3¢er) (1 + |.Z‘0| )2 (.’IJ())
Using Lemma 1.4.3 and equation (1.4.3) we infer that
1 - B LO[1+ (|zo| + 3er)?]%
sup |—=D F < -4 — I
s [fosenFol| < G4 SRR
©
< I6] n L8>
a a’
which implies that %(pﬁ’ is globally Lipschitz in R, uniformly with respect to zg.
Finally, assumption (H5) yields
1 - - 1~ -
sup (3o PO D] < s NGF). Do)
y€ERN yEB(yo,3eAr)
1
< sup 55 [(F(2), Dgij(2))]
x€B(x0,3eT)
< K sup Viz) sup ! < r +c
- z€B(xzo,3eT) V( ) x€B(x0,3er) V( ) T a "

because of Lemma 1.4.3 and V > 1.

Claim 2. The function g in (1.4.13) satisfies the estimate
(1.4.15)

p C p p p p
L@ s g [ (@ @ V@@ VD) de,

for some C depending on ¢, but not on x.

Proof of claim 2. We separately consider each term of g. The constants occurring in the
estimates may depend on €.
The first term in (1.4.13) is the easiest to estimate, in fact

1

1 y P
1.4.16 — (7 7) 1 / -
( ) /]RN )\QU(y)f A y N )\2;0 / (yo,2eAr) AN B(zo,2er) ‘f(x)| *
Using (1.4.11) we can estimate the LP-norm of the next two terms as follows
G C1 Y\ [P
22 Dyn(w). Do) dy < 55t [ u (L[ ay
/RN Y Y \2pyP Blyo,26Ar) N

Cy Cy VPU=9) (z4)
- / [Du(e)l” de = / ) D
T B(zo,2er) B(zg,2¢er) ( + ‘LU()| )

dy =

()" d

and

Cs
div(gD yvypdygi/ v(y)|? dy
[ @@y < gt [ e

C C V2p(1-0)
= UGy Uintala COTRRTIP N
AZP rep B(zo,2er) AP B(zo,2er) (1 + |x0| )pu

41



with C; and Cy independent of x.
Recalling that V > 1, ¢ > %7 @ > 0 and using Lemma 1.4.3, we obtain

yp(l—0o)
/ %|Du(a€)|p dx
B(xzg,2er) (1 + |£C0| )p/J/

IN

/ VY2 (20) Du(x) P dz
B(xzo,2er)

IA

w2 / [VY2(2) Du(z)|P dx
B(xo,2er)
and

2p(1—0o)
/ V@) e de < [ W@l
B(xo,2¢er) (1 + |(E0‘ )P/J« B(zo,2¢r)

< W / WV (@)u(z)|? dz .
B(zo,2er)
Hence, there exists C3 independent of xy such that the following inequality holds

(1.4.17) /RN (12(3(y) Dyn(y), Dyv()I” + |div(gDn) (y)v(y)|) dy <

Cs z)u(x)P 12(2) Du(2)|P) dx
T /B(zo}m)(lV( Ju(@)[P + [V (z) Du(z)[?) d .

Concerning the last term in (1.4.13), we use again assumption (H4’) and we get

p F P P
(1.4.18) / dy < —C / [F@)Pl)P
RN B(xo,2er)

A2p—N P
< co? /
T AN B(zg,2er)

Cy /
< WV (2)u(z)|P do
AN B(zo,2er)

where Cy is not depending on xy. Thus, the claim is proved since collecting (1.4.16)-(1.4.18),

%(F (v), Dn(y))v(y)

(1+ |z?)/2ve—1(x)
(14 |zo[?)#/2Vo=1(0)

p

|V (z)u(z)[” de

inequality (1.4.15) follows.
Let us now prove (1.4.7). Applying Theorem 1.2.1 with B replaced by A, we have

/ D2y dy < K / ()P + l9(y)|?) dy.
RN RN

with K independent of xy. By the definition of w it follows that

/ |D*u(y) P dy < K/ (lv@)I” + [g(y)[") dy
B(yo,eAr) B(yo,2eAr)

and consequently, since y = Az,

1 / 9
—— |D*u|P dx <
AN B(zg,er)

1
< K AN/ lul? da + K, W/ (ful? + 117+ [Vul? + [V Dup) de
B(zq,2er) B(zo,2er)

Multiplying both sides of the previous inequality by A**~" and recalling that A\ = V1/2(z() we
obtain

/ |D?ulP da <
B(zg,er)

<k [ Weau@Pde Ky [ (a7 VAl VD) de,
B(xzo,2¢er) B(xzo,2¢er)
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which implies
(1.4.19) / |D*ulP dx < Kg/ (|u|” + [ fIP + [VaulP + |V1/2Du\p) d
B(zo,eT) B(zg,2¢er)

because of Lemma 1.4.3. Now, in order to apply Proposition 1.4.1 we need to verify the Lipschitz
continuity of the radius e r with respect to xzg. To this aim, we remark that from assumption
(HY’) it follows that

DEn)@)] = |u(1+ ) V7 @) + (0 = (1 + o) §V7 2 (@) DV ()]

1 — 0 (E2 Lyo—2 T 2
E{(1+|xz)lg“v1a($) + (1= o)1+ [2[7)2V7 (@) DV( )I}
< e{l+(1-o0)a}

which is less than 1/2, choosing a smaller ¢ if necessary. Let {B(z;,er;)} be the covering of RV
yielded by Proposition 1.4.1. Applying (1.4.19) to each z; and summing over j, it follows that

/ | D?u|P da < Z/ | D%u|P da
jJEN B(zj.er;)
< K, Z/

jEN B(xj,2er;)

(lul? + 1717+ [Vl + V2 Duf?) da
= K, / (R@P+ 1@+ V@u@) + V@) Du@)) Y Xp, 20 (@) da
JjEN

<Ko [ (juP +10P 4 Val? + [V2Dup) o,
RN

where ( is given by Proposition 1.4.1. Now, [41, Proposition 2.3] yields two constants 7o, ¢ > 0
(independent of u) such that for all 0 < v < g

C
IV/2Dull, < AI|D?ull, + ;IIVUIIn

Choosing ~ sufficiently small and taking into account (1.4.10) it turns out that

/ D2 di < ¢ / (FIP + uf?) da
RN RN

for some ¢ > 0 depending on the stated quantities.
Once that the estimate of the second order derivatives is available, by difference we get the
estimate for (F, Du), that is

[ ppapds<e [ () do
RN RN

1.5 Generation of a Cy-semigroup in L*(RY)

In this section we prove Theorem 1.1.1, which states that the operator (A, Ds) (see (1.1.3))
generates a Cp-semigroup in L2(R™), which turns out to be contractive if cg = 0.
The proof goes as follows. As a by-product of Lemma 1.3.1 we deduce that the a priori estimates
proved in Section 1.3, with p = 2 extend to Dy. More precisely, it follows from Lemma 1.3.1,
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Remark 1.3.3, Lemmas 1.3.5 and 1.3.6 that if v € Dy and (H1), (H2), (H3), (H4), (1.1.5) and
(1.1.6) hold, then

(1.5.1) / (IDuf? + |Vul? + | D?ul?) dz < c/ (JAul? + |uf?) de,
RN RN

for some ¢ depending only on N, vy, a, 3,7, M, ||Dg;j|l. By difference, since Au is in L2(RY),
then

(1.5.2) / \(F, Du)[? dz < c/ (JAuP + |uf?) de,
RN RN

with a possibly different c.

Estimates (1.5.1) and (1.5.2) allow to prove that (A, Ds) is closed in L2(RY). Clearly, it is
densely defined. If ¢z = 0, then (A, D;) is also dissipative. In order to apply the Hille-Yosida
Theorem, it remains to prove that A — A : Dy — L2(RY) is bijective for sufficiently large A. This
is proved through a standard procedure, namely by approximating the solution of the elliptic
equation \u — Au = f, f € L>(RY), with a sequence of solutions of the same equation in balls
with increasing radii and satisfying Dirichlet boundary conditions.

Lemma 1.5.1 Suppose that (H1), (H2), (H3), (H4), (1.1.5) and (1.1.6) hold. Then (A, Ds) is
closed in L*(RN). Moreover, (A — %2, D,) is dissipative.

PROOF. If u € Dy, then ||ulla < c1||lul|p,, || - |4 being the graph norm of A, for some positive
¢1 depending on [|g;j|lec and || Dg;jllco. Moreover, from (1.5.1) and (1.5.2) there exists ca > 0
such that ||u|lp, < ca]|ul|a. This proves that || - ||p, is equivalent to || - || 4; since Dy is obviously

complete with respect to the former, it turns out that D5 is also complete with respect to the

latter, which just means that (A, Ds) is closed.

Finally, taking into account Remark 1.3.4 and Lemma 1.3.1, we conclude that (A — %, Dy) is

dissipative. O
In the proposition below we study the surjectivity of the operator A — A, for positive A. We

remark that the injectivity for A > %ﬁ follows from the dissipativity stated in Lemma 1.5.1.

Proposition 1.5.2 Suppose that (H1), (H2), (H3), (H4), (1.1.5) and (1.1.6) hold. Then for
every f € L2(RN) and for every A > cg/2, there exists a solution u € Dy of

(1.5.3) Mu— Au=f, inRN.
Moreover,

can —1
(1.5.4) lulls < (A= 3) U]l

PrOOF. We deal with the case cg = 0 only, since the remaining case cs # 0 is analogous.
For each p > 0 consider the Dirichlet problem

A —Au=f, in B,
(1.5.5)
u=0, on 0B,

with A > 0 and f € L*(RY). According to [26, Theorem 9.15] there exists a unique solution u,,
of (1.5.5) in W22(B,) N W,"*(B,). Let us prove that the dissipativity estimate

Mupll2s,) < 1fll2@w)

44



holds. Multiplying
(1.5.6) Ay — Aup, = f

by u, and integrating by parts with similar estimates as in the proof of Lemma 1.3.2, taking into
account that u, =0 on 0B,, we get

1
)\/ uidm—i—uo/ |Dup|2dx+f/ divFuf;dm—i—/
B, B 2 /B, B

P

Vuidxg/ fu,dx
BP

P

and by (H2) it follows

1/2
)\/ uidm—f—l/o/ |Dup|2dx+(1—§>/ Vuf)dxg (/ uidm) (/
B B B B, B

3 P 3

1/2
f? d:r) .

P

Then we have
(1.5.7) lupllzecs,) < A7 llze@yy s 1Dl s,y < vo /2A2) £l 2 -

Multiplying (1.5.6) by Vu,, with analogous estimates as in the proof of Lemma 1.3.5 we get the
inequality

(1.5.8) IVupllzzs,) < cllfll2@ny

with ¢ independent of p.
Let p1 < p2 < p. By [26, Theorem 9.11] and (1.5.7) we obtain

upllw22(,,) < a (||f||L2(Bp2) + ||Up\|L2(Bp2)) < |l fll 2wy,

with ¢; and ¢, independent of p. Thus, {u,} is bounded in VVlif (R™), hence there is a sequence
{up.}, pn < pny1, weakly convergent to u in W2 (RY) and strongly in L _(RY). Actually,

loc

{u,, } strongly converges to u in VVlif (RN). In fact, fixed s and ¢, 0 < s < t, for every n, m such

that pn, pm > t, by [26, Theorem 9.11] again,

[, = o, llw22m,) < e(s: Ollwp, = up,,|lL2(8,)

since both u,, and u,,, satisfy Au—Au = f in B;. The convergence of {u,, } to u in L?(B;) proves
that {u,, } is a Cauchy sequence in W??2(B;) and so the assertion follows. As a consequence, u
is a solution of (1.5.3) for a.e. z € RY.

In order to conclude, it remains to prove that u € Dy. First, we prove that u € W1H2(RY)
and Vu € L2(RY), then that (F, Du) € L*(RY). Finally, by difference from (1.5.3) and using
classical L?-regularity, it follows that u € W22 (RN).

By (1.5.7) and (1.5.8) we get that, fixed R < py,

/ ui dr < / uin dr < 272 f2 dx,
Br B

Pn RN
| 1D Pas< [
Br B

/ (Vauy, )?dr < / (Vu,,)*dr <c fAdx.
Br

B RN

|Du,, |>dz < VJIA_l/ f2dx
RN

Pn

and

Pn
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Since ¢ does not depend on p, and R, letting first n — +o0o and then R — 400, we get (1.5.4)
and

/ (|Dul? + |Vu|?) dz < c/ frdx.
RN RN

In particular, u € W12(RY) and Vu € L2(RY).
Now, let n € C>(RY) such that 0 <7 < 1, n =1 in By, suppn C By and |Dn|? + |D?y| < L.
Set n,(x) = n(x/n). We have

N
(1.5.9) A(npu) — npAu = Z gi; DjuD;ny, + Di(g;juD;ny,) + (F, Dnp)u.

ij=1

Observe that A(n,u) — n,Au — 0 as n — +oo in the L?norm. In fact, Ei\’;:l(qiijuDiT]n
+D;(qijuD;jn,)) goes to 0 in the L:norm, since u € WH2(RY) and, arguing as in (1.3.1), we
obtain the convergence to 0 for the last term in (1.5.9), too. Since n,Au — Au in L?, then
A(npu) — Au, too. Being n,u € Ds, by the equivalence of the two norms || -||p, and ||- || 4 proved
in Lemma 1.5.1 we get

[(F, Duynallr2eyy < ¢ (lAMnw)l| r2@yy + mnull L2@yy) + [[(F, Don)ull 2@,
Letting n — 400, one then establishes
IKF, D)l 2oy < e (1 Aull pageny + llull 2 @) -
By difference, Z?fj:l Di(q;jDju) belongs to L2(RY). Thus, by (1.1.1) and L? elliptic regularity
the second order derivatives of u are in L2, which implies that u € W2?2(RY) and u € D,. O

The proof that the operator (A4, D) generates a strongly continuous semigroup in L?(RY) is
now a straightforward consequence of the above results.

PROOF OF THEOREM 1.1.1. Tt is easily seen that (A, Ds) is densely defined, then the assertion
follows from the Hille-Yosida Theorem (see [21, Theorem I1.3.5]). If ¢z = 0 then (A, Ds) is
dissipative and therefore the generated semigroup is contractive. ]

1.6 Generation of a Cj-semigroup in L*(RY)

The present section is devoted to the proof of Theorem 1.1.2. As in the case p = 2 treated
in Section 1.5, the a priori estimates given by Proposition 1.4.5 allow to prove that || - ||p, and
I - |la are equivalent norms. This easily implies the closedness of (A4, D,). Moreover, it is readily
seen that (A, D)) is quasi dissipative. It remains to show that A — A is surjective for A large and
this is, actually, the main result of the section. The proof is different from that of Proposition
1.5.2, which does not work for p # 2. Here we approximate the coefficients of the operator A.
Moreover, we clarify the reason why we require assumption (1.1.7), which is stronger than the
corresponding one for p = 2. In fact, also the operators A. defined in the proof of Proposition
1.6.2 must satisfy our hypotheses.

The proof of the following Lemma is the same as the one of Lemma 1.5.1 and we omit it.

Lemma 1.6.1 Suppose that (H1’), (H2’), (H4’) and (H5) hold, with constants satisfying (1.1.7).
Then (A, D,) is closed in LP(RYN). Moreover, (A — Cf,l)p) is dissipative.

Proposition 1.6.2 Suppose that (H1’), (H2’), (H4’) and (H5) hold, with constants satisfying
(1.1.7). Then for every f € LP(RN) and for every A > %" a unique solution u € Dy of

Mu—Au=f, inRY
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exists. Moreover,

-1
(16.1) lully < (A— 5) £l

PROOF. Uniqueness and estimate (1.6.1) immediately follow from (1.3.7). As far as the existence
is concerned, for fixed € > 0, let us define F. : RN — RY and V. : RY — R as

F Vv
F. = — V. .= .
14V T 14eV
It is easy to prove that (H1’), (H2’), (H4’) and (H5) imply

V27 (&
(He1) |DVi()| < agipmyve:

(He2) |DF| < V2(L +00)Ve + /2 c5,
(HoA) [Fe(@)] < 01+ [al?)/2V2 (),

(Hed) [(Fe(), Dgij(x))| < & Ve(@) +cx

respectively.
Assumptions (H.1), (H.2) and (H.4) yield

(1.6.2) div F. + V2(B + VNad)V. +V2¢5 >0,  |(F.,DV.)| < afV?

and

N
Z DiFI(x)6:6 < V2 (\/’% + ae) Ve (2))€)? + \/g cslél?, £,z eRY.

i,j=1
Notice that V. is bounded and F. is globally Lipschitz in RY. Precisely,

1 . 1 c .
Wl <20 and (Dl < 2 (Jobad) + %, 1<ig<N.

Moreover, if (o, 1) # (%, 0) arguing as in the proof of Lemma 1.4.4 and observing that V. <V,
we have that for every d > 0 there exists ¢s > 0 such that

(1.6.3) |DV.| < 6V3/2 4 ¢5, for every e > 0.

Therefore, the above inequality and (1.1.7) imply that there exists § > 0 independent of ¢ such
that

524 gt VYNeb | -1
P

p

(1.6.4) %(p ~1)

Let us consider the operator

A, 5:AO+<F53D>7‘/5

where, as previously defined, 4y stands for Zgj:l D;(qi; D;).
Define D, . and its norms || - ||p, . and || - [|a, analogously to D, || - ||p, and || - ||.4, respectively,
that is
Dy = {ueW?PR"Y): (F.,Du) € LF(RY)} ,
[ullp,. = llullzp+ [IVeullp, + |(Fe, Du)p
[ulla. = [[Acully + [lull, -
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Since the constants involved in (H.1), (H.2), (H.4), (H.5) and (1.6.4) are independent of €, from
Lemma 1.6.1 we get that there exist k; and ko, independent of e, such that

(1.6.5) kllulla. < lullp, . < kollulla. -

p,e —

Since the operator A, satisfies the assumptions of Proposition 1.2.3, for every A > \/5%3 one has
-1

A€ p(Ag) and ||R(A, Al)|| < ()\ - \@%’) . In fact, using the inequality V. > (1 + &)1, the

first estimate in (1.6.2) and noting that (1.1.7) implies \@Mf‘{m < 1, we get

1 1 Nab
— inf ( divF.(z) +Vs(w)) < yaltvNed ) 5o _ 5%
zeRN \ p 1+4¢ p p D
Therefore, if A > /2 Cf then for every f € LP(RY) and for all ¢ > 0, there exists a unique
ue € Dp . such that

(1.6.6) Mg — Acue = f, in RN

and

1
(1.6.7) el < (A - ﬁpﬂ) 11l

Using (1.6.5), (1.6.6) and (1.6.7) we obtain

A+1
(1.6.8) uellp,,. < ko ([|Acucllp + llucllp) < ke <1 + w) 1£1lp -
In particular, we have that {u.} is bounded in W2P(R¥), thus there exist u € W2P(RY) and a
sequence {u., } converging to u weakly in W2P(R¥) and strongly in VVlf)f (RYN). Therefore, up
to a subsequence, u., — u and Du., — Du a.e. in RY. From (1.6.8) we obtain in particular
that |VZ, ue, ||, + [[(F=,, Due,)|lp < ¢||f]lp, which implies, using Fatou’s Lemma, that

Vully + I(F, Dulp < el fllp -

Thus, u € Dp.
It remains to prove that u solves Au — Au = f a.e. in RY. From (1.6.6) and the definition of
A, we infer that
A, — Ague, = fe,,

where f., = f + (F.,, Duc,) — Ve, u., € LP(RY). Applying the classical local LP-estimates (see
[26, Theorem 9.11]) it follows that for every 0 < p; < p2

(1.6.9) lue, lwzr(s,,) < ClfellLes,,) + e llrs,,));

with C' depending on pi, p2 but independent of n. Since w., and f., converge to u and f +
(F, Du) — V'u, respectively, in L
we get that {u., } is a Cauchy sequence in W%P(B,,). This implies that u., converges to u in
Wli’Cp(RN ) and then, letting n — oo in the equation solved by wu.,, it follows that u satisfies
Au— Au = f a.e. in RV,

To conclude the proof it remains to show that A — A is surjective also when \ > %. This
follows from the dissipativity of the operator A — %ﬁ, stated in Lemma 1.6.1, and the fact that
A — (A~ ) is surjective for A > (V2 = 1)cg/p. Thus A — (A — <) is also surjective for A > 0,

which means that A — A is surjective for A > %ﬁ, as claimed. ]

(RN) as n — oo, by applying (1.6.9) to the difference u., —u.

m
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We are ready to prove Theorem 1.1.2.

PROOF OF THEOREM 1.1.2. Since C°(RY) ¢ D, C LP(RY), it follows that D,, is a dense subset
in LP(RN) Moreover (A, Dp) is closed, by Lemma 1.6.1. By Proposition 1.6.2 and (1.6.1), for
every A > 22 X\ — A: D, — LP(RY) is bijective and

1
||<A—A>—1f||p§( —jf) 1.

The thesis follows from the Hille-Yosida Theorem. O

1.7 Comments and consequences

In this final section we establish some further properties of the semigroup 7),(-) generated by
(A,D,) on LP(RY). We note that since all the assumptions of Theorem 1.1.2 for p = 2 imply
those of Theorem 1.1.1, the semigroup T5(+) is uniquely determined.

We point out that the semigroups given by Theorem 1.1.2 are not analytic, in general. A coun-
terexample is the Ornstein-Uhlenbeck semigroup, as shown below (see e.g. [35, Example 4.4]).

Example 1.7.1 Let Au = uv” + xu’ be the Ornstein Uhlenbeck operator in one dimension. We
prove that the semigroup T'(t) generated by A with domain D(A) = {u € W??(R) | zv’ € L?(R)}
in LP(R) is not differentiable and hence, a fortiori, it is not analytic. To this aim it is sufficient
to prove that T'(t) is not continuous from LP(R) in D(A). For every v € LP(R), ¢ > 0 and = € R,
the Ornstein Uhlenbeck semigroup can be represented by

(T(t)u)(z) =

eimu(etz —y)dy.

Let un = X[n,ny1)- Then

1 etz—n B 2
T(tu,)(x) = 7/ e 22—
(T(t)un)(x) =yl S y
and consequently
d e’ _(eleom)? _(eleon—1?
%(T(t)un)(;ﬁ) = m<e 2(e2t—1) _ e 2(e2t—1) )’
@ e (clo-m)? _(ete—n-1)?
@(T(ﬂun)(l') = m ( _ (etgc _ n)e 2(e20-1) 4 (6 T —n — 1) 2(e2t-1) )

It follows that

g =

d2

S (T(t)un)

(y=1)?
— </ ’ye z(le 1) 7(y71)6 2(e2t—1)
p
2t21
(L

1
—)
[, tdy)p

2e¥ % —_zy? P
([ e Ty
2rr(e?t — 1)3 \ Jr

@t(27%)
-

(e — 1) %

tdy>
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Hence ‘ %(T(t}un) ) can be estimated indipendently of n. Moreover we have
xi(T(t)un) - / ly+nl” e T _ iy e tay.
dx » (271' 62t
Since y? < (y — 1)? if y < 1/2, by Fatou’s Lemma we deduce that
d p e—t py?
e G PO 2 G oy B 0o =

Thus we have found a sequence (u,,) in L?(R) such that |u,||, = 1 but lilf AT (t)un ||, = +oo,
for every fixed t > 0.

In the following proposition we prove the consistency of T, (-).

Proposition 1.7.2 Assume that the assumptions of Theorem 1.1.2 hold for some p and q, with
1 <p,q<+oo. If f € LP(RN) N LY(RYN) then T,(t)f = T,(t)f, for all t > 0.

PROOF. By [21, Corollary II1.5.5] we have only to prove that the resolvent operators of (A, D,),
(A,D,) are consistent, for A\ large, i.e. that for every f € LP(RY) N LI(RY) there exists u €
W2P(RY) N W?24(RN) such that Au — Au = f. This follows from the proofs of Proposition 1.6.2
and [37, Theorem 2.2] since the same property holds for uniformly elliptic operators. O

Now we prove the positivity of T},.
Proposition 1.7.3 T,(:) is positive, i.e. if f € LP(RN), f >0, then T,(t)f >0, for all t > 0.

PROOF. The positivity of the semigroup T}, is equivalent to the positivity of the resolvent (A—A4)~1
for all A sufficiently large. By the proof of Proposition 1.6.2 this last property turns out to be
true once that each A, is shown to have a positive resolvent. From [37, Theorem 2.2] this holds
because the operators A, can be approximated by uniformly elliptic operators. ]

In the following proposition we show the compactness of the resolvent of (A,D,) assuming
that the potential V' tends to infinity as || — 4o00. This result is similar to [41, Proposition 6.4]
and we give the proof for the sake of completeness.

Proposition 1.7.4 If lim,_ . V(x) = +o0 then the resolvent of (A, D,) is compact.

PRrOOF. Let us prove that D, is compactly embedded into L? (RN). Let F be a bounded subset
of D,. By the assumption, given £ > 0 there exists R > 0 such that V(z) > 7!, if || > R. Tt
follows that

(1.7.1) /| o |f(x)]Pdx < sp/ \V(z)f(x)|Pde < ePC =¢

|z|>R
for every f € F. Since the embedding of W2P(Bg) into LP(Bg) is compact, the set F’' =

{fiBx | f € F}, which is bounded in W??(Bg), is totally bounded in LP(Bg). Therefore there
exist 7 € N and gy, ..., g» € LP(Bg) such that

(1.7.2) F <\ Jlo e Br) |9 — gillosny < €'}

i=1
Set

. J g inBg
%710 RN\ Bpg.
Then g; € LP(RY) and from (1.7.1) and (1.7.2) it follows that
U g€ LP®RM)|llg — Gillp < 2¢'}.
This implies that F is relatively compact in L?(R™) and the proof is complete. ]
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Finally, as a corollary of the estimates proved in the previous sections we prove an interpola-
tory estimate for the functions in D,,.

Corollary 1.7.5 For every u € Dy, the following estimate
IDully < ellully*||xu — Aull
holds for every \ sufficiently large.

PROOF. By density it is sufficient to consider u € C>°(R¥). The thesis easily follows from (1.4.7),
(1.6.1) and the inequality
1Dully < ellully*[[1D%ull,/?.

o1
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Chapter 2

Gradient estimates in Neumann
parabolic problems in convex
regular domains

In the present chapter we study, by means of purely analytic tools, existence, uniqueness and
gradient estimates of the solutions to the Neumann problems

w(t,x) — Au(t,z) =0 t>0, z€Q,
(2.0.1) g—Z(t,x) =0 t>0, z €00,
u(0,z) = f(z) zeqQ,
Au(z) — Au(z) = f(z) zeQ,
(202) gZ(m) =0 z € 09,

where € is a regular convex open subset of RY, 7 is the unitary outward normal vector to 952, f
is a continuous and bounded function in § and A is the linear second order elliptic operator

N N
A= Z QijDij+ZFiDi -V
i1

i,j=1

whose coefficients are supposed to be regular, possibly unbounded, in Q. The set Q may be
unbounded. Obviously, if O = RY we do not require any boundary condition.

Problems (2.0.1) and (2.0.2) are classical in the theory of partial differential equations and
they are well understood if the coefficients of A are bounded. If the coefficients are unbounded
and = RY | several results of existence, uniqueness and regularity are known, (see [13], [27],
[28], [34], [52]) and the overview [38]. Stochastic calculus is a useful tool ([13], [52], [56]); in
particular the recent book of Sandra Cerrai [13] contains a deep and exhaustive analysis of what
can be proved by stochastic methods.

We consider problem (2.0.1) and we prove that there exists a unique bounded classical solution
u(t,z). To do that, we consider the solutions w,, of Neumann problems in a nested sequence €,
of bounded domains whose union is €2, and we prove that w,, converges to a solution of (2.0.1).
We remark that one could approximate the solution with solutions of suitable mixed boundary
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value problems in 2, in such a way that for nonnegative initial data the approximating sequence
is increasing. This was done by Seizo It6 in his pioneering paper [27]. Although this further
property could be of much help in some steps, our techniques to get the gradient bounds do not
work with such boundary conditions. Therefore we consider the Neumann boundary condition
in each €2,. The solution u constructed in such a way is unique, since we assume a Lyapunov
type condition which ensures that a maximum principle holds.

Setting (P, f)(z) = u(t,z), P, turns out to be a semigroup of linear operators in the space
Cy(2) of the continuous and bounded functions in Q. We remark that in general P; is not strongly
continuous either in C,(Q) or in its subspace BUC() of the uniformly continuous and bounded
functions. This is a typical fact for semigroups associated with elliptic operators with unbounded
coeflicients. Therefore the generator can not be defined in the classical way. In the literature there
are several alternative definitions of generator; here we consider the weak generator introduced
by E. Priola (see [48] and also Section 5.2). We prove that it coincides with the realization of
A in Cy(Q) with homogeneous Neumann boundary conditions (see Proposition 2.2.4). In this
way, we can prove that the elliptic problem (2.0.2) admits a unique solution, whose second order
derivatives exist only in the sense of distributions and are locally p summable for every p.

After we have ensured existence and uniqueness for problems (2.0.1) and (2.0.2), our next
step consists in proving gradient estimates. We start by showing that

(2.0.3) |DP;f(z)| < C\};||f||Oo 0<t<T, z€Q, feCyQ),
(2.0.4) IDPf(2)] < Cr([[floe + [Dfllc) 0<t<T, €, feCyQ),
where

(2.0.5) C’%(ﬁ) = {u € Cr(Q): g:;(x) =0, z¢€ 89} .

We prove (2.0.3) and (2.0.4) using the Bernstein method, . e. we apply the maximum principle
to the equation satisfied by 2, = u2 +t|Du,|? (respectively z, = u2 +|Du,|?), that gives a bound
for z, independent of n, and then we obtain (2.0.3) (respectively (2.0.4)) letting n — oo. We
observe that the convexity assumption on €2 is crucial at this point, since it leads to the condition
% < 0 at the boundary (see Lemma 2.1.3). In the case Q = R the previous estimates were
proved in [34] with the same method and in [13] with probabilistic methods. As a consequence
of (2.0.3) we have an elliptic regularity result, since we can show that the domain of the weak
generator of P is contained in C} ().
Assuming V = 0, we prove further gradient estimates. In the case ¢;; = 6;; we show that

(2.0.6) IDP,f(z)[P < P P(IDfIP)(x) t>0, z€Q, feChQ).
for all p > 1, where ky € R is determined by the dissipativity condition
N
(2.0.7) > DiFj(2)&& < kolé]?, z€9Q, £ RN,
ij=1
If the coefficients ¢;; are not constant we prove the similar estimate
(2.0.8) IDPf(@)F < e P(DfP) @) 120, 2€Q, feCli@)

for all p > 1, where 0, € R is a suitable constant. These estimates have interesting consequences.
First, if there exists an invariant measure for P;, that is a probability measure such that

/Ptfd,u:/fdu, t>0, feCy),
Q Q
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estimates (2.0.6) and (2.0.8) are of much help in the study of the realization of P, in the spaces
LP(Q,p), 1 < p < oo (see Remark 2.4.5 for such consequences and Chapter 5 for the main
properties of invariant measures).

Second, we deduce the pointwise estimates

-1
o2l

P
2
2(1_6<rzt)) P(|fP)(z), t>0, p>2,

IDBN@WS<
(2.0.9)

—1
CpOpl
P < P¥pP~0
|DPtf(37)| — tp/271(1 _ efapt)

P(|fIP)(z), t>0,1<p<2,

for f € Cp(Q2), where ¢, > 0 is a suitable constant. Estimates (2.0.9) give the optimal constant
in (2.0.3); moreover integrating over {2 with respect to the invariant measure p we get the
corresponding estimates for DP, f in LP(Q, u), when f € LP(Q, u).

Dissipativity conditions of the type (2.0.7) are of crucial importance to get gradient estimates.
Indeed, in section 2.4 we give a counterexample to estimate (2.0.3) for an operator A = A +
> F;D; where F does not satisfy (2.0.7). Concerning estimate (2.0.6), in the case of variable
coefficients ¢;; the constant o, blows up as p — 1, and we do not expect that (2.0.6) holds also
for p = 1. Estimate (2.0.9) too fails in general for p = 1, as we show in the case of the heat
semigroup. Finally we show an example related with the Ornstein-Uhlenbeck operator.

2.1 Assumptions and preliminary results

First we state our assumptions that will be kept throughout the chapter. Q C RY is a convex
open set with C?** boundary (see Definition B.0.15). The coefficients of the operator A are
real-valued and belong to C.F*(Q) and satisfy the following conditions:

N
211) g =i Y, 6;@)&G 2 v(@)EP 1€, RN, inf v(z) =1y >0,

e
ij=1
(2.1.2) |Dgij(x)| < Mv(z), z€Q,i,j=1,..,N,
N
(2.1.3) Y DiFj(2)&& < (BV(x) + ko) [§]°, zeQ, (RN,
ij=1
(2.1.4) V(z) >0, |IDV(z)| <v(1+V(z)), ze€Q,

for some constants M,y > 0, ko, € R, § < 1/2. Moreover, we suppose that there exist a
positive function ¢ € C?(Q) and A\g > 0 such that

0
(2.1.5) lim ¢(z) =400, sup(Ap — Aop) < +00, —‘p(x) >0, xe€ .
|z|—4o00 Q 877
We introduce the following realization of operator A with homogeneous Neumann boundary
condition
_ — 0
D(A):{u € Ch(2) N ﬂ W2P(QN Bg) forall R > 0: Au € Cy(Q), —u‘ = 0}.

onlaa
1<p<oo g

We remark that if Q = RY our results can be generalized to operators with locally Holder
continuous coefficients satisfying suitable assumptions by a standard convolution approximation,
see Remark 2.3.4.

In this section we collect some preliminary results which are the main tools for the study of
problems (2.0.1) and (2.0.2). We start by stating maximum principles for such problems, and
consequent uniqueness results. For the proofs we refer to Appendix A.
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Proposition 2.1.1 Let z € C([0, T]xQ)NC%1(]0, T]x Q)NC*2(]0, T] x Q) be a bounded function
satisfying

zi(t,x) — Az(t,x) <0, 0<t<T, €,
0

% t2) <o, 0<t<T, z€df,
on

z(0,2) <0 x e

Then z < 0. In particular there exists at most one bounded classical solution of problem (2.0.1).

Proposition 2.1.2 Let u € Cy(Q) N W2P(Q N Bg) for all R > 0 and p < oo, be such that
Au € Cy(Q) and

Au(z) — Au(z) <0, x €,
(2.1.6) ou

— <

n (x) <0, x €09,

for some A > Ag. Thenu < 0. In particular, there exists at most one solution in D(A) of problem
(2.0.2).

The following lemma is of crucial importance for our estimates; it holds for convex domains
and this is the reason why we have assumed that 2 is convex.

Lemma 2.1.3 Let A be a conver open set with C' boundary, not necessarily bounded. Let
u € C?(A) such that Ou/dn(x) = 0 for all x € ON. Then the function v := |Dul|? satisfies

g—:;(x) <0, ze€0A.
PROOF. Let us introduce the notation @ = %, e ,an—N , where the derivatives are
or or or

0
understood in local coordinates. Since €2 is convex, we have 7 - —n(z) > 0 for all x € 9§ and

-
all vector 7 tangent to 09 at x (see [25, section V.B]). By assumption, Du(z) - n(x) = 0 for all
x € 02 and then differentiating we get

9 _ 2 M, \_
57 (Du(z) - n(z)) = D*u(z)T - n(x) + Du(zx) o (x) =0, =z€dA,
for every vector T tangent to 9. For 7 = Du(x) we have
ov 2 877
_ = . = — - —_ < .
n (x) = 2D%u(z)7 - n(x) 27 o () <0, xz€0Q

O

Now we recall some known results about Neumann problems in bounded domains. Let A be
a bounded open set in RY with C?*® boundary. Consider the realization of the operator A in

C(A) with homogeneous Neumann boundary condition

— 0
(2.1.7) D, (A) = {u € W2P(A) for all p < +oo : Au € C(R), a—u(x) =0, z € 8A} )
n
and Au = Au for all u € D, (A).
It is well known that (A4, D,(A)) generates a strongly continuous analytic positive semigroup
(S(t)) of contractions in the space C(A) (see e.g. [32, Section 3.1.5]). It follows that for all

f € C(A) the function u(t,z) = (S(¢) f)(z) has the following properties
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(i) u € C([0, +o0[; C(A)) N C(]0, +oo[; C(A)),
(ii) wu(t, ) € Dy(A), for all t >0,

(iii) w is the unique solution of the Neumann problem

Diu(t,z) — Au(t,x) =0 t>0, z €A,
(2.1.8) g—:;(t,x) =0 t>0, ze€dA,
u(0,x) = f(z) r €A

satisfying (i) and (ii).
Actually the function u enjoys further regularity, as it is shown below.

Lemma 2.1.4 The following properties hold
(a) u € C1He/22 ([ T] x K) for all0 < e < T < +oo and

(2.1.9) ||“Hcl+a/2,2+a([e,:r]><X) <C ||“Hc([o,:r]><X)

for a suitable constant C = C(g,T,A) > 0.

b) Diu € C1+e/22+a([c T) x K), for alli=1,..,N,0 < e < T < +00 and A" open set with
(
N C A. In particular u € C3(]0, +00[xA).

PROOF. (a) Assume first that f € C**®(A) and 9f/0n = 0 on A. Then there exists
a function v € C*/22+([0, T] x A), for all T > 0, which solves (2.1.8) (see [30, Theorem
IV.5.3]). By uniqueness v(t, z) = u(t, x).

Now take f € C(A) and consider a sequence (f,,) € C***(A) with df,,/0n = 0 on A, which
converges to f in C(A). Let v, € C1+2/2.2+([0, T] x A), for all T > 0, be the solution of problem
(2.1.8) with initial datum f,,. Fix 0 < &’ < e < T, then the following Schauder estimate holds

(2.1.10) [onllcrvarzeta(emxa) < Cllvnllee rxxy,  mEN

where C = C(g,e’,T,A) > 0 (see Theorem C.1.1).
On the other hand, the maximum principle implies that if z € C([0,T] x A)NC*(J0,T] x A)N
C12(]0,T] x A) solves problem (2.1.8) then

1zl eqo,mxay < Ifllom):

Applying this estimate and (2.1.10) to the difference v,, — v, we get

lve = villoqorxmy < Ifa = flle), n,m € N,
< Cllfa = fulle, n,m € N.

[vn = vmllcr+arzata ey«
It follows that (v,) is a Cauchy sequence in C1T/22+ ([ T] x A) and in C([0,T] x A), conse-
quently it converges to a function 7 € C'+*/22+([¢, T] x A) N C([0,T] x A). Tterating the same
argument we find a function v € CLE*/*2T*(]0, +o00[x A) N C([0, +00[x A) which solves problem
(2.1.8) with datum f. Again, by uniqueness, v(t,x) = u(t,z). Estimate (2.1.9) is clear from
(2.1.10) n — oo.
(b) The statement follows from [29, Theorem 8.12.1] since the coefficients of A belong to
Cite(h). 0

o7



Next we prove a gradient estimate for S(¢)f, using Bernstein’s method (see [34, Theorem
2.4]). Tt is worth observing that, since A is bounded, this result is well-known. Actually, our
interest is not in the estimate itself but rather in the fact that the constant Cr in (2.1.11) does
not depend on the domain A, when it is convex. This will be an important step in the study of
problem (2.0.1).

Proposition 2.1.5 Let A be a bounded convex open set with C%+% boundary. For all fired T > 0
there exists a constant Cp > 0 independent of A such that

(2.1.11) |IDS(t) f(x)| < 0<t<T, z€A

Cr
1l
for every f € C(A).

PrOOF. We may suppose that V > 1; the general case follows considering the operator
A" = A — 1. Assume first that f € D,(A); set u(t,z) = (S(t)f)(x) and define the function

v(t,x) = u*(t,x) + at|Du(t,x)|*, t>0, 2 €A,

where a > 0 is a parameter that will be chosen later. Then we have v € C*2(]0,T] x A) N
C%1(]0,T] x A); moreover, since f € D,(A), we have u € C([0,T); D, (A)); in particular Du €
C([0,T] x A) and then v € C([0,T] x A).

We claim that for a suitable value of ¢ > 0 independent of A, we have

(2.1.12) v (t, ) — Av(t,z) <0, 0<t<T, €A,
(2.1.13) g—z(t,z) <0 0<t<T, ze€dh;

then the maximum principle implies

v(t,z) <supv(0,2) = ||f|2, 0<t<T, z€A,
CDGK

which yields (2.1.11) with Cp = a~1/2.
The boundary condition (2.1.13) follows from Lemma 2.1.3. For (2.1.12), a straightforward
computation shows that v satisfies the equation

ve(t, 2) — Av(t, ) = a|Du(t, x)] —2Zq” ) Diu(t, z) Dju(t, z) + g1(t, ) + g2(t, x),

3,J=1
where

N

g1(t,x) = 2at Z D, Fj(x) Diu(t, ) Dju(t,z) — atV(x)|Du(t,z)|?
i,j=1
—2atu(t,z)Du(t,z) - DV (x) — V(z)u?(t, x),
N

g2(t,x) = 2at< Z Drqij(z)Dru(t, ) Diju(t, x) Z gij (@) Digu(t :E)Djku(t,x)>.

i,5,k=1 i,5,k=1

Let us estimate the function g;. Using (2.1.3), (2.1.4) and recalling that V > 1 we get for all
e>0

IN

2at(BV + ko)|Du|? — atV|Du|? + 2ayCt(1 + V)|ul? + 2avet(1 + V)| Dul|?* — Vu?
at(28 — 1+ 2ve)V|Du|? + (4ayC.t — 1)Vu? + 2at(ko + ve)| Dul?,

g1

A
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where C. > 0 is a constant. Since 5 < 1/2 we can choose € = £(/3,7) such that (26 —1+2y¢) <0
and we get

(2.1.14) g1 < (dayCat — 1)Vu? 4+ 2at(ko + ve)| Dul?.

Concerning go, from (2.1.2) we have

N N N
Z Dyqi;jDyuDiju < MV([L')Z‘Dkul Z |D;jul
i, k=1 k=1 i,j=1
N 1/2
< MN3/2V($)|DU|< > (D,»ju)2>
ij=1
N 1
< D;:u)> + = M?N3 Dul?
< ) 3 (Dl + PN D

and therefore

N N
g (t,x) < 2at<u(a:) > (Diju)® + iMzNgy(x)|Du|2 —v(x) Yy (Diju)2>

i,j=1 i,5=1
1
(2.1.15) = iatMQN3 v(z)|Dul*.
Estimates (2.1.14) and (2.1.15) imply that

vi(t,z) — Av(t,z) < {a + 2at(ko + ve)) + (;thQN3 — 2> V(x)} | Du(t, z)|?

+(4ayCet — 1)V (z)u’(t, )

IN

{a +2aT (kg + ve)) + <;aTM2N3 — 2) Z/(x)} | Du(t, z)|?

+(4ayC.T — D)V (x)u?(t, ),

for all ¢ €]0,T] and = € A. It is clear now that there exists a sufficiently small value @ > 0 which
depends on vy, M, ko, 3,7, N, T but not on A such that (2.1.12) holds.
If f € C(A) the statement follows easily using the semigroup law, since S(t) is analytic:

V2Cr V2Cr
i 15(/2) flloo < NG

|DS(t)f ()| = [DS(t/2)S(t/2) f ()] < [1floc-

2.2 Construction of the associated semigroup

In this section we prove that there exist bounded solutions to problems (2.0.1) and (2.0.2),
we show that there exists a semigroup (P;);>0 in Cy(Q) which yields the solution of (2.0.1) and
we study the main properties of P;.

We consider a nested sequence {§2,},en of convex bounded open sets with C?T boundary
such that

Ua.=92 o2c (o

neN neN
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We denote the domain of the realization of A in ,, with

(2.2.1) D,(A) = {u € W2P(Q,,) for all p < 0o : Au € C(Q,), g—z(w) =0, z¢€ 8Qn} .

and we denote the associated semigroup with (T,,(¢))¢>0. Here is the existence theorem for
problem (2.0.1).

Theorem 2.2.1 For every f € Cy(Q) there ewists a unique bounded solution u(t,z) of problem
(2.0.1) belonging to C ([0, +oo[xQ) N CHO‘/Q’HD‘(]O7 +00[xQ). Moreover

loc

(2.2.2) u(t,z) = lm (T,,(¢)) f(z), t>0, z€Q.

n—oo

Setting P f = u(t,), then (P;)i>0 is a positive contraction semigroup in Cy(Q). Moreover

(2:2.3) IDP S < <X

o 0<t<T,
_\/ZIIfH

where Cp is the same as in (2.1.11).

PROOF. Set uy(t,z) = (T,(t) f)(z). Let @ C Q be a bounded open set and 0 < ¢ < T'. From
[30, Theorem IV.10.1] it follows that if ” C Q is a bounded open set such that Q' C Q" and
dist (2,92 \ 2”) > 0, then there exists a constant C = C(e, T, Q, Q") > 0 such that

(2.2.4) HunHcl+a/2,2+a([57T]><ﬁ’) < CHuan([o,T]xﬁ”)-

Hence
||un||cl+a/2,2+a([5,T]xﬁ’) < Cllfllos
for all n € N such that Q" C Q,, and therefore the sequence (uy)nen is relatively compact
in C12([e, T x ﬁ/). Considering an increasing sequence of domains [e,,T),] X ﬁ; whose union
is ]0, +00[xQ and using a diagonal procedure we can conclude that there exists a subsequence
(tn, )ken (possibly dependent on f) such that
3 lim uy,, (t,2) =u(t,z), t>0, r€Q,

k—oo

where u € 011(;04/2,%04 (]0, +00[x Q). Moreover (uy,, )ren converges to u in C12([e, T] x ﬁl) for all
0 < € < T and for all bounded open set £’ C €.

We prove that u is a bounded classical solution of problem (2.0.1). The function u is a solution
of the equation u; — Au = 0 in ]0, +00[x €. This follows letting & — oo in the equation satisfied
by un, . Moreover since

lu(t,z)| < |[|flloc, t>0, z€Q,
then u is bounded in ]0, +00[xQ. The boundary condition

%(t’m) =0, t>0, ze€.
follows immediately since u,, converges to u in C12([e, T] x Q) forall0 <e<T and Q CQ
bounded open set. Finally we prove that u is continuous at (0, 2¢) with value f(zg) for all 2o € Q.
Consider two neighborhoods U; C Uy of xg. Set Qg = UgNQ and 21 = U; N2 and suppose that
Qp is convex and has C?T® boundary. Let § € C?(€p) be such that § = 0 in a neighborhood of
QNaly, 6§ =11in Q; and 96/9n = 0 in Uy N IN. Define

v (t,x) = 0(z)un(t, ), t>0, z € Q.
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Then v, satisfies the boundary condition

Ovn
on

(t.2) = 0@) 2, 2) + un(t,2) 2 (2) = 0,

2.2.
(2.2.5) an on

for all t > 0 and = € 99y and for all n such that Qg C €2,,. Moreover v,, satisfies the equation
Divy,(t,x) — Avp(t, ) = Y (t,z), t>0, x € Q,

where

N
Un(t,x) = —up(t,z)(A+V(z))0(x) — 2 Z i () Dijun (t, ) D;6(x).
ij=1
Since T,,(t) satisfies the gradient estimate (2.1.11), it follows that there exists a constant C' > 0
such that

C
2.2.6 () |loo < —= 0<t<T,
(2.2.6) l[¢n ()] i
for all n € N. Let T'(t) be the strongly continuous analytic semigroup generated by the realization
of A in C(€p) with Neumann boundary conditions. From [32, Proposition 4.1.2] it follows that
v (t) can be written as

v (t) =T()(0f) +/0 T(t — 8)n(s)ds.

Since v, = u, in Qy, if (¢,2) €]0, T[xQ; we have

[ty (&, ) = f(zo)| < [T(£)(0F)(x) — f(wo)] +/0 IT(t = 8)¢n (8)llocds-

Using (2.2.6) and letting k — oo we get

t
ut.2) — Flao)| < [TOON)@) — fao)] + [ S-ds
0 Vs

which shows that u is continuous at (0,). Since zo € Q is arbitrary, we conclude that u is
continuous in [0,7] x Q. Thus we have proved that u is a bounded classical solution of problem
(2.0.1).

We claim that the whole sequence (uy,)nen converges to u in C12([e, T xﬁl) forall0 <e < T,
) C Q bounded open set. Indeed consider any subsequence (uy, )ren Of (Un)nen. The previous
argument can be applied to (un, )ren and it follows that there is a subsequence (unkj )jen and a
function v such that v is a classical bounded solution of problem (2.0.1) and (unkj )jen converges
to v. But from Proposition 2.1.1 it follows that w = v. This show that the whole sequence
converges to u.

Writing (P;f)(z) = u(t,z), we get the positivity of P; directly from the positivity of T, (t).
The semigroup law for the linear operators P; follows in a standard way from uniqueness.

Finally, according to Proposition 2.1.5, for all 7' > 0 there exists a constant Cp > 0 such that

C —
IDTA(0)f (@) < Zlflle; 0<t<T, 2 €00,

7

for all n € N. Letting n — oo we get (2.2.3). O

The next proposition shows some continuity properties of P; that will be useful in the sequel.
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Proposition 2.2.2 If (f,)nen C Cp(Q) is a bounded sequence which converges pointwise in §) to

a function f € Cp(Q), then (P, fn)(z) converges to (Pyf)(z) in CY2([e, T x 5/) forall0 <e<T

and all bounded sets ' C Q. If (f,) converges to f uniformly on compact subsets of S, then

(P fn)(x) converges to (P f)(x) uniformly in [0, T) xQ for allT > 0 and all bounded sets ' C Q.
Finally P, can be represented in the form

(2.2.7) (P.f)(z / fly)pt,z;dy), t>0, z€Q,

where p(t, z; dy) is a positive finite Borel measure on ().

PROOF. We may assume that f = 0. Let (f,)neny be a bounded sequence in Cy(9) that
converges pointwise to zero in Q, and set w,(t,z) = P;f,(z). Using the local Schauder es-
timate (2.2.4) and the maximum principle it follows that the sequence (u,) is bounded in
ClHe/22+0([e T] x Q) for all 0 < £ < T and all bounded €' C €. Therefore there exist a subse-
quence uy, , and a function u € C%2(]0, +00[x Q) such that u,,, converges to u in C1:2([e, T xﬁl)
for all 0 < € < T and for all bounded @' C Q. The function u is a bounded solution of the
equation

—Au=0 1in (0,+00) x Q,

and it satisfies the boundary condition

0
ai;; =0 in (0,+00) x O

Now we show that u is continuous up to ¢ = 0 and that u(0,2) = 0 in order to conclude that
u = 0, by Proposition 2.1.1. Let gy, ©; and € be as in the proof of Theorem 2.2.1 and set

vn(t, ) = 0(x)u,(t,z). Then we can write

v (t) =T @) (0fn) + /0 T(t — s),(s)ds

where T'(t) is the semigroup generated by the realization of A in C(€) with Neumann boundary
condition and

Un(t,2) = —un(t,2)(A+ V(x -2 Z ij(x) Dyun (t, ) D;0(x).

7,7=1
Using the gradient estimate (2.2.3) and the boundedness of (f,, )xen it follows that
(2.2.8) [y, (8, 2)| < [(T(#)(0fn)) (@) +CVE, 2€Q, 0<t<T, k€N,

where C' > 0 is a constant independent of & € N. For all 1 < p < 400 the semigroup (7T'(¢))
extends to an analytic semigroup in LP(Qg) (see [32, Section 3.1.1]), and for p > N the domain
of the generator of T'(t) in LP(£2) is embedded in C(Qg); since 0f,, converges to zero in LP ()
it follows that T'(t)(6f,,) converges to zero uniformly in Qg. Thus letting k — oo in (2.2.8) we
get

lu(t,z)] < CVt, 0<t<T, ze,

which implies that u is continuous at (0, ) for all zg € ;. Since Q; C Q is arbitrary, we obtain
that v is continuous at t = 0 with w(0,z) = 0.

Therefore u = 0 and the subsequence u,,, converges to zero in C1?([e, T xﬁ,) forall0 <e < T
and bounded ' C Q. As in the proof of Theorem 2.2.1 one can prove that the whole sequence
(tun)nen converges to zero in C12([e, T] x ﬁl) for all 0 < € < T and bounded Q' C Q, as stated.
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Suppose now that (f,,)nen converges to zero uniformly on compact subsets of Q. By (2.2.8)
we have

lun (8, 2)| < NT()(0fn) oo + OVE< N0 fnlloo + CVE, 2, 0<E<T,
where C' > 0 does not depend on n € N. Therefore for all £ > 0 we have

||Un||0([o,T]x§1) < ||0fnlloc +CVeE+ HunHC([g,T]xﬁl)-

Taking into account the first step of the proof this yields
limsup ([ua | o0 7<) < C/e,
n—oo

that is u,, converges to zero uniformly in [0, 7] x €;. Since §; is arbitrary, the conclusion follows.
We can prove now (2.2.7). By the Riesz representation theorem, for every x € Q there exists
a positive finite Borel measure p(¢, z;dy) in Q such that

(2.2.9) (Rﬁ@%=4f@m@wmw, f € Col9).

If f € Cy(Q2), we consider a bounded sequence (f,,)nen C Co(€2) which converges to f uniformly
on compact sets of Q. Writing (2.2.9) for f,, and letting n — 400 we obtain the statement for
f € Cp(22), by dominated convergence. ]

Using the semigroup law we extend estimate (2.2.3) to the whole half-line [0, 4+o00].

Corollary 2.2.3 For all w > 0 there exists C, > 0 such that

(2.2.10) [DP;flloe < Cu \/ ||f||oo,

Proof. Fix w > 0 and let T = T(w) > 0 such that e**t=1/2 > 1, for all t > T'(w). By (2.2.3)
for all ¢t €]0,T] we have

t>0, fe C},(ﬁ)

HDPflloof =1 £lloe < C IIfHoo, 0<t<T,
' Vi \f
while for all ¢ > T
CT ev
[DP;flloc = [IDPr Pi—r fllec < \f NPt fle < f = (| flloo < T ||fHoo, t>T.
So the statement follows with C, = max {CT, \f} ]

We remark that the semigroup (P;);>0 is not strongly continuous in C(Q) in general: this is
shown by the example €2 = RN nd A = A. As in the case = RY (see Section 5.2), we can
D(

introduce the weak generator (4, D(A)) defined by

D(A) = {f € Cp() : sup I2ef = £l < oo and 3Jg € Cy(Q) such that
te(0,1) t
iy BD@ =10 0, )
Af(z) = }21(1) ( tf)(xt) — f(ac)7 f e D(A), zeq.
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The following results are proved in [48]: if f € D( A), then P, f € D(/T) and fAlPtf = Ptﬁf, for
all t > 0. Moreover one has (0,4+00) C p(A), [|[R(A, A)|| < 1/X and

+oo
(2.2.11) (R(NA) ) (x) = /0 e M(P,f)(z) dt, x €1,

and R(\, A) is surjective from Cy(Q) onto D(A) for all A > 0.

Our aim now is to show that in fact A coincides with the operator A. This result is well
known in the case where = R™. More precisely, one can prove that A C A. If it is assumed
that a Liapunov function exists, then one can check that also the other inclusion holds. We refer
to Section 5.2, where the main properties concerning Feller semigroups in RY are collected. If
Q) is not the whole space, then the same result holds, but in proving it we have to pay attention
to the boundary. Indeed, the main point in the proof below consists in applying suitable interior
L? estimates which involve also a part of 9 (see (2.2.13)).

Proposition 2.2.4 For all f € C,(Q2) and X\ > 0, the function u = R()\,E)f belongs to D(A)
and solves problem (2.0.2). Moreover D(A) = D(A) and Av = Av for all v € D(A).

PROOF. Let f € Cyp(Q) and let u = R(\, A)f. For all n € N, let u,, = Ry(X, A)f € Dy (A),
where R, (), A) is the resolvent of the operator (A, D, (A)), that is

+oo
wn(z) = / AT, (0 )@)dt, = €T,

Taking into account the contractivity of T,,(¢), we have

1
(2.2.12) [unlloo < Sl flloor  AUR[loo < 21| flloc

for all n € N, and then from Theorem 2.2.1 and by dominated convergence it follows that

lim u, = u,
n—oo

pointwise in Q and in LP(€2), for all k¥ € N. Furthermore, by Theorem C.2.1 we have
(2.2.13) [t — [l w20 < Py k)<||un - um||Lp(Qk+1)), n,m >k,

for all p € (1, 4+00), where c(p, k) > 0 is a constant. Consequently u,, converges to u in W2P(Qy),
for all k € N. Hence u € W2P(Q2 N Bg), for all R < oco. Moreover by Sobolev embedding u,,
converges to u in C1(Qy) for all k¥ € N, and then we deduce that du/dn = 0 in 9. Finally,
letting n — oo in the equation Au,, — Au, = f, it follows that Au — Au = f in Q. Therefore u
belongs to D(A) and it is a solution of problem (2.0.2).

In particular, since R(), A) is surjective from Cy(€2) onto D(A), it follows that D(A) C D(A).
Conversely, let u € D(A) and define f = Au— Au € Cy(Q), where A > Ao (see (2.1.5)). Then the
function v = R(A, A\)f is a bounded solution of problem (2.0.2). By Proposition 2.1.2 we have
u = v, and in particular u € D(g) O

A consequence of the gradient estimate (2.2.10) is that D(A) is continuously embedded in
Proposition 2.2.5 D(A) C C}(Q). Moreover for allw > 0 there exists a constant M,, > 0 such
that:

(2.2.14) [Dulloo < My [Julldo [[(A = w) ull%
for allu € D(A).
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PrOOF. Let u € D(A), w > 0 and A > 0. Then the function f = (A +w)u — Au belongs to
Cp(Q) and

u(@) = (RO + w, ) f) (x) = / ORI P @) dt,  ze .
0
By using estimate (2.2.10), we may differentiate under the integral sign obtaining
+oo
Du(z) = / e~ MHIYDP, f)(z)dt, x€Q
0

and

+OO — Mw
Du(z)| < C, / - Zlfle. e

where M, > 0 is a constant. Therefore

mmeM@¢Awm+WA;2M”)

and, taking the minimum over A, (2.2.14) follows. O

With the same technique as in Proposition 2.1.5 we get the following gradient estimate.
Proposition 2.2.6 For every T > 0 there exists Cr > 0 such that
(2.2.15) IDPflloe < Cr (Iflloe +1Dfl) ,  0<t<T,
for every f € C}(Q) (see (2.0.5)).

PrROOF. We may suppose that V > 1; the general case follows considering the operator
A" = A — I. We give the proof by steps; first we prove that there exists a constant C7 > 0 such
that

(2.2.16) IDT,(t)f (@) < Cr(Ifllsc + 1Dfllc) ,  0<t<T, 2 €Qy,

for every n € N and f € C}(Q,). Since D, (A) (see (2.2.1)) is dense in C}(Q,), it is enough to
prove (2.2.16) for f € D, (A).
Let f € D,,(A) and define

w(t,z) = u?(t,2) +a|Du(t,z)]*, t>0, r€Q,,

where u(t,z) = (T,(t)f)(z) and a > 0 is a constant. Then w € C([0,T] x Q,) N C%1(J0,T] x
Q,)NCH%(]0,T) x 2,) and from Lemma 2.1.3 it follows that

—(t,z) <0, >0, x €0,

Moreover w satisfies the equation

wy(t,x) — Aw(t, x) —2qu ) Diu(t, x) Dju(t, x) + hi(t, z) + ha(t, x),

4,j=1
where
hi(t,z) = QaZDF ) Diu(t, ) Dju(t, ) — aV (x)|Du(t, z)|?
=1
—2a]u(t z)Du(t,z) - DV (x) — V(z)u?(t, z),
ho(t,z) = ( Z Dygij(x)Dpu(t, x)D;ju(t, z) i ¢ij(2)D;pu(t x)Djku(t,x)>.
i gy k=1 i, k=1
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The same estimates of the proof of Proposition 2.1.5 show that there exists a value of a > 0
independent of n such that

we(t,z) — Aw(t,z) <0, 0<t<T, z€,.
Therefore the classical maximum principle yields

w(t,z) < sup w(0,z) < (|fI% +allDfI%), 0<t<T, z€8y,,
xeﬁn

which implies (2.2.16) with Cr = a=1/2 Vv 1.
Let now f € C}(Q). For all k € N, let 6, € C;(Q) be a function with bounded support such

that
0<6 <1, [DO|loo <L,

9k21ian, %:OinﬁQ,
on

where L > 0 is a constant independent of k € N, and set f; = i f. Then for all n € N such that
supp (0;) C Q,, we have

Ofk (1) — V%

of
B (z) = 5777

(z)f(z) + ek(x)%(x) =0, z€d,
that is fy € C}(Qn). Then T, (t) fi satisfies estimate (2.2.16), and letting n — 400 we get

IDPfi(@)] < Cr(llfulloe + 1D filloe) < Cr((1+ L) fllos + [[Dfllsc), 0<t<T, z€Q.

Taking into account Proposition 2.2.2 and letting & — oo the statement follows. ]

As a consequence we get the following result which will be used in the sequel.
Proposition 2.2.7 If f € C% (Q) then the function DP,f is continuous in [0, +0c0) x Q.

PROOF. Let f € C,ll (€2). Taking account of Theorem 2.2.1 we have only to prove that DP;f
is continuous at ¢t = 0. Let zy € Q be fixed and Qg, 1, 6 and T'(t) as in the proof of Theorem
2.2.1. We set

o(t,z) = 0(x)(Pef)(x), t=0, z€ o,

and we prove that Dv is continuous at (0, z); since v(t,z) = (P.f)(x) for all z € Oy then the
conclusion follows. We can write

oft) = T(£)(0F) + / T(t - )b (s)ds,
where

W(t,x) = —Pif(@)(A+V(@)0(x) =2 ) q;j(x)DiPof (x)D;6(x).

i,j=1
From Proposition 2.2.6 it follows that
[¥(®)llee < Cr([flloc +[1Dflloc), 0<t<T,
for some Cp > 0, where T is fixed, and then by (2.1.11) we have

ID7(¢ = 5)(6) e < =1l + [Dfl), 0 <5<t<T,
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for some C' > 0. Therefore
|Dv(t, ) — D f(xo)| < |DT()(0f)(x) — Df(x0)| + 2CVE([| fllse + 1D f]lo0);
for all 0 < t < T, x € Q. Taking account of

(2.2.17) lim  |[DT®#)(0f)(xz) — Df(xo)| =0,

(t,z)—(0,z0)
we conclude that Duv is continuous at (0,z0). Relation (2.2.17) is immediate if f € D,(A),
where D, (A) is the domain of the generator of T'(t), as in (2.1.7). Indeed in this case T'(t)(0f)
belongs to C([0,00); Dy (A)) and D, (A) C Cp(Qo). In general we have f € C}(Qo) (see (2.2.5)),
and (2.2.17) follows by approximation, since D, (A) is dense in C}}(Qo). O

Remark 2.2.8 In the case 2 = RY the compactness of P; in C,(RY) has been studied in [39].
The results extend to the case Q # R, with the same proofs adapted to the Neumann problem.
Assume that V = 0, 4. e. consider the conservative case where P;1 = 1. First, P; is compact in
Cyp(Q) for all t > 0 if and only if for all £,e > 0 there exists a bounded set Q' C  such that
p(t,z,9) > 1 —¢ for all z € Q. Secondly, if there exists a positive function 1) € C? such that
. o

Jim @) =40 @) =0, wedn  Aue) < —g(vl), sen

xr|—4o00 Ui
where g : [0, +00[— R is a convex function such that lim,_, . g(z) = +00 and 1/g is integrable
at 400, then P; is compact in C(€2) for all ¢ > 0.

2.3 Pointwise gradient estimates

In the whole section we assume that V' = 0 which implies that P;1 = 1 for all ¢ > 0, by
uniqueness. Actually this is a necessary condition for the estimates that we are going to prove.
Indeed, taking f = 1in (2.3.1) it follows that P11 = 1.

Proposition 2.3.1 Suppose g;j(x) = 6;; for all i,5 = 1,...,N. Then for every p > 1 and
f € ClQ) we have

(2.3.1) |DP, f(z)|P < eP*!P,(|DfP)(z), t>0, z €.

Proor: It is sufficient to prove the case p = 1. For p > 1, we observe that since P,1 =1
the measures p(t, z;dy) given by Proposition 2.2.2 are probability measures, and then Jensen’s
inequality yields

IDPf ()P < (X' P(IDf])(x))" < e*P* P(IDfIP) ().

Let f € C}(Q) and let € > 0 be fixed. Set u(t,z) = P, f(x) and define the function

1
w(t,z) = (|[Du(t,z)]* +¢)2, t>0, z€Q.

From Proposition 2.2.6 and Proposition 2.2.7 it follows that w is bounded and continuous
in [0, 400[xQ. Since u € C-T*/*27%(10, +00[xQ) (see Theorem 2.2.1), we have that w €

loc

C%1(]0, +oo[x ). Finally, from [29, Theorem 8.12.1] we deduce that w € C12(]0, +o0[xQ).
From Lemma 2.1.3 it follows that

O 4,0) =

19
2 2 2 <
n (|Du(t, z)|* +¢) 7877|Du‘ (t,x) <0, ¢>0, e

1
2
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A straightforward computation shows that w satisfies the equation

wt(tagj) - Aw(tvx) = gl(tax) + 92(t7$)

where
1 X
g = (IDul*+¢) 2 ) (DiF;)(Diu)(Dju)
i,j=1
3 N N 2 1 N
g2 = (IDuP+e) 2> (Z(Dju)(piju)> — (IDuP +2) 2 ) (Djju)?
i=1 \ j=1 i,5=1
We estimate now the functions ¢g; and g5. Since
_3 N ? _3 N
(|Dul* +¢) 2 Z (ZDjuDiju> < (|Dul*+¢) 2 |Dul? Z (Diju)2
i=1 \ j=1 1,j=1

=

N
< (|Duf*+¢) 2 Z Dwu

1,j=1
it follows that go < 0. On the other hand using (2.1.3) we obtain

[y

_1 _
g1(t,z) < ko (|Du(t,z)]> +¢) 2 |[Du(t,z)|* = kow — koe (|Du(t,z)|* +¢) 2 .
If kg > 0 we have immediately
g1 (ta l‘) S kOwa
whereas if ky < 0, we have
g1(t,z) < kow — kov/z.

In any case we obtain
— Aw < ko (w — 6.)

5. = 0 kOZOa
< \/E k0<0.

where

Therefore the function v = w — §, satisfies

ve(t, x) — Av(t, x) < ko u(t, x) t>0, zeq,
%Z(w)ﬁo t>0, z €09,
1 _
v(0,2) = (IDf(2)]* +¢)2 — 6. r € Q.
On the other hand, the function
1
o) =eor ((DsE ) @) e a0,
solves the problem
zt(t, ) — Az(t, x) = koz(t, x) t>0, e,
g;(t,a:)z t>0, x €00,
1 _
2(0,2) = (|Df(x)]? +¢)2 x €.

Therefore Proposition 2.1.1 applied to v — z and to the operator A + kol yields v < z, that is
1 1 —
(|Du(t,z)]* + )2 — . < e™'P, ((|Df|2 + E)2> () t>0, zeq.
Letting £ — 0 estimate (2.3.1) with p = 1 follows.
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We now consider the case of variable second order coefficients. Under the assumption

N
(2:3.2) Y (Dgij(a) - €)° < qov(@)[¢], we€Q, EeRY,

i,j=1
which is slightly stronger than (2.1.2), we generalize the previous result when p > 1.
Proposition 2.3.2 Suppose that (2.3.2) holds. Then
(2.3.3) |IDP,f(z)|P < e P,(|Df|P)(z), t>0, €,

for allp > 1 and f € C’%(ﬁ), where o, = pko—i—gqo ifp>2and op = pko—i—ﬁqo if

1<p<2.

PROOF. Let f € Cp(2) be fixed. We first prove the statement for p = 2. Consider the
function
w(t,z) = |Du(t,z)]*, t>0, z€Q,
where u(t,z) = (P.f)(z); then w € C(]0, +oo[xQ) N C%1(]0, +oo[x Q) N CH2(]0, +00[x ), and
from Lemma 2.1.3 we have
w

8—n(t,x) <0, t>0, ze€0.

Moreover it is readily seen that
w(t,x) — Aw(t,x) = fo(t, x),

where
fo=2 ( > DigiDruDiju+ Y | DyF;DyuDju—» qijDikuDjku> :
i3,k 7.k 1,5,k

From (2.3.2) it follows that

1/2 1/2
N N N
i,5,k=1 i,j=1 i,j=1
N 1/2
1/2
< (X ouw?|  (av@)Dul)
i,j=1
a 1
(2.3.4) < w(x) Y (Dyu)® + 0| Dul?,
i,j=1
and then using (2.1.3) we get
N 1 N
fo(t,l‘) S 2<V(l‘) Z (Diju)Q + ZC]O|DU|2 + /4;0|Du|2 — 1/(3:) Z (Diju)2>

i,j=1 ij=1

= (Qko + %O) |Dul? = o3| Dul?
On the other hand the function
2(t,x) = e P,(|IDf|?)(x), t>0, z€Q,
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is the solution of the problem

zt(t,x) — Az(t, z) = 022(t, x) t>0, ze,
0z

hdad = Q
an(t,a:) t>0, x €,
2(0,2) = |Df(x)|? z€Q.

Using Proposition 2.1.1 we can conclude that w < z, that is (2.3.3) with p = 2.
Now the case p > 2 follows easily applying Jensen’s inequality:

|DPf(z)]” < (6"22513t(|Df|2)(96))g < e R(DfIP)(z), t>0, z€Q.

Assume 1 < p < 2. Fix € > 0 and define the function
P
w(t,z) = (|Du(t,z)|* +¢)?,
where u(t,z) = (Pyf)(z). Then w € C([0, +00[xQ) N C%1(]0, +00[xQ) N C12(]0, +00[xQ), and
from Lemma 2.1.3 we have

ow P 9
a—ﬁ(tw) =3 (|Du(t,z)|* +¢)

210
2 18—|Du(t7x)|2 <0, t>0, ze€00.
n

Moreover it turns out that

we(t,z) — Aw(t,z) = fi(t,z) + f2(t, x),
where

p—2
fi=p (IDul*+¢) 2 fo

fa=p(2—p)(|Dul® +e) Z ¢ij DeuDjruDpuDipu
i,5,k,h

Taking into account (2.3.4) for all § > 0 we have

p—2 N N
1
2 2 2 2
f<p (|Du| + E) 2 <(51/($C) Z (DU’LL) + BQOIDU‘ + ko‘Du| — ' Z qiijkuDiku> .
3,7=1 1,5,k=1
As far as f5 is concerned, we set Ag, = Z;ijl ¢ijDjruD;pu and we observe that, since the matrix
A = (Agp) is symmetric and nonnegative definite, we have Zghﬂ AgnDpuDyu < Tr(A)|Dul?,
where Tr(A) denotes the trace of A. Therefore

N

p—4
fo = p2-p) (|Du|2 +z—:) 2 Z Agn DiuDpu

k,h—l

72
< ( ) (|1)U|2 + 5 Z qij ijDku
i,5,k=1
Choosing § = p — 1 we get
22 > do
fitfe < p(IDuP+e) 2 (- D) 3 (Dijw)® + (m + ko ) | Dul?

i,j=1

N

+(1 —p) Z QiijkUDiku>
i k=1

2 p=2

>(|Du| +¢) T |Dul?* = opw — eo, (|Du* +¢) 2,

p
ap—1)"
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which implies
wy — Aw < gp(w — ),

where
0 if o, >0,
0 = P
e2 if o, <0.

Now the conclusion of the proof is the same as in Proposition 2.3.1: applying Proposition 2.1.1
to compare with z(t,z) = e?»'P,((|Df]? + €)2) we deduce

(M}

(IDu(t, 2) +)2 — 6. <P, (IDFP +)2) (@), 120, 2€0,

and then (2.3.3) follows letting e — 0. ]

In the following proposition we deduce from (2.3.3) another type of pointwise gradient esti-
mate. The basic idea of the proof is taken from [7] where it is considered the case p = 2.

Proposition 2.3.3 Assume that (2.3.2) holds. Then for all f € Cy(Q) we have

oovg ! 2 —
(23.5) DPf(x)]? < (2(1_)) P ),  t>0, 2D,
for all p > 2, and

Cp’/o_lap

(2.3.6) IDP,f(z)|P <

» _
= tP/2-1(1 — e=ont) P fP)(x), t>0, ze,

for alll < p < 2, where ¢, =27 /(p(p— 1))?/? and op s given by Proposition 2.3.2. When o, =0
in (2.3.5) and (2.5.6) we replace o,,/(1 — e~ 7%') by 1/t.

PROOF. We prove that T}, (t) f satisfies estimates (2.3.5) and (2.3.6) for z € Q,,, for all n € N;
then the conclusion follows letting n — oo. Fix n € N and set T; = T,,(t), for simplicity. Note
that T} satisfies estimate (2.3.3) for all the functions in C}(Q,).

First we consider the case p = 2. Let f € Cp(Q2), fix £ > 0 and set

®($):TS ((Tt—sf)z)a O§S§t76,

where € > 0. From the analiticity of T; it follows that g = Ty f € D, (A), for all 0 < s <t —¢
(we recall that D,,(A) is the domain of the generator of T}, defined in (2.2.1)). Moreover from a
direct calculation it is readily seen that g € D,,(A) and

' (s) = AT (g%) — 2Ts(gAg) = Ts(A(g*) — 29.Ag) = 2T((qDg, Dg)).

Thus

t—e

Dt —e) = D(0) = T, ((T./)*) — (T.f)* = 2/0 Ts((gDTi—s f, DTy f)) ds.

Now, applying Proposition 2.3.2 to T;_,f we obtain
T.((¢DTi—f, DTi—sf)) = 1o To(|DTi—s f [*) = voe™ 7| DTLf |2,

so that

t=e 2up(1 — e~ o2(t=¢)
Ty (TLf)?) — (Tif)? > 2VO|Dth|2/ o2 gy — 20 )
0

‘Dth|2 )
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and then

Jgual O'Qual

W(TFE((TJ) ) — (T¢f) ) < mthe((TsfF)

DT, f? <

Letting € — 0 we obtain our claim.
If p > 2, using Jensen’s inequality we get

p P
P 0'21/71 2 O'2V71 2 p
DT, f|? < (Mn(ﬁ)) < (2(1_60_t)> T,(|f|P)-

Now assume 1 < p < 2. Let first f € Cp(Q) with f > 6 for some § > 0. Fix ¢, > 0 and
define the function
U(s)=Ts (Ti—sf)?) 0<s<t—e.

Then g =T;_sf > § > 0 and a straightforward computation shows that

% = p—1@

A(g”) = pg" " Ag + p(p — 1)g**(qDy, Dy), ar =P 5y

which imply that g € D,,(A), since g € D,,(A). Moreover
V() = T2 (AW”) ~ pg" " Ag) = plp ~ ) Te((Tr- /)" (aDTi-of. DTi-sf) ).
and hence
@30 Te(T )~ (P =po=1) [ LT DT DT ) ) d
Applying Proposition 2.3.2 and Hoélder’s inequality we get for all 5 € R
IDTifIP = [DT T f|” < e Ti(IDTy—s f17)

= e7%T (|DTffsf|p (thsf>_ﬂ (Tt*Sf)ﬁ)

O Y (e N S NG L) S
p/2

IN

e {1 (DT DTy (3 ) Y {25

Choosing 8 = p(2 — p)/2 and using Jensen’s and Young’s inequalities we get for all § > 0

DT fIP < Valeaps {Ts ((qDthsf, DT,_.f) (thsf)p_Q)}p/Q (T, (Ttisf)p}l—p/Q

IN

vy e (T, ((gDTy_of, DTy of) (To_o f)P~2) Y2 (T (7)) 1P/

IN

IN

v e {E6F T, (gDTomof, DT ) (Lo f)2) + (1= 5) 072 L")
so that
—0ops D P2 p—2 p -2 14
oe” TP |DTfIP < §6PTS ((gDT—s f, DTy—s f) (Ty—s )P %) + (1 - 5) 72Ty (f7).
Integrating from 0 to ¢t — € and using (2.3.7) we get

vo(1 — e~ »(t=9))

| DT, f|”

IA

P52 / T ((qDTy—of, DTy_o f) (To—o f)P~2) ds
2 0

p

n (1 _g) 777 (t — &) T,(f7)

_ P po2Ti E((TEf)p)_(th)p
a 5 p(p—1) " (1

72

Py -2, p
- 2) o (1= T(sY)



and then letting ¢ — 0
-1
vy O p .2 1 P\ 2
DT fIP < 270y (Lob —— (1—7)51»—215 .
| tf| — 1 _ e_g—pt t(f ) <2 p(p _ 1) + 2

r(2—p)

Taking the optimal choice 6 = {p(p — 1)t} 1  we finally obtain

1
Yo Op

[p(p — D211 = =t

(2.3.8) |DTfIP < Ti(f7).

If f € Cy(Q) and f > 0 then (2.3.8) follows by approximating f with f+ 1 and using Proposition
2.2.2. If f € Cy(Q) then

DL fIP = [DL(f* — [P <2271 (IDL(FH)IP + [DT(f7)IP)
21y to, » —\p
S oI e U T
< 2Py0—10p _ T(f7),
[pp — DI/ 21 (1 = e=ort)
which concludes the proof. ]

Remark 2.3.4 If Q = RY, we can consider the case of operators with locally Holder continuous
but not differentiable coefficients. In the case of differentiable coefficients, (2.1.2) and (2.1.3) are
consequences of

(2.3.9) 145 (%) — qi;(y)] < My()|z —yl,  w,yeq,

(2.3.10) (F(z) = F(y) - (x —y) < (BV(2) + ko)|lz —y*, 2,y €.

@ (RY) and satisfy (2.3.9) and (2.3.10), and
assume that V € CLT*(RY) and it satisfies (2.1.4). If one considers a standard family of mollifiers
(e)e>0 and define 45; = ¢ij * ¢ and Fi = F; x (., then the functions ¢;; and Fy are regular and
satisfy (2.3.9) and (2.3.10) with the same constants qo, 8, ko for all € > 0. Therefore ¢;; and
Ff satisfy (2.1.2) and (2.1.3); if A® denotes the operator with coefficients ¢f;, F;¥ and V, and if
Pf denotes the associated semigroup, then Py satisfies all the gradient estimates that we have
proved, with the same constants for all € > 0. As ¢ — 0 we get the gradient estimates for
the semigroup P, associated with the operator with coefficients g;;, £; and V. Indeed from the

interior estimates [30, Theorem TV.10.1] it follows that Pff — P;f in CL2((0,00) x RV).

Assume that the coefficients ¢;; and F; belong to C{

2.4 Consequences and counterexamples

The aim of this section is to show on one hand some consequences of the gradient estimates
proved so far and on the other two counterexamples to some of them.

We start by giving a new formulation of the uniform gradient estimate (2.2.3): now we
precise how the constant Cr depends on the operator A. This allows us to deduce a Liouville
type theorem.

Corollary 2.4.1 Suppose that V =0 and (2.3.2) holds. Then for every f € Cy(2)

=

14 o
0 o2 )> T

< -y -
1Pl < (50 2

73



if o2 #0 and
1
1

2
IDP e < (5o ) Il 020,

Zf 09 = 0.
The proof is an easy consequence of Proposition (2.3.3) with p = 2.

Proposition 2.4.2 Suppose that V =0, (2.3.2) holds and o5 = 2ko + g0 < 0. If f € D(A) is
such that Af =0 then f is constant.

Proor. Let f € D(A) and Af = 0. Then P, f = f, for all ¢t > 0. Applying Corollary 2.4.1
and letting ¢ — +o00 it turns out that D f = 0 and consequently f is constant. ]

Now we assume that (P;);>o extends to a contractive semigroup in L},(Q) = L'(€2, u), for
some measure p. Then, by interpolation, P, extends to a contractive semigroup in LF (Q) for all
1<p<oo.

In this situation, the pointwise gradient estimates of Section 2.3 imply global gradient es-
timates with respect to the LP-norm. Moreover, if (4,, D(A,)) denotes the generator of P in
L?(£2), we deduce that D(A,) embeds continuously in W, ().

Proposition 2.4.3 Suppose that V =0 and (2.5.2) holds. For all f € L}(Q), we have P f €
WiP(Q) and

-

—1 2
Vy O9
24.) 10PNy < () Wl > 0022
1
—1 P
1_1 Cp UV, a
(2.4.2) IDPfll, < t» (1_) Ifllp o t>0,1<p<2.

In the case where o, =0, 0,,/(1 — e 7?t) is replaced by 1/t.

ProoF. Fix p > 2. If f € Cy(Q) N LA () integrating (2.3.5) it follows that P, f € W, ?(%Q)
and it satisfies (2.4.1). If f € LL(Q), take a sequence (f,) C Cp(Q2) N LE(€2) that converges to
fin L2(Q). Writing (2.4.1) for f, — fy, it follows that P;f, is a Cauchy sequence in W,?(€2).
Therefore Pif € WiP(Q) and it satisfies (2.4.1). The case 1 < p < 2 follows similarly from

(2.3.6). O

Corollary 2.4.4 Suppose that V. = 0. For allp > 1 and w > 0 there exists C = C(p,w) > 0
such that

ewt
(2.4.3) IDPfll, < C Vi Ifllp»  t>0,

for every f € LY. Consequently, D(Ap) C WAP(Q) and for all w > 0 there exists M, > 0 such
that

(2.4.4) [1Dullp < Myllullg [I(Ap —w)ulls
for alluw e D(Ap).
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PRrROOF. Fix T > 0. From Proposition 2.4.3 it follows that | DP, f||, < Cpt='/2||f||, for every
t €]0,T[ and f € LE(Q) for some constant Cr > 0. Therefore arguing as in Corollary 2.2.3 we
get (2.4.3).

For the second statement, fix w, A > 0. Let f € Cy(Q) N LE(2) and set u = R(A + w, A)f.
Then

+oo
Du(z) = / eI DP ) (2)dt, xeQ.
0
As in Proposition 2.2.5, with estimate (2.2.10) replaced by (2.4.3), we deduce that
1 1
[1Dullp < Myllullg [|(Ap = w)ull3-

Since Cy(€2) N LE(Q) is dense in LE (Q), R(A, A)(Cy,(Q) N LE(Q)) is a core for (A,, D(Ay)). Thus,
the general case u € D(A,) easily follows from the previous step by approximation. ]

Remark 2.4.5 We note that, in particular, one may take as p the invariant measure of P, (when
it exists), which is, by definition, a Borel probability measure such that

Py fdu = / fdu,
Q Q

for allt > 0 and f € C,(Q) (we refer to Chapter 5 for more details concerning invariant measures).
In this case estimate (2.0.6) and (2.0.8) have interesting consequences. (2.0.6) with p = 1 and
ko < 0 yields the hypercontractivity of (P;) in L?(£, i), which means that for every f € L?(€, u)
one has

(2.4.5) ”PtfHLq(f)(Q,u) <[ fllz2(m)>

where q(t) = 1 + e for a suitable A > 0. One can check that (2.4.5) is equivalent to the
logarithmic Sobolev inequality

2
[ 1P 108111 < 11300108 1 Pl + 5 [ 105

for every f € WH2(Q, u).
(2.0.8) with p = 2 and o5 < 0 yields the Poincaré inequality in W2(£, p)

(2.4.6) [1s=FPau<c [ Dsfan

where f = fQ fdu. As a consequence, one obtains the spectral gap for the generator Ay of (P;)
in L?(Q, 1), which means that

o(A2)\ {0} C {A € C | ReX < —1/C}

where C is determined by (2.4.6).
We do not enter in the details of such consequences, but we limit ourselves to mention them.
We refer to [20, Section 10.5].

Example 2.4.6 This example shows that Proposition 2.3.3 fails in general for p = 1. Consider
the heat semigroup in R

1 _(@=y)?
Pif(z) = (47”5)1/2/Re - f(y)dy, t>0, ze€R
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generated by the operator Au(z) = u”(z). The derivative is given by

1 (z=)?
DPf(z) = ——— | (y — x)e~ " dy, t>0, z€R.
@) = g L= D T Sy v
Fix R > 0. Let f € Cp(R) be such that 0 < f <1, f(x) =0 for # < R— R~ and f(z) =1 for
x > R. Then

1

oo _ﬂ 1 oo _ﬂ
Ptf(O)SW/RRIe = dy, DPtf(O)Z2t<4ﬂ_t)1/2/R ye it dy.

Therefore

1 0 2 o0 12 -
DPIO) 2 exPif0), en=r; [ v Fay([ e Hay
2t Jr R—R-1
Using the De L’Hospital rule, it is readily seen that cg — 400 as R — 4o00. This means that no
pointwise estimate similar to (2.3.5) can hold for p = 1.

With the next counterexample we show that gradient estimate (2.2.3) is not true in general
without assuming the dissipativity condition (2.1.3). In particular we show an example in which
D(A) is not contained in C}(€).

Example 2.4.7 Consider in 2 = R the operator

/

Au(z) =" (z) + B'(z)u/ (z) = e B@ (eBu)u'(x)) , T€ER,

where B € C?(R) is such that Q(z) = e5®@ [*e=B®dt € L1(R). Then, in particular e? € L!(R).
Let D(A) = {u € C?(R) N Cp(R) : Au € Cy(R)}. It follows from [55, page 242] (see also [40,
Proposition 2.1]) that (A, D(A)) is the generator of a semigroup in Cj(R) having e5(
invariant measure.

If f € Cp(R), then the function

#)dx as its

(2.4.7) u(z) =C1 + /3c e~ B® ((72 + /t f(s)eB(s)ds> dt,
0

0

for arbitrary C7,Cy € R, is the general solution of the equation Au = f. Assuming that

(2.4.8) /+Oo f)eP®at =o,

and setting
“+00 0
Cy = —/ f(t)eB(t)dt:/ f(t)ePWat,
0 —0o0

for x > 0 (2.4.7) gives
T +oo
u(r) = G —/ e_B(t)/ f(s)eB®ds dt
0 t

+oo SAx
Ch —/ eB(S)f(s)/ e BWat ds.
0 0

+oo
()] < [Crl + [l Q(s)ds, x>0,
0

It follows that

76



which implies that u is bounded at +oco. Similarly, since Q € L(] — 00, 0[), u is bounded at —oo.
Since Au = f, we conclude that u € D(A). The derivative of u is given by

“+o0
o' (z) = —e_B(z)/ f(s)eB@ds, z eR.

We claim that we can choose the functions B and f so that Q € L'(R), (2.4.8) holds but v’ is
not bounded. To this aim, take

B(z) = —z* 4 log h(z),
where h € C?(R) satisfies

h(z) = e, if m:n—%,nEN,
en <h(x)<1l if n—6,<x<n, neN,
h(z)=1 otherwise,

with .\
B M
n n

As a consequence of this choice

4 T4 4 x _t*
Q(x) - e—:t / et dt, X < 0, Q(,’L‘) = h(m)e—z / Ldt’
0 0

0.
10 T >
Using the De L’Hospital rule one sees that lim, ., 23Q(x) = 1/4 and hence that Q € L*(] —
00,0[). If > 0 then
4 [T et4 4 [T 4 4 e en 6"4
Qlr) < e ° / —dt<e”® / et dt+e® / —dt
(@) o h(t) 0 7;1 n—6, €n
<

3 o] 4 ] (%)
e /”ﬂ et dt + e Z (Sni — e /T et dt + e Z L
0 0

2’
£ n
n=1 n n=1

which shows that @ € L'(]0, +00). Let f € Cy(R) be such that f(z) =1 for all z > 0 and (2.4.8)
holds. Then

1 4
@t ptoo (n—3)" o+l
()] = & / et > &2 / et dt

5n Ty gn n
_ 1)4

(” 1\4

> i e (n + 5) = 27

2ep, 2

which implies that «/(z) is unbounded at +oo.
Therefore we have shown that the function u belongs to D(.A) but not to C{ (R). This means

that the gradient estimate (2.2.3) cannot be true. We note that in this situation the dissipativity
assumption (2.1.3) fails since B” is unbounded from above.
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Example 2.4.8 We see now an example of a Neumann problem in a domain €2 with Lipschitz
continuous boundary. In spite of the lower regularity of 92, the associated semigroup satisfies
the gradient estimate (2.3.1). Consider the Ornstein-Uhlenbeck operator

Au(z) = %Au(m) —x-Du(x), x€RY.

If we set
Nim,a?)(y) L a0 myeRY
m,o y = — ¢ g ) o ) m7y )
(\/277 O')N
L(t,z,y) = N(e 'z, 1—e*)(y), t>0, z,y R,

then the Ornstein-Uhlenbeck semigroup in Cy,(RY) is given by the formula
Ue)@) = [ f@T(tzy)dy, t>0, xR
RN

We fix k € N, 0 < k < N and we consider the domain Q = {z € RY : x3,1,...,2xy > 0}.
We define now the Ornstein-Uhlenbeck operator in 2 with Neumann boundary conditions. For
k+1 < j < N consider the reflections

0; : RN = RN, Oz = (z1,....,xj_1,—Tj,Tj41, -, oN), z€RN,
and the family
A={0=0;,0--00;, k+1<i; <N, i;<inifj<h 1<n<N-—k}
Moreover if f € C,(Q) we define the extension Ef € C,(RY) by
(Ef)(x) = f(@1, s Ty [Ths1]s oo |zn]),  x€RN.

The Ornstein-Uhlenbeck semigroup in €2 is given by the formula

(PN)@) = WED@) = [ (BN, >0, 20,
With the changes of variable y’ = fy and using the identity T'(¢, z,0y) = ['(¢, 6z, y) for all § € A,
we get

(Ph@) = [ fo){re) + S0}y
@ e

(2.09) = [t {rtn) + Y P00}y
@ SN

The Neumann boundary condition can be verified in the following way. Let = € 092 be such that
xzj =0 forsome je{k+1,.,N}and ; #0 for all i € {k+1,..., N}, i # j. Then the outward
unit normal vector is n(x) = —e;. For all § € A the normal derivative of the function I'(¢, 0z, y)

1S
—t

0 (ty; —etxzj)e
87]' (ta exay) - (1 _ e,gt)
where in the right hand side we have the sign + if 6 does not contain the reflection 6; and the sign
— otherwise. Let now 6 € A such that it does not contain the reflection ¢; and let ' = 606 € A;
then if z; = 0 we have fz = ¢’z and

I(t,0x,y), t>0, z,y €N,

0 0 Y
—TI'(¢,0 —TI(t, 0 =2 _T(t,0 —
6.’1/'] ( ) fl;,y) + axj ( ) I,y) (1 _ e—Qt) ( ) LE,y)

y;
ml“(t,e’x,y) =0,
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for all ¢ > 0 and y € Q. Thus the Neumann boundary condition for P;f follows coupling in
the sum in formula (2.4.9) all the maps § € A that does not contain the reflection §; with the
respective maps ' = 60; o 6. In this way all the terms of the sum are considered and the normal
derivative turns out to be zero.

Since DUEf(z) = e tU(DEf)(x) for all x € RY, we have

[DPf(2)| < e "U(IDESf|)(2) = e "R(IDf])(z), t=0, z€Q,

that is P, satisfies the gradient estimate (2.3.1) for p = 1 and hence for all p > 1.
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Chapter 3

Gradient estimates in Dirichlet
parabolic problems in regular
domains

The aim of the present chapter is to prove global gradient estimates for the bounded classical
solution u to the following Dirichlet parabolic problem

ug(t,z) — Au(t,z) =0 te(0,T), €9,
(3.0.1) u(t, &) =0 te(0,T), & €09,
u(0,2) = f(x) T €,

where €2 is an unbounded smooth connected open set in RY, f a continuous and bounded function
in Q and A a second order elliptic operator, with (possibly) unbounded regular coefficients, i.e.,

N N
(3.0.2) A=) q;Dij+ Y FD; -V =Tr(¢D? +(F,D)-V.
i,j=1 i,j=1

More precisely, we determine conditions on the coefficients of A yielding the following estimate
(303) IDu(t, e < s € (0.7)
- ULy )]loo > [’ep) ) .
Vi

In Chapter 2 we have already studied gradient estimates for parabolic problems with Neumann
boundary conditions. The main tool was Bernstein’s method, which consists in applying the
maximum principle to the function u2 + at|Du,|?, where (u,) approximates the solution. The
crucial point was that the convexity assumption on €2 ensured the boundary condition BIDTZ"P <0.
Here, we cannot proceed exactly in the same way, since for a given function v satisfying v = 0 on
09, it is not possible to establish a priori the sign of |[Dv|? on 9. Hence, after having proved
existence and uniqueness of bounded classical solutions u to (3.0.1) (Section 3.2), our first aim is
to obtain boundary estimates for Du. This is done by comparison with certain one dimensional
operators, which arise by introducing the distance function from the boundary. Then, using
Bernstein’s method, one shows that the boundary estimates can be extended to the whole €2
(Section 3.3). However, the method works (and gives (3.0.3) with the right dependence of all
constants involved), if one already knows that Du is bounded up to the boundary of € for positive
t, see Proposition 3.3.3. To circumvent this difficulty, we subtract to the operator A a potential
eW, where W is big enough to dominate the growth of F and, following ideas in [11], [12], [41],
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we show that the perturbed operator A, = A — eW generates an analytic semigroup in LP((2)
and characterize its domain. Choosing a large p and using Sobolev embedding, it follows that
the bounded classical solution wu. of problem (3.0.1) with A. instead of A and a smooth f has
a bounded gradient in [0,7) x Q. Therefore Proposition 3.3.3 applies and gives (3.0.3) for u,
with a constant C' independent of €. An approximation argument then completes the proof. This
program is carried out in Sections 3.4 and 3.5. In Section 3.6 we present a counterexample.

3.1 Assumptions and main result
Let us collect our hypotheses on € and the coefficients of A.
Hypothesis 1.1

(i) © is a connected open subset of RY with uniformly C2*“-boundary for some 0 < a < 1,
see Appendix B.

(ii) qij, Fy,V € C*(Q N Bg) for every i,j =1,..., N and R > 0; moreover V > 0 in .

(iii) qi; = q;i € CL(Q), and there exists vy > 0 such that Zf\fj:l qij ()& > vo|€f?, for every
re€Qand £ € RV,

(iv) There exist a positive function p € C2(Q) and \g > 0 such that

lim  p(x) =400, Ap—Alop <0.
|z|—+o00, zEQ

The Lyapunov map ¢ introduced in assumption (iv) ensures that maximum principles hold,
see Appendix A. Moreover condition (i) ensures that the distance function

(3.1.1) r(x) = dist(z,09Q), € Q
is a C?-function with bounded second order derivatives in Qs, for some § > 0, where we set
Q5 = {z € Q: dist(z,090) < 6},

see [26, Lemma 14.16] and also Appendix B (note that (i) implies that the principal curvatures
of 992, when 01 is considered as an hypersurface, are bounded). Our main result will be proved
assuming also the conditions listed below.

N
(3.1.2) > DiFj()&& < (sV(x) + k) €, 2€Q, £eRY,
i,j=1
N N
(3.1.3) > gij(@)Dijr(z) + > Fi(z) Dir(x) <M, x€Qs (for some § > 0),
ij=1 i=1
(3.1.4) DV (z)| < B(1 +V(z)), =€,
(3.1.5) |F(z)] < cre2l®l 2 eq,

for some constants k, M, 3,c1,c2 € R, s < 1/2.

Observe that, since ¢;; € CL(Q2) and Q is uniformly C?, (3.1.3) is only a condition on the
component of F' along the inner normal to J€2 in a neighborhood of 0f2.

Let us explain our main assumptions in the particular case where A = A + (F, D). The
dissipativity condition on F' (3.1.2) is quite natural since a one-dimensional counterexample to
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gradient estimates has been constructed in Example 2.4.7 when it fails. Observe also that, if
F = D®, then (3.1.2) is a concavity assumption on ®.

Condition (3.1.3) means that the component of the drift F' along the inner normal is bounded
from above in a neighborhood of 9. Even though its connection with gradient estimates is not
evident from an analytic point of view, its necessity is clear if one considers the Markov process
governed by the operator A under Dirichlet boundary conditions. In fact the solution u(t,z) to
(3.0.1) corresponding to f = 1 represents the probability that the process starting from x €
at time ¢ = 0 is not absorbed by the boundary up to time ¢. If the (inner) normal component of
F' is unbounded from above in a neighborhood of 9, one expects that u(t,z) — 1 as |z| — oo
along the boundary. Since u(t,£) = 0 for £ € 09, it follows that u(¢,-) is even not uniformly
continuous, see Example 3.6.1 where this heuristic argument is made rigorous.

Finally, we point out that the growth assumption (3.1.5), even though not very restrictive,
seems to be a technical one in order to use our methods, see the proof of Theorem 3.1.2.

We stress the fact that we use mainly analytic tools and we do not need any convexity
assumption on ). Moreover we note that our operator A may contain a potential term V' which
is difficult to treat by probabilistic methods.

Remark 3.1.1 Observe that assumption (iv) of Hypothesis 1.1 follows from the positivity of V'
and the boundedness of ¢;;, when condition (3.1.2) holds with s = 0. In fact (3.1.2) implies, by
differentiating the function ¢t — (F(tx),z), that (F(x),x) < (F(0), ) + k|z|?, hence the function
o(x) = 1+ |x|? satisfies (iv), for a suitable Ag.

To specify the dependence of some constants we also introduce the quantity

b= (S ay?) "
_21618 P QZJ X

which is finite, since ¢;; € C} ().
We will prove the following theorem.

Theorem 3.1.2 There exists a constant C depending on vg,k,s,h, N,M, 3,6, T such that the
bounded classical solution u of (3.0.1) satisfies

IDu(t, oo < j}wnw, te (0.T), feCyQ).

3.2 Existence and uniqueness

In this section we show that (3.0.1) has a unique bounded classical solution, where by bounded
classical solution of (3.0.1) we mean a function u € C12(Q), such that u is continuous in Q\ 9;..Q,
bounded in @ and solves (3.0.1). To this purpose we use both classical Schauder estimates and
a nonstandard maximum principle for discontinuous solutions to (3.0.1), see Theorem A.0.13.

Proposition 3.2.1 Assume Hypothesis 1.1. If f € C*t*(Q) has compact support in Q, then
problem, (3.0.1) has a unique bounded solution u which belongs to C1t/%2+((0,T) x (2N Bg))
for every R > 0. Moreover, ||ullco < ||flloc and w > 0 if f > 0. Finally, Du belongs to
Ctra/2.24e (e, T) x Q) for every e > 0 and Q' open bounded set with dist (', RN \ Q) > 0. In
particular, Du € C*%(Q).

PrOOF. Uniqueness is immediate consequence of a classical maximum principle, see Proposition
A.0.12.
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To prove the existence part, we consider a sequence of uniformly elliptic operators with
coefficients in C*(Q),

N N
A" = Z QijDij + ZanDz — V”u,
ij=1 i=1
such that F* = F;, V" =V in QN B, V" > 0 and let u,, € C't*/2:2+2(Q) be the solution of
(3.0.1), with A™ instead of A (see e.g. [30, Theorem IV.5.2]). The classical maximum principle
yields ||unlloo < || flloo- Let us fix R > 0 and observe that, since € is unbounded and connected,
dist(Q \ Br+1,2N Bg) > 0. Since A" = A™ = A in QN By for n,m > R+ 1, by the local
Schauder estimates [30, Theorem IV.10.1], there exists a constant C' such that

[un — wmllcrvarz2raqoryx@nBr)) < Cllun — tumlloo.r)x@nBrir)) < 201 flloo-

Therefore (u,,) is relatively compact in C12([0,T] x (2N Bg)). Considering an increasing se-
quence of balls and using a diagonal procedure we can extract a subsequence (uy, ) convergent to
a function u € C1+/2:2+((0,T) x (2N Bg)) for every R > 0 which solves (3.0.1) and satisfies
[[t)loo < || f]loo- By the maximum principle, u > 0, whenever f > 0.

In order to prove the last part of the statement it is sufficient to apply [29, Theorem 8.12.1]
directly to the operator D; — A. O

We now introduce linear operators (P;);>o via the formula (P; f)(z) = u(t, z) for f € C?*T(Q),
with compact support in 2, where w is the solution of (3.0.1) given by the above proposition. Each
operator P, is positive and contractive with respect to the sup-norm, by the above proposition.

Now we consider the case where f is only continuous and bounded in 2 and extend the above
maps (P;)¢>0 to a semigroup in Cy(2).

Proposition 3.2.2 Assume Hypothesis 1.1. If f belongs to Cy(Q), then problem (3.0.1) has a
unique bounded classical solution u. Moreover, u(t,z) — f(x) as t — 0, uniformly on compact
sets of Q.

PrROOF.  Uniqueness is an immediate consequence of a nonstandard maximum principle, see
Theorem A.0.13. To show existence, we consider a sequence (f,) € C§°(Q) convergent to f
uniformly on compact subsets of Q and such that || fn|lco < ||f]lec. Let u, € C'F/22+((0,T) x
(QN Bg)), for every R > 0, be the solution of (3.0.1) with f,, instead of f, given by the previous
proposition. Let us fix € > 0. By the Schauder estimates [30, Theorem IV.10.1], as in the proof
of Proposition 3.2.1, we get a constant C' such that

un = umllcr4arz24a e,y @nBr)) < Cllun — tunllc(o.m)x@nBrsr)) < 201 flloo

and then, by a compactness argument, we can extract a subsequence (unk) convergent to a
function u € C*+/2.24e((e, T)x (QNBR)) for every £, R > 0 which solves the equation u; —Au = 0
in @ and such that u(t,z) = 0 for t € (0,7),z € 9Q. In the following, we write u = P.f, for
f e Cr(Q).

It remains to show that u(t,2) — f(x) as t — 0, uniformly on compact sets of Q.

Assume first that f € Co(Q2), i.e. f vanishes on 9 and at infinity. Then we can choose (f,)
as above in such a way that ||f, — f|lcc — 0. The maximum principle implies that (u,) is a
Cauchy sequence in C([0,7] x ), hence u,, — u uniformly in @ and u(0,z) = f(z) for every
z €.

Let K C Q be a compact set and n € Cp(£2),0 < n < 1, be such that n = 1in K. Then P;n — n
as t — 0, uniformly in 2, hence Py — 1 uniformly in K and, since 0 < P,(1 —n) < 1 — P,
we get P(1 —n) — 0 uniformly in K. For f € Cy(Q), writing P,f = P,(nf) + P.((1 —n)f) and
observing that P;(nf) — nf uniformly in Q and that P,((1 —»)f) — 0 uniformly in K we obtain
that P,f — f, uniformly in K. ]
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Corollary 3.2.3 The family (P;);>¢ is a semigroup in Cp(€2).

PRrROOF. The semigroup law P;;s = P, P; is immediate consequence of the uniqueness statement
in Proposition 3.2.2. ]

Observe that the semigroup (P;);>¢ is not strongly continuous. In fact P,f — f ast — 0,
only uniformly on compact subsets of Q. However, P;f — f uniformly in Q for every f € Cp(Q).

3.3 Some a-priori estimates

In the following proposition we prove a preliminary boundary gradient estimate for bounded
solutions of problem (3.0.1). We need the following lemma on gradient estimates for certain
one-dimensional operators.

Lemma 3.3.1 Let § >0 and g : [0,+00) x [0,d] — R be the solution to

ge(t,m) = vogrr (t, 7)) + Mg, (t, 1), t>0, re(0,9),
(3.3.1) g(t,0) =0, g(t,0)=1 t >0,
g(0,r) =1 r € (0,0).

Then g > 0, g-r <0 and for any T > 0 there exists cy > 0 such that

0<g(t,r) < C—TT, 0<t<T, re(0,9).

Vit
PROOF. We define the operator (B, D(B)) in C([0,4]) by

Bu=uvou”" + My  D(B) = {u € C?([0,6]) : u(0) = 0, (Bu)(5) = 0}.

Let us show that (B, D(B)) generates an analytic semigroup S; of positive contractions in C([0, d])
(note that Sy is not strongly continuous since the domain D(B) is not dense in C([0, d]).

Let D = {u € C?([0,6]) : u(0) = u(§) = 0}. Then (B, D) generates an analytic semigroup
(T})i>0 in C([0,6]). Set ¢(r) = a [ e=™*/*ods. Then By =0, 1(0) = 0 and ¢(5) = 1, if a is
suitably chosen. It is easily seen that S;f = Ti(f — f(0)¥) + f(6)¢ is the analytic semigroup
generated by (B, D(B)) in C([0,4]). Since the regularity properties of S;f coincide with those
of Ty f, it follows that w(t,r) = Sif(r) is a C*° function for ¢ > 0, continuous at the points
(0,7), with 0 < r < ¢. The maximum principle, see Theorem A.0.13, now yields positivity and
contractivity of S;.

We can prove the stated properties of g. Since g = S;1 we have 0 < g < 1. Moreover
g(t+s,-) = Sersl = 5:S51 < S¢1 = g(t,-), hence g is decreasing with respect to ¢t and g; < 0. To
prove that g, > 0 we write

M M. d /M
o= 0o+ ) =L () <0
140 dr
r € (0,0). Then e%rgr is decreasing. Since ¢(t,6) =1 and 0 < g < 1, we have g,(¢,d) > 0, hence
gr > 0. Now the identity g; = vog + Mg, yields g, < 0.

Since (St)i>o0 is analytic, for 0 < ¢t < T we have ||[D?g(t,-)|| < crt™!, hence | Dg(t,-)|| <

crt~1/? and the inequality g(t,r) < cpt—/?r follows, since g(t,0) = 0. O

Proposition 3.3.2 Assume Hypothesis 1.1 and (3.1.3). Then there exists vy depending on vy, M, 0, T
such that every bounded classical solution u of (3.0.1), differentiable with respect to the space vari-
ables on 0, T[xY, satisfies the estimate

v

(33:2) [Du(t, §)| < —=[fllec, £ € (0,T), & € Q.

S

t
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PROOF. For each x € Qs let £(x) be the unique point in 9 satistying |« —&| = r(z). Note that

r = &(x) +n(&(x))r(x),

where n(¢) is the unit inner normal to 0Q at £ € 0. Recall also that Dr(x) = n({(x)), z € Qs.
See Appendix B for these properties of the distance function r. To proceed we remark that, since
u =0 on 01,

Du(t, &) = 0yu(t,§), £€09, t>0.

In order to prove the claim it is enough to show that

(3.3.3) lw(t,z)| = w(t,z) < 2 r(z), te(0,T), x €y,

Vit

where w is the solution to (3.0.1), corresponding to f = 1, and 7 depends only on the stated
parameters. Indeed, in the general case it is sufficient to observe that, for x = £ + r(z)n(§),
& € 00 fixed,

|Pif(x) = P f(&)] = [Puf ()] < Bilfl(2) < [flleo PeL(2) = [ fllocw(t, 2) (@)l fllo0

~y
< —r
TVt
and (3.3.2) follows easily dividing by r and letting » — 0. To prove (3.3.3) we compare w with
an auxiliary function z, using Theorem A.0.13. Let

z(t,x) = g(t,r(x)), =€y,
where g : [0, +00) x [0,d] — R is the solution to (3.3.1). Now Lemma 3.3.1 yields
2(t,7)| = g(t,r(x)) < %r(m), 0<t<T, zeQy.

Thus we have only to prove that
(3.3.4) w(t,z) < z(t,x), €, te(0,T).

To verify (3.3.4), we consider v = z—w in the cylinder Qs = (0,7)xs. It is clear that v belongs to
C12(Qs), is continuous in Q4 \ 9. Qs, bounded on Qs and nonnegative on 8'Qs\ 1 Q5. Moreover

’Ut*AU:Zt*Azzgt*VogrrfMgT

N N
+<VOgrr + Mgy — grr Z @ijDirDjr — g,(F, Dr) — g, Z qij Dijr + VZ)

i,5=1 i,7=1
N N
= Grr (Vo - Z qijDiTDjT) + gr (M - Z gi; Dijr — (F, Dr}) +Vz >0,
ij=1 i,j=1

since z,g, > 0, g < 0. The maximum principle Theorem A.0.13 now implies (3.3.4) and
concludes the proof. ]

The following proposition is an a-priori estimate on Du, where u is the bounded classical
solution of (3.0.1). Its importance relies on pointing out the dependence of the constant C' below.

Proposition 3.3.3 Assume Hypothesis 1.1, (3.1.2) and (3.1.4). Then there exists a constant
C depending on vy, h, k, s, 3, T with the following property. Fvery bounded classical solution u of
(3.0.1) such that

(i) Du belongs to C*%(Q),
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(i4) /t|Dul is continuous in Q \ 9;,Q, bounded in Q and verifies tlir% Vi Du(t, )| =0, z € Q,

(iii) u satisfies (5.3.2)

fulfills the estimate
(3.3.5) 1Du(t, Yoo < S| flloer te (0,7
.J. ) oo = \/E oy ) *

PRrROOF. Changing V to V + 1 (hence u to e *u) we may assume that |DV| < V. We use
Bernstein’s method and define the function

v(t,x) = u*(t,x) +at|Du(t,z)|*, t€(0,T), v €,

where a > 0 is a parameter to be chosen later. Then we have v € C12(Q), v is continuous
in Q\ 9:,Q, bounded in @ and v(0,z) = f2(x). We claim that for a suitable value of a > 0,
depending on vy, h, k, s, 3, T we have

(3.3.6) ve(t,z) — Av(t,z) <0, 0<t<T, zeq
This, by Theorem A.0.13, implies that

o(t,z) <sup |v(0,2)|+  sup  at|[Du(t, &> < (1+ar?)|flI2,
e £€aN, te(0,T)

0<t<T, z€Q,and (3.3.5) follows with C' = (a=! +~?)1/2.
To verify inequality (3.3.6), note that, by a straightforward computation, v satisfies the equa-
tion
N
Ve — A’U = a|Du|2 -2 Z qU DzuDju +91 +gg,

4,g=1

where

N
g1 at<2 > DiF; DiuDju — 2u(Du, DV) — V|Du|2> — Vu?,

i,j=1

N N

go = 2at< Z DkqijDkuDiju — Z qijDikuDjku>.
i,,k=1 i,4,k=1
Using the assumptions one has, for all e > 0, x € Q, ¢t € (0,7,
v — Av < (a — 2uy + 2akt + at(2s — 1)V) | Dul?
+2at(h|Du||D2u| + BV |u|| Du| — V0|D2u|2) v
< (a — 2uy + 2akt + at(2s — 1)V) | Dul?

+at(hs:71|Du|2 + he|D?ul* 4+ Be ' Vu? + BeV|Dul? — 21/0|D2u|2) —Vu?,

where | D?u|? = Z?’;:l |D;;jul?. Since 2s < 1, choosing € and a small enough we get immediately

(3.3.6). O

87



3.4 An auxiliary problem

In this section we keep Hypothesis 1.1 and condition (3.1.4) and write our operator in diver-
gence form

N
A=Ag+> GiD; -V,

i=1

N N
where AO = Zi,j:l Di(qiij) and Gi = Fi — Zj:l quij-
Moreover, we assume that the potential V' and the drift G satisfy the inequality

(3.4.1) |G(z)| < oV (2)2 + ¢, x €,

for some o > 0 and show generation of an analytic semigroup in L?(Q), for 0 < min{2vy(p—1),2}.
We follow the ideas of [11], [12] and [41] where the situation 2 = RY is considered.

For simplicity, we assume throughout this section that 2 < p < oco. Observe that, since
¢ij € CL(Q), condition (3.4.1) holds equivalently for F' or G with the same constant o, possibly
with a different choice of ¢, .

We endow A with the domain

Dy, ={ueW?P(Q)NnWyP(Q): Vu e LP(Q)}
which is a Banach space when endowed with the norm
lullp, = lullw2»@) + VUl o),
and remark that the set
D={ueC>9): ujpq = 0,supp u compact in Q}

is dense in D,,.
We need the following interpolative lemma which is analogous to [41, Proposition 2.3].

Lemma 3.4.1 Assume Hypothesis 1.1 and that condition (3.1.4) hold. Then there exists C
depending on N,p, 3 and the coefficients (q;j) such that for every 0 < ¢ < 1 and u € D,,
2 < p < o0, the following inequality holds:

IV/2Dull, < ell Agull, + Ce=(Jull, + [ Vul,)-

ProoF. It suffices to establish the inequality above for functions u € D. Moreover, changing V'
with V' + 1, we may assume that |[DV| < gV < BV3/2,
Integrating by parts and using the fact that u = 0 on 99 and p > 2 we have

!/VQDWP
Q

/ V% \Dku\pﬂDkuDku
Q

= _g/ Vg*leVu|Dku|p72Dku— (P_l)/ Vgu‘DkquQDkku
Q Q

IN

P [ ulipad VIV 4 0= 1) [ VDl 2Vl Disad
Q Q

ﬂ2p</ﬂ Vg|DkU|p>1_1/p(/Q Vp|u|p)1/p
b - 1)(/Q Vngkulp) 12/p(/QVp|u|p) 1/p</Q |Dkku|p) 1/p.
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Setting « = ||VY/2Dyullp, y = || Vullp, 2 = || Drrull, we have obtained x? < (8p)/2xy + (p— 1)yz,

hence 5
x < Epy—i- Vp—1Dyz < Cely4ez

for ¢ < 1, with C depending on 3, p and the statement follows with ||D?u||, instead of || Agul,.
To complete the proof it suffices to use the closedness of Ay on W2P() N W, (Q). O

Proposition 3.4.2 Assume Hypothesis 1.1, condition (3.1.4) and suppose that (3.4.1) holds with
o satisfying o < min{2v(p — 1),2}. Then (A, D,) is closed in LP(Q), 2 < p < co. Moreover,
there is a constant Ao depending on c, with the following property: for every X\ > Ao there exist
C1,Cy depending only on X\, N,p, 3,0,c, and the coefficients (¢;5), such that for every u € D,
lullp, < CillAu — Aull, < Cofjullp,
Finally, if co =0, then A\g = 0 and the inequality A||ull, < ||(A — A)ul|, holds.
PrOOF. By density we may assume that v € D. The right hand side of the above inequality
follows immediately from Lemma 3.4.1, since |G| < oV/? + ¢,.
Changing V with V+w for a suitable large w, we may assume that ¢, = 0 and that |DV| < V.
Let us multiply the identity f = Au — Au by u|u|P~2. Integrating over Q we get, since u = 0
on 012,

J OV + -1 [ aslap 2Dy < Il + o [ V2Dl
Q Q Q
The last term can be estimated with

U(AV|u|p)l/2(Au|p_2|Du|2)1/2 < g(/Q V\u|p+|u\p_2|Du\2).

Since o < min{2yy(p — 1), 2} we easily obtain, for A > 0, Allull, < ||f|l,- To estimate Vu we
observe that

N
[ aqvr g = =Y [ gD (v g ?)
Q Q

ij=1

N
—(p— 1)/ Z qi; VP Hu|P~2DjuDju
Q.

ij=1

N
—(p - 1)/Q Z qiij_2u|u|p_2DiuDjV.

ij=1

Multiplying the identity Au — Au = f by VP~ lu|u|P~2 and integrating over {2 we obtain
/(Avp—l VYl + vo(p — 1)/ VP12 Dy
Q Q
< /(Avp—1 VPl + (p— 1)/ VoL u|P~2q(Du, Du)
Q Q
— 1) / VP=2yjufP~2q(Du, DV + / VP ufulP~2(G, Du) + / FVPNufulr 2,
Q Q Q

where ¢(Du, DV) = Ef\szl ¢ijD;suD;V and similarly for ¢(Du, Du). Next, observe that

‘/ Vp71u|u|p*2<G,Du)’ < 0/ VP=1/2|yP=1| Dyl
Q Q
1/2 1/2
< o /Vp_lup_2Du2 /Vpup
(L vt =2iou) ([ velul)
<

g P=1|,,|P—2 2 P gy
2(/91/ [P~ Dul +/QV|u|)
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and that, for a suitable K depending only on |/¢;;]c,

/\u|p_1Vp_2|q(Du,DV)| < K/ WP~1VP=2| Dul| DV|
Q Q
1/2 1/2
< ([ veriapoul) ([ ueve)
Q Q
<

Kﬂs(/ﬂ vpfl\u|P*2|Du|2+/va|u|P) +CE/Q|U|P.

In the last inequality we have used the inequality t?~! < et? + C..

Since o < min{21y(p — 1), 2}, taking a small € one concludes that |Vu|, < C|f|,, with C
as in the statement.

We now use Lemma 3.4.1 to estimate the second order derivatives of u. We have

G, Du)ll, < ollV'2Dull, < ofel|Aoully + Ce™ull, + Ce™H|[Vull,)
o(ellfllp + (G, Dully + el Vull, + eXllull, + Ce™ lull, + Ce™[Vully)

IN

hence, taking a small e, (G, Du)l, < C|fll, and |[Agull, < C|[f], by difference. Using

the closedness of Ag on W2P(Q) N WO1 P(Q) given by the Calderon-Zygmund estimates, we get
| D?ull, < C||fllp, with C as in the statement. O

Proposition 3.4.3 Assume Hypothesis 1.1, condition (3.1.4) and suppose that (3.4.1) holds with
o satisfying o < min{2vy(p — 1),2}. Then (A, D,) generates a semigroup in LP(Q), 2 < p < 0.

PROOF. As in the proof of Proposition 3.4.2, we may assume that ¢, = 0, |DV| < 8V, so that
Mullp, < ||Au — Aull, for A > 0. By the Lumer-Phillips Theorem it suffices to show A — A is
surjective for A > 0.

Setting for € > 0
14 G

V.= Ge= —n,
fol+4eV S V1+eV

it is immediate to check that V, G satisfy

IDV.| < BV, |G| <oV22

Since V., G. are bounded, the operator A. = Ay + (G, D) — V. with domain W2 () N W, *(Q)
generates an analytic semigroup in LP(2) see [32, Theorem 3.1.3], which is contractive by Propo-
sition 3.4.2.

Given f € LP(Q), let u. € W2P(Q) N W, *(Q) such that (A — A.)u. = f. By Proposition
3.4.2, |luell2,p, [ Veuell, < C|If|lp with C independent of . By weak compactness we find &,, — 0
such that (u., ) converges weakly to a function u in W2?(Q) N W, ?(Q) and strongly in W, (Q).
Moreover we may assume that (u.,) — u a.e. in . By Fatou’s lemma |Vull, < C||f||,, hence
u € D, and it is easy to check that (A — A)u = f. O

Let us show that the above semigroup is analytic.

Theorem 3.4.4 Assume Hypothesis 1.1, condition (3.1.4) and suppose that (3.4.1) holds with
o satisfying o < min{2vy(p — 1),2}. Then (A, D,) generates an analytic semigroup in L?(Q),
2 <p<oo.

PrOOF. We keep the same notation of the proof of Proposition 3.4.2. We may assume that
co = 0. Let u € D and set u* := u|u[P~2. Integrating by parts, since u = 0 on 92, a lengthy but
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straightforward computation yields
—Re </ (Au)u*) =(p—- 1)/ |u[P~*q(Re(uDu), Re(WDu))
Q Q
+/ |u|p_4q(Im(EDu),Im(ﬂDu))—/(G,Re(ﬂDu)|u|p_2>+/ VlulP
Q Q Q

and

< (p—2)/ﬂ|u|p74q(Re(ﬂDu),1m(ﬂDu))+/Q|G\|u|p72\lm(ﬂDu)|.

‘Im /Q (Au)u*

Condition (3.4.1) implies

/|G||u|p*2|fm(apu)| < a/v%|1m(apu)||u|%|u|%"‘
Q Q

1

o VW); ([ 1= titm@@our )

— (/ vw)é (f |uP-‘*qwn(wu»Im(uDu»)é

IN

IN

and

IN

/|G||u|p*2|Re(aDu)| a/v%\Re(nDu)Huﬁm\%
Q Q

<o/ vw)é (f |u|f”4|Re<uDu>2)é

< \%0 ( /Q V|u|p); ( /Q |u|p_4q(Re(uDu),Re(uDu)))2.

If we put B? = [, |u[P~*q(Re(uDu), Re(uDu)), C* := [, [u[P~*q(Im(uDu), Im(uDu)), and
D? := [, Vl|ulP, then we deduce from the previous estimates

—Re (/Q(Au)u*> > (p— 1- i)BZ +C%+ (1 - %)DQ.
Therefore,

‘Im (/Q(Au)u*> ’ < (p—2)BC + \%OCD

and one can find x > 0 such that

o fo) )

for every u € D and, by density, for every u € D,,. Since we already know that (A, D) generates
a semigroup, by [44, Theorem 3.9, Chapter I] the proof is complete. ]

Remark 3.4.5 Observe that all the results proved until now, in this section (but not the next
lemma), hold assuming less local regularity on the coefficients. For example ¢;; € CL(Q), F €

L (Q),V € CY(Q) suffice. Moreover, the existence of the Lyapunov function ¢ is not necessary.

We call (T}):>0 the semigroup generated by A in LP(2). For the proof of our main result we
need some regularity results of the function u(t, z) = (Ti.f)(x).
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Lemma 3.4.6 Assume that the conditions of Theorem 3.4.4 hold for a fizted p > N + 1 and let
f e CgP(Q). Then the function u(t,x) = (T3 f)(x) is the bounded classical solution of problem
(3.0.1) and therefore has the regularity properties stated in Proposition 3.2.1. Moreover, Du is
continuous and bounded in Q.

PROOF. Since f € D,, the function ¢t — T} f is continuous from [0,7] to W?P(Q2) and Sobolev
embedding implies that u, Du are bounded and continuous in . To complete the proof, we have
to show that u € C12(Q).

Let us fix € > 0 and open bounded sets Q, Qs such that Q; C Qs and Q5 C Q. Since (T})e>0
is analytic, u is continuously differentiable from [e,T] to WP () and Sobolev embedding yields
us € C(Q). Set

K= su u(t, - i T (g (2, - , .
5§th(||< e + et lweoco )

For every fixed t € [e,T] the function u(t,-) belongs to W2P(Q) and solves the equation

N
Z q”Dmu = —<F, Du> + Vu— Ut

4,J=1

in . Since the right hand side belongs to I/Vllof(ﬂ) it follows that u(t,-) € Wlipp(Q) and that, for
a suitable ¢ depending on 21, and the coefficients of A,

sup_|lu(t, -)[[war(a,) < ck,
e<t<T
see [26, Theorem 9.19]. We have proved that for every i,j = 1,...,N, D;D;u,DD;ju €
LP([e,T] x Q1). By Sobolev embedding, since p > N+1, D;;u € C(Q) and the proof is complete.
]

3.5 Proof of Theorem 3.1.2

For ¢ > 0 let V.(z) = eexp{4ca/1 + |z|?}. Then |DV,| < 4coV. and for every o > 0 there
exists ¢, > 0 (depending on ¢) such that |F| < o(V + V.)/2 4 ¢,. Define A. = A — V. and note
that the hypotheses of Theorem 3.4.4 are satisfied.

Fix p> N +1, f € C§°(Q) and let u. be the semigroup solution of (3.0.1) with A. instead
of A, given by Theorem 3.4.4. By Lemma 3.4.6 the function u. is the bounded solution of the
above problem and Du, is continuous and bounded in Q. By Proposition 3.3.2 we deduce that
|Duc(t,€)] < (7/VO| flloos € € O, with v depending on v, M, 6, T and independent of e.

Since u. satisfies the hypotheses of Proposition 3.3.3, we deduce that

[1Duc(t, Yoo < (C/VO floos

with C as in the statement.

Observe that ||ue|loo < || f]loo- Let us fix R > 0 and note that the C*-norm of the coefficients
of A. is bounded, uniformly with respect to € < 1, in QN Bgry1. By the local Schauder estimates
[30, Theorem IV.10.1] applied to the operator D; — A., there exists a constant C, independent
of ¢ < 1, such that

IN

[tellcrtar22tao,r)x (@NBR)) C(||Us||C((o,T)x(mBR+1)) + [ flle2+e@nBryr)

2C|| fllc2te(9)-

IN
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By a standard compactness argument we conclude that a subsequence (u.,) converges in C1:?
([0,T] x (2N Bg)) for every R to a function u which is the bounded classical solution of (3.0.1)
and satisfies || Du(t,-)||oo < (C/VO)|flloo-

Finally, to treat the general case of f € Cy(2) we consider a sequence (f,) € C§°(Q2) con-
vergent to f uniformly on compact subsets of 2 and such that || fnllco < ||f]leo. Let u, be the

bounded classical solution of (3.0.1) relative to f,. Then ||Duy,(t,")|loc < (C/V1)||f]loo, by the

previous step. Since (u,) — u in C12(Q), see the proof of Proposition 3.2.2, the estimate for Du
follows. o

3.6 Examples and applications

We first show that gradient estimates fail, in general, if condition (3.1.3) is not satisfied. We
refer the reader to [8, Example 5.6] for an operator defined on the whole space, for which condition
(3.1.2) is violated and gradient estimates fail. The following result refines and generalizes an
example in [57].

Example 3.6.1 We consider the following Dirichlet problem in Q2 = Ri ={(z,y) €R?, x>0}

U (b, 2,Y) = U (B, 2, Y) + wyy(t, 2, y) + g(¥)us (t, 2, y) t>0, >0,
u(t,O,y):O t>0, yeR,
u(0,2,y) =1 (z,y) € Q,

where g € C%(R) and

lim g¢(y) = +o0.
y——4o00

Observe that (3.1.3) fails. However, Proposition 3.2.2 yields existence and uniqueness of a
bounded solution u. Let us show that, for ¢ > 0, u(t,-) is not uniformly continuous in €.
To this end, it is enough to show that, for every ¢,z > 0,

(3.6.1) sup u(t, z,y) = 1.
y>0

Fix n > 0 and take ¢, such that g(y) > n for y > ¢,. Define R,, = (0,+00) X (cp, +00) and
consider v = v,, which solves

vt(ta fE,y) = Uﬂﬂm(taxa y) + /Uyy(tvxvy) + m}z(t,x,y) t > 07 (‘T7y) € Rn7

v(t,z) =0 t>0, z € OR,,

v(0,z,y) =1 (@,y) € Rn,

We prove that for t,x > 0

(1) lim sup v, (t,z,y) =1; (i) u(t,z,y) > va(t, z,y).

n—oo y>c,

Clearly (i) and (ii) give (3.6.1). Let us verify (i). Note that v, (¢, z,y) = a,(t,2)b,(t, y), where
a = an, b = b, solve respectively

at(tvx) = aa:x(tvx) + naﬁ?(ta ‘T) t > 07 bt(t7y) = byy(tay) t > 07
a(t,0) =0 t>0, b(t, cn) =0 t>0,
a(0,z) =1 x>0, b(0,y) =1 Y > Cp.

To find an explicit formula for a,, we first remark that a,(t,r) = a1(n*t,nx). Then, setting

v(t,z) = e*/2eitay (t, x), v solves
ve(t, ) = Ve (t, 2) t>0, x>0,
(t,0) =0 >0,
v(0, ) = e®/? x> 0;
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By a reflection argument we get easily an explicit expression for v and finally we obtain for any
t>0,yzcnyx207

—n

nvant

To we check that (i) holds we write

_ 22
+OO \nu_'fz\2 _|nm+z\2 z—nz Y=Cn e 4t
an2t  — e 4anZt )e 2 dz’ bn(t,y): dz.
0 \/H

an(t,x) =

an(t,x) = Al St x) — A?L(t, x),

AL Lt 2) 12 /+°° \njn—zzf )ezf;L
n\/éﬁ
= Ly e

Let us consider AL. By a change of variables we obtain

1 —52
A, (L) f/xm ds,

which is increasing in  and converges to 1 as n — +oo. In a similar way we get that A2 (¢, z) is

A%(t,x)

decreasing in « and converges to 0 as n — +o0o0. Then (i) easily follows.
To prove (ii) we use Theorem A.0.13. Set w = u — vy, in (0,7) X R,,. We have w(0,x,y) =0,
(z,y) € Ry,. Moreover w(t,z) >0, z € OR,, t > 0. To conclude it suffices to verify that

(3.6.2) we(t, x,y) > Aw(t,z,y) + g(y)w.(t, z,y), t>0, (z,y) € Ry.

Since wy = Aw+g(y)wz+[g(y)—n](vn)z, g(y) > n, fory > ¢, and (v,) (¢, z,y)=al, (t,2)b, (t,y) >
0,t>0, (z,y) € Ry, as verified above, (3.6.2) follows and the proof is complete.

For instance, we can take, in the above example, g(y) = 1/1 + 2. On the other hand, if g(y) =
—+/1 + 9?2 then all the conditions of Theorem 3.1.2 hold and gradient estimates hold.

Remark 3.6.2 We point out that our main result can be used to prove some boundary gradient

estimates for solutions of Dirichlet elliptic problems, involving the operator A. Indeed if ¢ €
Cp(2) N C?(Q) solves

Ap(z) =0, x€Q,
(36.3) AP

then ¢ is the bounded classical solution of (3.0.1) with f = ¢. Thus, under the assumptions of
Theorem 3.1.2, we get

sup [Do(z)| < Cll¢||oo-
e

This extends some classical boundary gradient estimates concerning linear and nonlinear second
elliptic operators, involving bounded coefficients, see for instance [26, Section 14].

Remark 3.6.3 Theorem 3.1.2 has also some applications to isoperimetric inequalities, see [31]
and [57].
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Chapter 4

On the domain of some ordinary
differential operators in spaces of
continuous functions

The present chapter is devoted to the study of the following second order ordinary differential

operator

Au = au” + b/

in spaces of continuous functions. In particular, we are interested in a precise description of
the domain on which A generates a semigroup. In Chapter 1 we have computed explicitly the
domain of the generator in the framework of LP spaces, for 1 < p < oo, in higher dimensions.
In Chapters 2 and 3 we have studied parabolic problems with Neumann or Dirichlet boundary
conditions in an open set Q of R and, by means of gradient estimates, we have obtained some
information on the domains of the generators of the semigroups yielding the classical solutions to
the above problems. But we did not come to a complete description of such domains. Also in the
literature, one can find more results concerning LP spaces, with 1 < p < oo (see [11], [12], [37],
[41]), rather than spaces of continuous functions. In [41] a complete description of the domain is
given in Cy(RY) when the operator contains a potential term which balances the growth of the
drift coefficient. We refer to [34] for the case of Holder spaces.

In this chapter we limit ourselves to the special case N = 1 and we deal with C,(R) and with
C(R), the space of continuous functions having finite limits at +o00. Here a detailed theory has
been developed in the fifties by W. Feller who gave an explicit description of all the boundary
conditions under which A generates a semigroup of positive contractions. An introduction to
Feller’s theory which is sufficient for our purposes can be found in [21, Subsection VI.4.c].

We consider A with its maximal domain in Cp(R)

Diax(A) := {u € C,(R) N C*(R) | Au € Cy(R)}
and we assume that
(Hp) A — A is injective on Dyax(A) for some A > 0.

This is equivalent to saying that (A, Dmax(A)) generates a semigroup of positive contractions in
Cy(R), which is not however strongly continuous (see Proposition 5.2.3).

If (Ho) holds, then A — A is injective on Dy,ax(A) for all A > 0. Moreover it turns out that
A — A is injective on Dpax(A) if and only if it is injective on Dy, (A), where

Du(A) := {u € C(R) N C2(R) | Au € C(R)}
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is the maximal domain in C(R), see Proposition 4.1.1 below. Then, from [21, Theorem VI.4.15],
it follows that (A, Dy,(A)) generates a strongly continuous semigroup of positive contractions in
C(R).

We point out that (Hg) is equivalent to requiring that +oo are inaccessible boundary points

according to Feller’s terminology, which means that, if W(x) := exp ( f - ZE? dt) the function

is not summable either in (—oo, 0) or in (0, +00). In many cases verifying these integral conditions
is not by any means an easy task. A sufficient condition, which has the advantage to be easy
to handle, is the existence of a positive function V € C?(R) such that lim ;. V(z) = oo and
AV < AV for some A > 0, see again Proposition 4.1.1.

Our main results show that, under suitable conditions,

Diax(A) = {u € CZ(R) | au”,bu’ € Cy(R)}

and, if a is bounded,
D (A) = {u € C*(R) | bu’ € C(R)}.

)
In this way, requiring that Au € Cy(R) (resp. C(R)) is the same to requiring that the two terms
au” and bu’ separately belong to Cy(R) (resp. C(R)).
Let us state our main assumptions:

(Hy1) a € C(R) and a > ¢ for some § > 0.
(Hz) b€ C(R) and there exist constants ¢; € R and ¢z < 1 such that

a(z)t' (x) < 1 + b (), TER.

We shall keep hypothesis (H;) and (Hg) throughout Sections 4.1 and 4.2 together with (Hy), but
we shall need stronger assumptions in Subsection 4.2.2. In fact, to describe the domain in C(R)
we assume that a € Cp(R) and that b satisfies |b'| < ¢(1 4+ [b]).

4.1 Preliminary results

In this section we collect some preliminary results which will be useful for the sequel. We start
by studying the injectivity of the operator A — A on Dyax(A) and Dy, (A), i.e. the uniqueness of
the solution in Dy, (A) and Dpax(A) of the elliptic equation Au — Au = f.

Proposition 4.1.1 The following assertions are equivalent:
(i) (Ho) holds.

(i) A — A is injective on Dyax(A) for all X > 0, hence (A, Dyax(A)) generates a semigroup of
positive contractions in Cyp(R).

(i1i) A\— A is injective on Dy, (A) for all X > 0, hence (A, Dy, (A)) generates a strongly continuous
semigroup of positive contractions in C(R).

Moreover, if there erxists a positive function V. € C?(R) such that im0 V(2) = +00 and
AV <AV for some X > 0, then the above conditions are satisfied.
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PROOF. For (i) < (ii) see [38, Proposition 3.5]. Implication (i7) = (ii¢) is obvious, see also [21,
Theorem VI.4.15].

Now we prove that (i4i) implies (ii). Let u € Dpax(A) be such that Au — Au = 0. From
[21, Theorem VI.4.14] it follows that there exist two linearly independent solutions vq and vy of
(A= A)v = 0 such that v, (resp. vz) is bounded (resp. unbounded) at +o0o and unbounded (resp.
bounded) at —co. Then u = kjv1 + kova, for some constants k1, ke € R. Since u is bounded,
k1 = ko = 0, which means u = 0.

Finally if there exists a function V' as above then (i¢) holds as a consequence of Proposition
5.2.3. (

Now we prove some estimates which will be the main tool for the description of Dy,ax(A).

Proposition 4.1.2 Assume that a > 0 and that (Hz) holds. Let M > 0 and v be a function in
CY([—-M, M)) such that v(—M) = v(M) = 0. Then

1 et
(4.1.1) 0Vl (= ar.20) < ||‘wl + b0l aran + — 01l (= ar.a) 5
1-— C2 1-— C2

where ¢ = max{cy,0}.

PROOF. Set f = av’ + bv. Let g € [-M, M| be a maximum point of the function bv. We may
suppose that xg €] — M, M[ and b(xzg) # 0, otherwise b(zg)v(zo) = 0 and estimate (4.1.1) is
trivially satisfied. Moreover, without loss of generality we assume that ||bv]|;_ = b(x0)v(20).
Then (bv)'(x¢) = 0 and from hypothesis (Hs) it follows that

v(o) o _ v(xo)

b(zo) = Lb(zo)

a(zo)v'(z0) = —a(xe)b' (x0) — cab(z0)v(z0)

and consequently

v(wo)

b(xo)

Multiplying by b(xo)v(xo) = ||bv||;_ s both sides of the previous inequality we get

[ flli=arnn > fzo) = alzo)v'(20) + b(zo)v(wo) > (1 — c2)b(x0)v(20) — €1

ovlli—aran |- ra = (1= e2)Ib0lI7 5y 0y — c1v?(w0) 2 (1= e2) 000y sy = € 01 -

. 1 cr
If @ := ||bv]|_ar.am, we have 22 < az + 3 with a = ﬁHfH[,M,M], 8= 1 1c HU”[Z—JW,]W]' It
—C —C2
follows that z < a + +/f3, that is
1 e
16Vl (- ar0 < 1—c 1 ll=arn) + \/ 1—7102 [l YvA
which is the statement. ]

Remark 4.1.3 Assume (H;) and (Hg). If u € C?([—M, M]) is such that u/(—M) = v/ (M) =0
then Proposition 4.1.2 implies

1 cf
106/ [[ 1= a0y < 1—c [ Aull s + \/ 1 —102 (g

Now, if € > 0 is sufficiently small, there exists a constant C., independent of M, such that

W[ 1=aroar) < €l |- aran + Cellulli-aran -
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Moreover we have that

//||

1 1
||“”H[—M,MJ < gHau =) S 5 (||bu’||[,M,M] + [[Aull—nrary) -

Taking into account these estimates and choosing € small enough we get
(4.1.2) 106 | arany < C (1A —aran + 1wl aaan)

where C' depends only on ¢1, ¢o and 4.

Estimate (4.1.2) still holds for every function u € C?(R) with compact support; indeed, it is
sufficient to consider an interval containing the support of u. The next step is to show that if a is
bounded then this estimate extends to every function u € CZ(R). This will be used in Subsection
4.2.2.

Proposition 4.1.4 Ifa € Cy,(R), a > § > 0 and (Hz) holds, then for every u € CZ(R) we have
(i) 100 ls < C([|Atfloe + lJulloo) ;
(i) [u"l[oo < C ([[Aulloc + [lufloe),

where C' = C(cy, c2,9).

PROOF. Let u € CZ(R). We prove that

(4.1.3) 10| <

o5 1 llee-

Let v = v and n € C°(R) be such that 0 < n <1,n=11in[-1,1] and n =0 in R\ [-2,2].
Set nn(z) = n(x/n). Then a(vn,) + blvn,) = (av’ + bv)n, + avn), and applying (4.1.1) to

v, € CLR) we have
lalloo cf
2 o 15 e
1o Pl

which is just estimate (4.1.3). Now, (¢) follows from (4.1.3) as in Remark 4.1.3.
Estimate (i7) easily follows from (7). O

1
b TLOO<
[bvmn e < —

Letting n — oo it follows that

[bv]loo <

1—

4.2 Characterization of the domain
4.2.1 The case of C,(R)
In this subsection we show that Dy,.x(A) is given by
Dax(A) = {u € CZ(R) | au”,bu’ € Cy(R)}.

The crucial point is to prove that A — A is surjective from the right-hand side above onto C(R).
This is done through an approximation procedure by considering the solutions of the equation
Au— Au = f in bounded intervals with Neumann boundary conditions and applying the estimates
of Section 4.1.
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Proposition 4.2.1 Assume that (Hy), (H1) and (Hz) hold. Then
Diax(A) = {u € CZ(R) | au”,bu’ € Cy(R)}.

PrOOF. Set D(A) := {u € C}(R) | au”,bu’ € Cp(R)}. Let A > 0 and f € Cy(R) be fixed. For
every n € N consider the problem

A —Au=f in [—n,n]
u'(—n) =u/(n) =0
It is well known that there exists a unique solution u,, € C?([—n,n]) which satisfies the following
estimate
1
(4.2.1) et l=nn < S 11 Flloo

(see e.g. [21, Theorem VI.4.16]). The equality Au,, — Au,, = f implies that
(4.2.2) [t l(nn) < 2] flloo-

Taking into account estimate (4.1.2) we have

(4.2.3) bl < € (1 Atnllinm) + [unlli-nn) < C l1f oo,
where C' = C(cy, 2,0, \). Moreover

(4.2.4) Slluplli=n.m < llavglli—nn) < lAtnll—n,n) + 10Ul —nm < C1llflleo
and, by interpolation

(4.2.5) lunlli=nm < ColllAtnll—nn) + ltnlli—n,m) < C2[lflloo

with C; and Cy depending only on ci,c2,5,A\. Now fix k € N and consider n > k. Then the
previous estimates imply that ||u,||c2(— k) is bounded by a constant independent of n and k.
It follows that the sequences (u,), (u,) are bounded and equicontinuous, then by Ascoli-Arzela
Theorem there exists a subsequence of (u,) which converges in C*([—k, k]). Using a diagonal
procedure we can construct a subsequence, still denoted by (u,,), and a function u € C*(R) such
that u, converges to u together with the first derivatives uniformly on every compact subset
of R. Tt follows that bu], converges to bu’ uniformly on compact sets and, using the equation
Auy, — Au, = f, it turns out that au! and consequently u!’ converge, too. Therefore u € C?(R)
and A\u— Au = f. Writing estimates (4.2.3), (4.2.4) and (4.2.5) for the function u,, in [—k, k] with
n > k and letting first n — oo and then k — oo we obtain that u € CZ(R) with au”,bu’ € Cy(R),
ie. u € D(A).

This shows that A — A : D(A) — C,(R) is surjective. Since D(A) C Dyax(A4) and X\ — A :
Diax(A) — Cy(R) is bijective we deduce that D(A) = Dyax(A), as claimed. O

4.2.2 The case of C(R)

As in the previous subsection we show that the domain D,,(A) on which A generates a strongly
continuous semigroup in C(R) is given by

D (A) = {u € C*(R) | bu' € C(R)}.
To this aim we require that
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(Hy) there exist positive constants dq, ds such that

b(x)x < di(1+2%)log(l+2?) +dy, z€R.

(H}) a € Cy(R) and a > 6 for some § > 0.
(H) b€ CYR) and |o'(x)| < c¢(1 + |b(z)]), for some constant ¢ > 0 and for all z € R.

Since a is bounded one easily verify that the function V' (x) = 1+log(1+2?) satisfies the hypothesis
of Proposition 4.1.1. Hence (A, Dy,(A)) generates a semigroup in C(R). Clearly (H}) and (H)
imply (H;) and (Hz), thus we may use the results of Subsection 4.2.1.

Proposition 4.2.2 Assume that (Hy' ), (Hi') and (Hy') hold. Then
Dn(A)={uec C*R) | '€ CR)}.

PROOF. Set D := {u € C?(R) | bv’ € C(R)}. Since A — A : D,,(A) — C(R) is bijective and
D C Dy, (A), it is sufficient to prove that A — A : D — C(R) is surjective.

Step 1: We assume first that a = 1. Let A > 0 and f € C(R) be fixed. From Proposition 4.2.1
we know that there exists u € Dyax(A4) = {u € CZ(R) | bu’ € Cy(R)} such that Au — Au = f.
On the other hand, since (A, Dy, (A)) generates a strongly continuous semigroup of contractions,
there is w € D,,(A) which solves the same equation. By uniqueness u = w. This means that
u € CZ(R) N CR) with Au € C(R), bu’ € Cp(R) and Au — Au = f. It remains to prove
that u',u”,bu’ € C(R). Since v’ is uniformly continuous and u admits finite limits at +oo we
deduce that lim|y o v/ () = 0. In order to use the same argument for u” we first assume
f € C(R) N CE(R). Then we may differentiate the equation

(4.2.6) Au—u" —bu = f
obtaining
Aw—v" =’ =f +bv,

where v = /. (Hj) implies that g := f' 4+ b'v € Cy(R). Therefore v € Dyax(A) and Proposition
4.2.1 implies that v € CZ(R). This means that u € C3(R) and as before it implies that v” € C(R),
with lim, e u”(x) = 0.

Now take f € C(R). Set f. := ®.* f € C(R) N CL(R) for £ > 0, where (®.) is a family
of standard mollifiers. From the previous computations, for every € > 0 the solution u. of
the equation Aue — Au. = f. belongs to D. Let u € Dyax(A) be the solution of Au — Au =
f and consider the difference u — u.. Then u — u. € CZ(R) with A(u — u.) € Cp(R) and
AMu—ue) — A(u — ue) = f — fe. Moreover

o~ welloe < 51 = Flloe
thus from the equation we get
[Au = Auclloo < 2/ fe = fll
and from Proposition 4.1.4(ii) it follows that
[u” = ullloe < C(l|Au — Auloo + [lu — telloo) -

Since f. converges uniformly to f as € — 0, we obtain that u! converges uniformly to u” as

e — 0. Since each u! tends to 0 as |z| — oo, we conclude that lim,|_. u” = 0. Therefore
u € C%(R) and bu' € C(R), i.e. u € D.
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Step 2: Now we consider a generic function a satisfying (H}). We endow the domain D with
the canonical norm
lullp = llull ooy + l10vllo

and we apply the method of continuity to the operators

d? d
+b—, telo,1].

At = (ta—i—l—t)@ dx

Let w € D C Dpax(A). We observe that the constants ¢;, ¢o in (Hg) and § in (H)) are independent
of t € [0, 1], so, applying Proposition 4.2.1 with A; instead of A and letting n — oo in estimates
(4.2.1), (4.2.3), (4.2.4) and (4.2.5), we obtain for A > 0

lullp < ClI(A = Ar)ulloo

where the constant C is independent of ¢ € [0, 1].
Since A— Ay : D — C(R) is bijective from step 1, we conclude that A— A; = X\ — A is bijective,
too. ]

4.2.3 Examples

Assume for simplicity that ¢ = 1. If b is given by b(z) = —|z|"x, with » > 0, then it is
readily seen that the function V (x) = 1+ 22 satisfies AV < AV for A > 0 sufficiently large. Then
Proposition 4.1.1 holds and A endowed with its maximal domain is a generator both in Cy(R)
and in C(R). The corresponding semigroup is differentiable for r > 0, but never analytic in
Cy(R) (see [40, Propositions 4.4 and 3.5]). Since (H}) and (Hj) are satisfied, Propositions 4.2.1
and 4.2.2 hold.

Condition (Hy) is satisfied by all polynomials and functions like e’ with P a polynomial. But
if b oscillates too fast then (Hz) is not true and Diax(A) is not contained in general in C} (R) as
shown in Example 2.4.7.

As far as hypothesis (H}) is concerned, we remark that it holds for example for e* but not
for e®”. In this last situation we do not know whether Proposition 4.2.2 still holds.
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Chapter 5

Invariant measures: main
properties and some applications

In this last chapter we collect some known facts concerning invariant measures, most of which
have been already used. Here we provide the relative proofs and we also show some other results
which complete the exposition and make it clearer. Even though the subject has a certain
relevance from a probabilistic point of view and can be treated by making use of probabilistic
tools, our approach is purely analytic.

We start by introducing Feller semigroups in C,(R”Y). These are semigroups of positive
contractions that are not strongly continuous in general, but continuous only with respect to
the pointwise convergence. In our framework, we also assume that each operator of a Feller
semigroup admits an integral representation and that it can be extended to the bounded Borel
functions in RY. Then we give the definition of an invariant measure p for a Feller semigroup
(P;). If one considers the underlying stochastic process {{:}, 1+ can be interpreted as a stationary
distribution for {&:}. A quite general result concerning existence of invariant measures is given by
Krylov and Bogoliubov (see Theorem 5.1.6). The main tool to prove it is a weak® compactness
result for probability measures, which is due to Prokhorov. As a consequence, we infer that the
semigroup (P;) extends to a strongly continuous contractions semigroup in LP(RY, p), for all
1 < p < 400. In order to deal with uniqueness, we have to require some regularity properties
to (P;), namely irreducibility and strong Feller property. Under these further assumptions, if
an invariant measure exists, it is unique. To prove such a result we make use of some known
facts concerning ergodic means of linear operators in Hilbert spaces and in particular the Von
Neumann Theorem. Ergodicity of invariant measures concludes the first section.

In the second section we show how Feller semigroups arise naturally when one deals with a
second order partial differential operator in R of the form

N N
=1

4,j=1

The absence of a zero order term is a necessary condition for the existence of an invariant measure
for the associated semigroup T'(¢) (see Remark 5.2.12). The construction of T'(t) is based on an
approximation argument which consists of finding a bounded classical solution u to the Cauchy
problem
uy—Au=0  in (0,00) x RV
{ u(0,z) = f(z) zeRN

as limit of solutions of parabolic problems in cylinders (0,00) x B,. The main tools to carry
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out this procedure are the classical maximum principle and interior Schauder estimates. Then
one sets u(t,z) = T(t)f(z). It turns out that T(¢) is a Feller semigroup in C,(R”), which is
represented by a strictly positive integral kernel. Even though T'(¢) is not strongly continuous
we can associate a “weak” generator, which enjoys several classical properties of generators of
strongly continuous semigroups. We show that assuming the existence of a Liapunov function, the
weak generator coincides with the operator A endowed with the maximal domain in Cj,(RY) (see
Proposition 5.2.3). Under the same assumption the semigroup 7'(t) yields the unique bounded
classical solution to the problem above. Concerning invariant measures, we establish two existence
criteria, whose assumptions are expressed in terms of the coefficients of the operator A. The
first is due to Khas’minskii and uses the existence of suitable supersolutions of the equation
Au— Au = 0 to apply the Krylov-Bogoliubov Theorem. The second is due to Varadhan and show
directly the existence of an invariant measure for an operator of the form A — (D®+ G, D), given
by p(dz) = e~ ?dz.

The last section is devoted to the characterization of the domain of a class of elliptic oper-
ators in LP(R™, u). The main tools are the results of Chapter 1, where the same problem has
been studied for differential operators in LP(RY). In fact, we show that the given operator on
LP(RY | 1) is similar to an operator in the unweighted space LP(R”) which satisfy the generation
results of Chapter 1 that provide also an explicit description of the domain.

5.1 Existence and uniqueness of invariant measures for Feller
semigroups
Throughout this section (P;);>o is a family of linear operators in C,(R”), the space of all

continuous and bounded functions in RY, satisfying the following properties:

(i) Ph=1,P s = PP, forallt,s > 0;

(ii) P,f >0forallt >0 and f € Cp(RY) with f > 0;

(iii) limg_o Pif(z) = f(x), for all z € RN and f € Cy(RY);

(iv) P1=1, for all t > 0,

where 1 denotes the function with constant value 1. From (i¢) and (iv) it follows that each
operator P, is a contraction. Indeed, for all f € C,(RY) and z € RY

[Pof ()] < Bl fl(@) < ([ flloo Pl = [| flloo>

hence ||Pif|looc < ||flloc- Under a probabilistic point of view (P;) is a Feller semigroup and

condition (i7i) represents the stochastic continuity of (P;).
It is useful to make the following additional assumption:

(I) forallt > 0and x € RY there exists a positive Borel measure p;(z, -) such that p,(z, RY) =1
and

(5.1.1) (P = [ fame.dy).

for all f € Cp(RY).

We set po(z,-) = J;, the Dirac measure concentrated at x.
We note that (5.1.1) makes sense also for bounded Borel functions. In particular, if " is a
Borel set of RV and xr is the corresponding characteristic function, then

(5.1.2) (Pixr)(z) = pe(z,T), reRN, t>0.
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Then we also assume that

(II) for every bounded Borel function f and for every ¢ > 0 the function P;f is still Borel
measurable.

In general such a semigroup is not strongly continuous in Cy(RY), a simple counterexample
being the heat semigroup.

Definition 5.1.1 A probability Borel measure u is said to be invariant for (P;) if

(513) (Pt = [ @

RN
for allt > 0 and for every bounded Borel function f.

It is readily seen that p is invariant if and only if

(5,14 u(0) = [l D)

for any borelian set I'. Indeed, if (5.1.3) holds, then (5.1.4) easily follows by taking f = xr.
Conversely, assume that (5.1.4) is true. This means that (5.1.3) is satisfied by any characteristic
function. By linearity, one has the same formula also for simple functions. If f is a bounded
nonnegative Borel function, then let (s, ) be an increasing sequence of simple functions such that
sp(x) converges to f(x), for every x € RY. Writing (5.1.3) for each s,, and letting n — oo,
by monotone convergence we get the identity for f. In the general case, it is sufficient to write
f=fr—f.

From a probabilistic point of view, let us consider the stochastic process {¢;} having p;(z,T) as
transition functions. This means that p;(z, ) represents the probability that the process reaches
I" at the time ¢ starting from = at t = 0. In order to determine completely the process, that is
the probability that the process is in I' at the time ¢, for any I and ¢ > 0, it is sufficient to know
the law p;(z,T") and the initial distribution o, since, applying the formula of total probability, it
holds

P& cT) = /R pu(e. D)o (de).

In this context, an invariant measure is a stationary distribution for the process, since

PleeT) = | (e Dulde) = u(l) = (& €T)

for all t > 0.
A first basic result is the following.

Proposition 5.1.2 Assume that p is an invariant measure for (P;). Then for all p € [1,+00],
(P;) can be extended uniquely to a strongly continuous contractions semigroup in LP(R™N, ), still
denoted by (P;). Moreover, if (Ap, D(A,)) is the generator of such a semigroup, then (5.1.8) is
equivalent to have [ (Apf)(x)u(dx) =0, for all f € D(Ap).

PROOF. Let € Cp(RY). From (5.1.1) and Hélder’s inequality it follows that

Pe@P < [ 1e)Ppi(a.dy) = Pllel) o)

Integrating with respect to u, we get

| Pet@putin) < [ Pem@ptdn) = [ le@Putis)
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Since Cy(RY) is dense in LP(RY, u), P; has a unique continuous extension to LP(RY, u), still
denoted by P,, such that || P;|| < 1. The strong continuity of P;f in LP(RN, p) for f € Cy(RY)
follows easily from property (iii) of (P;) and the dominated convergence theorem. The general
case can be treated by a standard density argument.

Let us prove the last assertion. If f € D(A,) then P,f € D(A,), the map t — P, f is of
class C1([0, +oo[; LP(RM, 1)) and %Ptf = A,P,f = P,A,f. Differentiating with respect to t the
identity (5.1.3) we have

& et = [ Len@un = [ PG

dt Jan ~ dt
/ (A, f) () uld).
RN

Conversely, if [ (Apf)(x)u(dz) =0, for all f € D(A,), then

%/RN(PJ)(x)u(dx) = /RN A (Pof) (@) u(dz) = 0

and (5.1.3) holds in D(A,). Since D(A,) is dense in LP(RY, ), (5.1.3) is also true for f €
LP(RYN, ). [

0

Now, our aim is to prove a quite general result on existence of invariant measures due to
Krylov and Bogoliubov. Before stating it, we need to introduce some basic notions from measure
theory.

We denote by M(RY) the set of all Borel probability measures on RY.

Definition 5.1.3 A subset A of M(RY) is said to be relatively weakly compact if for any se-
quence (py) in A there exist a subsequence (py,) and p € M(RY) such that [gx f(x)pn, (dz)
— fon f(@)p(dz), for all f € Cy(RN). In this case, we say that p,, weakly converges to fu.

The set A is said to be tight if for all € > 0 there is a compact set K. such that u(K.;) > 1—e¢,
for all p e A.

The Prokhorov theorem, proved below, shows that in fact the previous two notions are equiv-
alent. Even though it holds in a general separable complete metric space, we state and prove it
in RV, since this case is closer to our interests. We first need a lemma.

Lemma 5.1.4 Let p,,pu € M(RYN) be such that p, converges weakly to u. Then one has
lim supp, (F) < u(F), for every closed set F' of RN or, equivalently, liminf u, (G) > u(G), for

n—oo

every open set G of RN,

PROOF. Let F be a closed set and consider Fs = {x € RY | dist(z,F) < d§}. Since Fjs is
decreasing with respect to § and NssoFs = F', we have that lims_,o pu(F5) = p(F). Therefore,
given a positive € there exists 6 > 0 such that u(Fs) < pu(F) + €. Let

1 if t<o,
et)=4 1—t if 0<t<]1,
0 it ot>1,

and define f(z) = ¢(6 dist(x, F)). Since f is nonnegative and assumes the value 1 on F, we
have

in(F) = /F F(@)pn(dz) < / f@)pnd).

Since f vanishes outside Fs and never exceeds 1
f@)p(de) = [ f(z)uldz) < pu(Fs).
RN Fs
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Finally, since p,, converges weakly to u and f € Cy(RY) we deduce

limsup pin (F) < lim [ f(z)pn(de) = |  f(z)p(dr) < p(Fs) < p(F) +e.
n—oo n—oo JpN RN

Since € was arbitrary, the thesis follows. A simple complementation argument proves the last

assertion. ]

Theorem 5.1.5 (Prokhorov) A subset A in M(RY) is relatively weakly compact if and only
if it is tight.

PROOF. Let B,, be the closed ball in RN with radius n € N and centered at zero. Assume
first that A is tight and consider a sequence (py) in A. We have to show that it is possible
to extract a weakly convergent subsequence. Consider the restrictions (“’f@l)' Since C(B) is
separable, the weak® topology of the unit ball of the dual space (of all finite Borel measures) is
metrizable. Hence, there exists a subsequence of ('uk\?l) which converges weakly in C(B;)*. By
a diagonal procedure, since (B,,) is increasing, we can construct a subsequence (i, ) such that
fgﬂ f (@) pin, (dx) converges to f§n f(x)u(dx) for all f € C(B,), and n € N and for some positive
Borel measure p with u(RY) < 1. Now, let € > 0 be fixed. Since A is tight, there exists r € N
such that j,, (RN \ B,) <¢, forallk € N. If n > r, let g € C(RY) besuch that 0 < g < 1,g=1
in B, \ Byy1 and supp g C Bpy1 \ B, C Buy1. Then

w(By \ Bry1) < / g(x)p(dx) = lim 9(2) pin,, (dx) < limsup g, (Bny1 \ By) < e.
RN k—+oo JrN k—+o0

Letting n — +oo we find that u(R™ \ B,;1) <e. Now, we can conclude. Indeed, if f € C,(RY)
then

<

@ptda) = [ @, (i)

RN

L st~ [ s

oy HEIn@)

Loy @)

If ¢ > 0 is given, we first choose r € N sufficiently large in such a way that p(RY\ B, 41), pin, (RY\

B,11) < e for all k € N. Then we choose k € N large enough to make the first term in the right
hand side smaller than . At the end we find

< e+ 2 flleo

[ @) = [ @, ()

for k£ large. Thus the statement follows. In particular, taking f = 1, we have that p is a
probability measure, i.e. 4 € M(RY).

Conversely, let us show that a relatively weakly compact set A must be tight. Consider the
open ball B,, of RY centered at zero and with radius n € N. For each £ > 0, there exists n € N
such that v(B,) > 1 —¢ for all v € A. Otherwise, for each n we have v,(B,) < 1 — ¢, for some
v, € A. By weakly compactness, there exist a subsequence (v,,,) and vy € M(RY) such that

Up, converges to vy weakly. From Lemma 5.1.4 it follows that vo(By,) < liminfy_ o Vs, (Bn) <
liminfy o0 vp, (Bn,) < 1 — ¢, which is impossible, since B,, T RY. Thus, the closure of B, is a
compact set of RY such that v(B,,) > 1 —¢, for all v € A. U
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Now, we are ready to prove the announced result of existence of an invariant measure for the
semigroup (P).

Theorem 5.1.6 (Krylov-Bogoliubov) Assume that for some Ty > 0 and x9 € RN the set
{ur}r>T,, Where

1 /7
= — " dt7
HT =7 /0 pe(zo,°)
is tight. Then there is an invariant measure p for (Py).

PROOF. From Theorem 5.1.5 it follows that there exist a sequence (T;,) going to +oco and a
probability measure y such that limy, oo [on f(@)pr, (dz) = [on f(2)p(dz), for all f e Cy(RY).
Taking into account (5.1.1), this is equivalent to

Tn
(5.1.5) lim /0 (Pt = [ peuts).

n—oo Lp

Setting f = P,g we have

1
tim 7 [ (P @it = [ (Pg)@uda),
for all g € Cy(RY). Now, we show that the limit at the left hand side above is equal to
Ja~ 9(x)pu(dx). We have in fact

1 Tn 1 Tn+s

— Py dt = — P, dt

= | Peoena = & [T Ro@)
I

Thn+s
= 7 (Ptg)(xo)dt—F;n/Tn (Prg)(xo)dt

1 S
-7 / (Pyg) (o).

Since the last two terms above are infinitesimal and condition (5.1.5) holds, we find that (5.1.3)
holds for g € Cy(RY). If g is a bounded Borel function in RY, then g € L*(R™, i), hence, by
density, there exists a sequence (g,,) in Cy(RY) converging to g in L*(RY, u1). By continuity, P;g,
converges to Pig in L'(R™, u) as well. Now, the thesis follows easily writing (5.1.3) for g,, and
letting n — oo . ]

In the next section we will see an application of this general result in the case of semigroups
associated with differential operators.

Once that an invariant measure exists, one can ask whether it is unique or not. Such a
problem requires more attention and suitable regularity properties for the semigroup (P;) that
we introduce below.

Definition 5.1.7 - (Py) is irreducible if for any ball B(z,€) one has P;Xp(..)(x) > 0 or,
equivalently, p;(z, B(z,€)) > 0 for allt >0 and z € RV.

- (P;) has the strong Feller property if for any bounded Borel function f and t > 0 we have
P.f € Cy(RY).

- P, is called regular if all the probabilities p;(x,-), t > 0,2 € RN are equivalent, i.e. they
are mutually absolutely continuous.
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It is clear that if (P;) is irreducible, then it is positivity improving, in the sense that given a
bounded Borel nonnegative function ¢ on RY such that ¢ is strictly positive on some ball, then
Pyo(z) > 0, for all t > 0 and z € RY. In this way, irreducibility says that a strong maximum
principle holds. From a probabilistic point of view, this means that the underlying Markov
process diffuses with infinite speed.

The main result concerning uniqueness is the following.

Theorem 5.1.8 If (P;) is reqular then it has at most one invariant measure p. Moreover, u is
equivalent to py(x,-), for allt > 0,z € RV,

Before proving the above theorem, we show an important tool to have regularity due to
Khas’'minskii.

Proposition 5.1.9 If (P;) is strong Feller and irreducible, then it is regular.

PROOF. It is sufficient to prove that all the probabilities p;(z,-), t > 0,z € R, have the same
null sets. This means that if " is a Borel set, then

(i) either pi(z,T) =0, for all t > 0,7 € RV,
(ii) or p(x,T) >0, for all t > 0,z € RN,

Assume that (i) does not hold. Then, there exist o € RY and to > 0 such that Py, xr(zo) > 0.
By the strong Feller property, P, xr € Cy(RY), hence P;,xr(z) > 0 for € B(zg,d). From the
irreducibility and the semigroup law it follows Pyxr(z) > 0 for all # € RN, t > t(, respectively.
We claim that this holds for ¢ < to, too. If t; < t < to then there exists z; € RY such that
P;, xr(x1) > 0 (otherwise Py, xr would be identically zero). By the same argument as before, we
have Pyxr(z) > 0 for all z € RY and the proof is concluded. O

In order to prove Theorem 5.1.8, we need some results about ergodic means of linear operators,
in particular the Von Neumann Theorem. Let T be a linear bounded operator on a Hilbert space
H and set

n—1
1
M,==> T N.
”,;J n e

Proposition 5.1.10 Assume that there is a positive constant K such that ||T"| < K, for all
n € N. Then, the limit

(5.1.6) lim M,z = Mz

n—oo

exists for every x € H. Moreover, M2 = M, M (H) = ker(I —T), that is My, is a projection
on ker(I —T).

PROOF. The stated limit trivially exists when x € ker(I —T') or z € (I — T)(H). Indeed, in the
first case we have TFz = x for all k € N, hence M,z = z for all n € N. In the second case, if
x = (I —T)y, for some y € H, taking into account the identity

1
(5.1.7) Moy(I-T)=(I—T)M, = —(I —T"),
n
we have ) )
Ml = [ = 70| < 2ahol + K
and consequently lim,, o, M,x = 0. Since |M,z|| < K||z||, it follows that

(5.1.8) lim M,z =0, ze(I—T)H).

n—oo
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Now, let € H be fixed. Then, there exist y € H and a subsequence M, z weakly convergent to
y. Since T is bounded, T'M,,, x converges weakly to T'y. On the other hand, from (5.1.7) it follows
that TM,x = M,x — %l‘ + %T”x, hence T'M,, x converges weakly also to y. By uniqueness,
Ty =y, ie. y € ker(I —T). Now we claim that M,z converges to y. Since y € ker(I —T), we
have M,y = y and consequently

Mpx = Mpy + Mp(v —y) =y + Mu(z —y),

so that it is sufficient to show that M, (z — y) converges to zero. To this aim, recalling (5.1.8),
we prove that x —y € (I — T)(H). We have in fact © — M,z € (I —T)(H), because

1 ng—1 ] 1 nir—1 -
x—Mnkx:n—kZO(I—TJ)x:;k(I—T)ZO(I+T+...+TJ )a
j= =

and © — M,, x converges weakly to x — y. Since (I — T)(H) is convex, its strong and weak
closures coincide, hence x —y € (I — T)(H). Therefore (5.1.6) is proved. As far as the last part

of the statement is concerned, since (I — T)M,, = M, (I — T) converges to zero in the strong
topology, we have M., = T M, and therefore M., = T*M_,, for every k € N. This implies that
My, = M, M, which yields, as n — 0o, My, = M2, as required. ]

Now we use this general result in our framework. More precisely, let i be an invariant measure
for the semigroup (P;) and consider the Hilbert space L?(R™, ). Proposition 5.1.2 ensures that
each P, extends to a linear bounded operator in L?(R™, 1) with ||P;|| < 1. Consider the ergodic
mean

1 T
(5.1.9) M(T)p = T/ P.pds, e L*(RN pu), T > 0.
0

Clearly, M(T) is a linear operator and, by the Minkowski inequality, it is bounded in L?(RY, u1):

1 T
M@l < 7 [ IPelliaen,ds < el

Theorem 5.1.11 (Von Neumann) For every ¢ € L?(RN | p), the limit

lim M(T)p =: My

T—o0
exists in L2(RN, ). Moreover My, = M2, and Moo (L*(RY, 1)) = X, where X is the set of all
the stationary points of (P;), i.e.
(5.1.10) Y={pe L) RN, n) | Pbo=, pae., Vt>0}.
Finally

[ Map@ntdn) = [ olntda),
RN RN

PrROOF. For all T > 0, let np € NU {0} and rr € [0, 1] be the integer and fractional part of T,
respectively. If ¢ € L2(RY, 1), then

nr—1 k41 nr—1

1 1 T 1 1
MT)y = T Z /k Pspds + T/ Pspds = T Z /O Py yrpds
k=0 nr k=0

1 [T
+ T / P, pds
0
’I’LTfl

= I3 Pf(M(1)<p)+%TP{‘T(M(TT)<p)~
=0
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Since

letting 7' — oo and recalling Proposition 5.1.10, we get that M (T )¢ has limit in L2(RY, ), say
M. Let us prove that

(5.1.11) Mo P, = P,M. = M.

Given ¢t > 0 we have

1 T 1 t+T
MaPip = Jim g [ Pospte= i 7 [ P
1 T t+T t
= lim —( Pspds +/ Pspds —/ <pds) = My p.
T—o0 T 0 T 0

In a similar way, one can check that P,M.¢ = My, so (5.1.11) is completely proved.

For all ¢ € L2(R™, p1), (5.1.11) implies that My, € 3. Conversely, if p € 3, then M(T)p = ¢
and consequently, taking the limit as T — 0o, My = @ € My (L*(RN, u)). Since P,M,, =
My P; = M, it follows that M M (T) = M(T)My, = M, that yields M., = M2, letting
T — co. Finally, integrating (5.1.9) with respect to p, we obtain

F L[ e - [ [ o
/R pla)u(da).

Letting T' — oo we conclude the proof. O

| @) @)

Remark 5.1.12 The Von Neumann Theorem gives information on the asymptotic behaviour of
the semigroup (P;), as t — oo. We note that, in general, the limit of P;p(x) as t — oo does not
exist, if ¢ ¢ 3. For example in R? consider the Cauchy problem

§'(t) = —n(t)
n'(t) = &(1)

£(0) = 21, n(0) = z2

Then (£(t,z),n(t,z)) = (z1cost — xgsint, zysint + xgcost), t > 0, z € R2. The semigroup
Pro(x) = p(&(t, x),n(t, ) is such that lim;_, o Pro(x) exists only if z = 0.

If (P) is regular, then it can be proved that limy . (Pyp)(z) = [ @(y)u(dy), for all ¢ €
L?(RY, i) and x € RY. This results, which is due to Doob, means that the underlying stochastic
process is stable and [,y (y)u(dy) is the equilibrium.

The next proposition contains the main properties of the subspace 3. In particular it shows
that ¥ is a lattice. We remark that if (Az, D(A3)) is the generator of (P;) in L2(R™, ), then
Y. = ker As.

Proposition 5.1.13 Let ¢,1 € X. Then the following assertions hold
(1) el € %,
(i) ¢*, ¢ €X,

(iii) pV i, p NP €,
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(iv) for all X € R, the characteristic function of the set {x € RN | p(x) > A} belongs to 3.

PROOF. Let us prove (i). By the positivity of (P;) we infer |p(z)| = |Prp(x)| < Pilp|(z). Assume,
by contradiction, that there exists a Borel set T such that u(T') > 0 and |p(z)| < Plp|(z), for
x € I". Then

[ Je@lutdn) < [ P,

which contradicts the invariance of .
Assertions (i7) and (iii) follow easily from the identities

1 1
w+:§w+wm v =5l = e,

eV =(e—P)t+v, orv=—(p—¢)" +o.

In order to prove (iv), it is sufficient to take A = 0. Consider ¢, (z) := (np* A 1)(x). Then
lim,, .00 () = X{p>0} () and , € ¥, by (i) and (ii7). By dominated convergence, X 1,01 (%)=
lim,, .00 @n(2) = limy, .o Pron(7) = PiX{p>01(7). Hence the thesis follows. O

Now, we devote our attention to the case where the limit M., provided by the Von Neumann
Theorem is of a particular form.

Definition 5.1.14 Let u be an invariant measure for the semigroup (P;). We say that p is
ergodic if

1 T
lim — Ppdt =9
i 7 [ Pt =5

in L2(RN7M); where Y= f]RN @(x)/’(‘(dl‘)

Proposition 5.1.15 p is ergodic if and only if the dimension of ¥, defined in (5.1.10), is equal
to omne.

PROOF. Assume that p is ergodic. Then, from the Von Neumann Theorem it follows that
My =, for all ¢ € L2(RY, ). Since M, is a projection on ¥, it turns out that ¥ is one
dimensional.

Conversely, assume that the dimension of ¥ is one. Then, there exists a linear continuous
functional f on L?(RY, i) such that My = f(¢)1 = f(p), for all p € L*(RY, ). Moreover, the
Riesz-Frechet Theorem yields a function o € L2(R™, p) satisfying f(p) = [pn ¢(z)@o(z)p(dz).
Integrating this identity with respect to p and recalling the invariance of My, (see Theorem
5.1.11) we find

Mep(ulds) = [

RN

(@) () = / (@) go(x)dx),

RN RN

for all ¢ € L2(RY, 11). This leads to ¢y = 1 and consequently Mo = f(p) = B. ]
Let p be an invariant measure for (P;). A Borel set T is said to be invariant for the semigroup,
if its characteristic function yr belongs to X. T'is said to be trivial if u(T') is equal to 0 or 1.

The next result is a characterization of the ergodicity of an invariant measure in terms of
invariant sets.

Proposition 5.1.16 Let u be an invariant measure for (P;). Then p is ergodic if and only if
each invariant set s trivial.
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PROOF. Assume that p is ergodic and let I' be an invariant set. Then xr must be p-a.e. constant
in order to keep X one dimensional.

Conversely, suppose that all the invariant sets are trivial and, by contradiction, that p is not
ergodic. Then there exists a nonconstant function ¢ € ¥. Therefore, for some A € R the set
{¢© > A}, which is invariant by Proposition 5.1.13, is not trivial. ]

An interesting relationship between uniqueness and ergodicity of an invariant measure is
contained in the next proposition.

Proposition 5.1.17 Suppose that there exists a unique invariant measure p for (P;). Then it
is ergodic.

PROOF. Assume by contradiction that p is not ergodic. Then there exists a non trivial invariant
set I'. Define (ANT)
nw(AN
pr(A) = ———,
()
for any A Borel set. Since T is not trivial, ur(T") # p(T'), hence p and pr are distinet. We claim
that pr is an invariant measure for (P;). To this aim, it is sufficient to show that

pe(4) = [ ilo Aperda),

for any Borel set A (see (5.1.4)) or, equivalently, that

WANT) = / pi(, A)p(de).

Since T is invariant, for all ¢ > 0 we have Pyxr = xr p-a.e. Then pi(z,T) = xr(z) p-a.e. and,
as a consequence, pi(x, ANT) = 0, p-a.e. in T since pi(z, ANT) < pi(z,T). Analogously,
Pixre = xre pra.e., because P;1 = 1. Then p:(z,I'°) = xpe(x) and therefore p;(z, ANT°) =0,
p-a.e. in I'. So we have

[ e Autan) = [ AnDu@) + [ ple A0 )utdn)

— /Fpt(:c,AﬂF)u(dCU)Z/RNpt(vaﬁF)ﬂ(dx)
= wu(ANT).

Thus, we have established that pp is an invariant measure for (P;) and this clearly contradicts
the uniqueness of . ]

Lemma 5.1.18 Let u,v be two ergodic invariant measures of (P;), with u # v. Then u and v
are singular.

PROOF. Let I' be a Borel set such that u(T") # v(T'). From the Von Neumann Theorem 5.1.11, it
follows that lim7_, .o % fOT P,pds = My in L? (]RN, 1). In particular, choosing ¢ = xr, we find
that there exist a sequence T,, — oo and a Borel set M such that p(M) =1 and

Ty

1
lim — Psxr(x)ds = Mooxr(z), VYo e M.
n Jo

Since p is ergodic, Mo xr = p(I"), hence



Analogously, one can check that there exist a Borel set N with v(/N) = 1 such that

(without loss of generality we assume that the sequence T;, is the same for v). Since u(T") # v(T),
we have that M N N = (), hence p and v are singular. ]

Finally, we are ready to prove Theorem 5.1.8.

Proof of Theorem 5.1.8. Let y be an invariant measure for the semigroup (P;). First we
show that p is equivalent to ps(z,-), for all £ > 0 and = € RV, Let to > 0 and z9 € RV be fixed.
By identity (5.1.4) we have

(5.1.12) u(0) = [ e Dpulie),

for any Borel set I'. Let I' be such that py, (2o, ') = 0. Then, since (P;) is regular, p;(z,T') = 0, for
all t > 0 and # € RY. From the integral representation above it follows that u(I') = 0. Therefore
1 << piy(xo,-). Conversely, assume that p(I') = 0. Then, again from (5.1.12) p(z,T") = 0 for
some x, hence for every x by the regularity of (P;). As a consequence, pt, (o, ) << p.

Let us prove that p is ergodic. Using Proposition 5.1.16, we show that every invariant set
is trivial. Let T' be a Borel set such that Pixr = xr, p-a.e. Then pi(z,T) = xr(z), p-a.e. The
regularity of (P;) implies that either p;(z,T') = 0 p-a.e. or pi(x,T') = 1 p-a.e. From (5.1.12) it
follows that p(T") is either 0 or 1, as claimed.

If v is another invariant measure, then the argument above proves that v is equivalent to
pe(x,-), for all t > 0, z € RV and that v is ergodic. It turns out that y and v are equivalent. If
they were different, then Proposition 5.1.18 would imply that @ and v are singular, which is a
contradiction. We conclude that p = v, as stated. ]

5.2 Feller semigroups and differential operators

Feller semigroups naturally arise when one deal with second order elliptic operators in spaces
of continuous functions. Suppose we are given a second order partial differential operator

N N
i,j=1 i=1

whose coefficients are locally a-Hdlder continuous in RV, 0 < o < 1, and satisfy

N
G = qjin Y ¢ (@)&& > v(@)|E?,  for all 2,6 € RY,

4,J=1

with inf g v(z) > 0, for any compact set K of RY. Under these assumptions it is always possible
to associate with A a semigroup 7'(¢) in Cy,(RY), which yields a bounded classical solution to the
parabolic problem

— Au = : N
(5.2.2) { u—Au=0 in (0,00) x R

u(0,z) = f(z) zeRN

for every f € Cy(RY). The construction of such a semigroup is based on an approximation
procedure which consists of finding a solution to problem (5.2.2) as limit of solutions of parabolic
problems in cylinders (0,00) x B,, where A is uniformly elliptic. We have already used this
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construction in Chapters 2, 3 to solve parabolic problems with Neumann or Dirichlet bound-
ary conditions. Here the situation is easier, since we do not have to take any boundary into
consideration.

For the sake of completeness, we briefly recall the construction of T'(¢). Then we give sufficient
conditions for the existence of an invariant measure p for (T'(¢)). We will see also that u is unique
and absolutely continuous with respect to the Lebesgue measure.

5.2.1 Preliminary results

We refer to [38] and the references therein for more details on this argument and the proofs
of the results that we are going to show.
Let us fix a ball B, and consider the domain

(5.2.3) D,(A) = {u € C(B,) NW?P(B,) for all p < 0o | ujgp, =0 and Au € C(B,)}.

Then the operator (A, D,(A)) generates an analytic semigroup (T,(t)) of positive contractions
in the space C(B,) (see [32, Corollary 3.1.21]) and, for every f € C(B,) the function u,(t,z) =
T,(t) f(x) satisfies

Dyu,(t,z) — Auy(t,z) =0 in (0,00) X B,
(5.2.4) u,(0,2) = f(x) r € B,
u,(t,z) =0 in (0,00) x 0B,.

Since the domain D,(A) is not dense in C(B,), strong continuity at 0 fails: in fact, T,(¢)f
converges uniformly to f in B, as t — 0, if and only if f vanishes on dB,. However, T,(t)f
converges to f uniformly in Ep/, as t — 0, for every p’ < p, hence pointwise in B,,. For all p > 0,
there exists a kernel p,(t,z,y) that represents the semigroup (7),(t)):

Tp(t)f(x)=/ po(t,z,y) f(y)dy,

B,

for all f € C(B,). Moreover, p,(t,z,y) > 0 for t > 0,z,y € B,, p,(t,z,y) = 0 for t > 0,z €
OB,,y € B, and for every y € B,, 0 < € < 7 it belongs to C**%/22+¢((¢, 1) x B,) as function of
(t,x), and satisfies Dyp,—Ap, = 0. If f is positive then T),(¢) f is positive and || T, (¢) fllco < || f]loo-
For all the properties of p, we refer to [24, Chapter 3, Section 7).

An argument based on the classical maximum principle shows that for every f € C,(RY)
the limit lim, . 7},(¢) f exists uniformly on compact sets in R™ and defines a semigroup (7(t))
of positive contractions in Cy(RY). The main properties of (T'(t)) are listed in the proposition
below.

Proposition 5.2.1 For every f € C,(RY), the function u(t,z) = T(t) f(x) belongs to Cllota/z’era
((0,00) x RN) and satisfies the equation

Diu — Au = 0.

Moreover, T(t)f can be represented in the form

(5.2.5) T(t)f(z) = - Fp(t, z,y)dy,

where p is a positive function. For almost all y € RN, p(t,x,y), as function of (t,x), belongs

to C1+a/2’2+a((0,oo) x RN) and solves Dyp = Ap. Finally, T(t)f converges to f uniformly on

loc

compact sets of RN, as t — 0, hence u belongs to C([0, +oo[xRY) and solves (5.2.2).
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We note that the previous proposition establishes, in particular, an integral representation
for the semigroup T'(¢) similar to (5.1.1). Here we get more, since all the measures are absolutely
continuous with respect to the Lebesgue measure.

We note also that, since (T'(t)) is contractive, we have T'(t)1 = [~ p(t,z,y)dy < 1 and there
are cases where the strict inequality holds. We will see later a necessary and sufficient condition
to have T'(t)1 = 1 (see Proposition 5.2.7). Finally we observe that, as in the general setting,
formula (5.2.5) makes sense also for bounded Borel functions.

As a consequence of the results above, we can prove that (T'(t)) is irreducible and has the
strong Feller property (see Definition 5.1.7).

Proposition 5.2.2 The semigroup T'(t) is irreducible and has the strong Feller property.

PROOF. The irreducibility of T'(¢) is a consequence of the integral representation (5.2.5) and
the positivity of the kernel p. Concerning the strong Feller property, let f be a Borel function
and consider a bounded sequence (f,,) in Cp(RY) such that f,(z) converges to f(z), for almost
all z € RY. From (5.2.5) and the dominated convergence theorem it follows that T'(t)f,(x)
converges to T'(t)f(z) for all x € RN, ¢ > 0. Using the interior Schauder estimates (see [30,
Theorem IV.10.1]), it turns out that for every fixed t > 0, p > 0 and for all n € N

||T(t)fn||cl(§p) < C”T(t)fn”C(Ezp) <Ol fallo < c’,

with €/ > 0 independent of n. This implies, by a compactness argument, that there exists a
subsequence of T'(t) f,, which converges to T'(t)f uniformly on compact sets. Therefore T'(t)f €
Cp(RN). ([

Even though (T'(t)) is not strongly continuous one can define its generator following the
approach of [48]. More precisely, let us introduce the operator

D = {fECb(RN): sup w<oo and 3g € C,(RY) such that
te(0,1) t
iy CODW 1) _ -, )
i@ - 0D I p g

(A, D) is called the weak generator of (T(t)). It enjoys several properties which are well-known
for generators of strongly continuous semigroups. In particular, if f € ZA), then T'(t)f € D and
AT(t)f = T(t)Af, for all t > 0. Moreover, the map ¢t — T(t) f(x) is continuously differentiable in
[0, 00[ for all z € RN and D,T(t) f(z) = T(t)Af(z). Besides, one can prove that (0, 400) C p(A),
|R(A, A)|| < 1/X and

-~

+oo
(5.2.6) (RO, A) f)(z) = /0 eI (@) dt,  feCyRY), xRV,

The notion of weak generator is quite general and it allows to study a large class of semigroups
on Cy(FE) (the so called m-semigroups), for some separable metric space E. In our situation, since
the semigroup (7T'(t)) has been constructed starting from a differential operator, it is interesting
to point out the relationship existing between A and our operator A. In fact, it can be proved
that A is a restriction of A, in the sense specified by the following proposition.

Proposition 5.2.3 Let Dy,ax(A) be the mazimal domain of A in Cp(RN):
(5.2.7) Duax(A) = {u € Cy(RY) n W2P(RN) for all p < oo | Au € Cp(RN)}.
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Then D C Dinax(A) and A\f = Af, for f € D. The equality D= Dinax(A) holds if and only if
A — A is injective on Dpax(A) for some (hence for all) X > 0.

PROOF. Let A > 0 be fixed. If u € D, then there exists a unique f € Cy(RY) such that

u= R(\ A)f. We claim that u belongs to Dpax(A) and solves the equation Au — Au = f. From
identity (5.2.6) and the construction of the semigroup 7'(t), it follows that for every z € RV

+o0 +oo
u(x):/o e lim (T,(t)f)(x)dt = lim e M(T, (1) f)()dt,

p—-+o0 p—-+o00 0

where the last equality follows from the dominated convergence theorem. For each p > 0 we have

+oo
(5.2.8) / T, (0)f) (@)dt = (RO A f) () = (),

where A, means the operator A endowed with the domain D,(A) defined in (5.2.3). Therefore
the function u, € D,(A) satisfies

Aup, — Au, = f in By,
u, =0 on 0B,.

Since T),(t) is contractive, we have

(5.2.9) luplloo < m
A

Hence, by difference, we obtain

(5.2.10) [ Auplloo < 2[| flloo-

For every R > 0, the classical interior LP estimates (see [26, Theorem 9.11]) yield a constant
C > 0 depending on p, R, N and the operator A such that

(5.2.11) [wollw2r(r) < C[AU || Lo (Bor) + 1upllLr(821)):

for all p > 2R. From (5.2.9) and (5.2.10) it follows that

(5.2.12) [upllw2r(Br) < Coll flloos

with Cy depending on R, p, N, A, the operator A but independent of p. Choosing p > N, (5.2.12)
gives a uniform estimate of (u,) in C*(Bg) which allows to apply Ascoli’s Theorem and to deduce
that a subsequence (u,, ) of (u,) converges uniformly to u on compact subsets of RY. From the
equation Au,, — Au,, = f it follows that Au, converges uniformly on compact sets as well.
Therefore, applying (5.2.11) to the difference w,, — u,,,, we find that u,, converges to u in
Wli’Cp(RN ), hence u € Wi’f(RN ). Taking the limit in the equation satisfied by u,, we deduce
that Au — Au = f and, as a consequence, u € Dpyax(A). Since A\u — Au = f = \u — A\u, we
have Au = Au and the first assertion is proved. As regards the second statement, clearly A — A
is bijective from D onto Cyp(RN). Assume that it is injective also in Dpay(A). If u € Dpax(A),
there exists v € D such that Ao — Av = \u — Au. Therefore u — v belongs to Dyax(A4) and
Au —v) — A(u — v) = 0. From the injectivity of A — A on Dpax(A) we deduce that u = v and,
consequently, D= Dinax(A). O

As a consequence of Proposition 5.2.3, we can write R(\, A) instead of R(\, A\) (keeping the
fact that R(\, A) maps C,(RY) onto D and not onto Dyax(A), in general). It is worth stating
explicitly a result included in the proof of the above proposition.
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Corollary 5.2.4 For all A > 0 and f € C,(RY), there exists u belonging to Diax(A) such that
Au— Au= f and ||ullco < 5[ fllcc. Moreover, u >0 if f > 0.

Remark 5.2.5 Let us consider f € C,(RY), f > 0. Then R(X A)f is a positive solution in
Dinax(A) of the equation Au — Au = f, not unique, in general. In any case, it is the minimal
among all the positive solutions of the same equation in Dy,ax(A). Indeed, let w € Dpyax(A) be
positive and such that Aw — Aw = f. The function u, —w € W?P(B,) N C(B,), with u, given
by (5.2.8), is such that A(u, —w) € C(B,) and satisfies

Aup, —w) — A(up, —w) =0 in B,
u, —w <0 on 0B,,.

We claim that u, —w < 0 in B,. Since u, —w € C(B,), there exists a maximum point zy € B,.
Assume by contradiction that u,(zo) — w(xzg) > 0. Then zy € B,. From Corollary A.0.9 we
deduce that A(u, — w)(z¢) < 0 and therefore

0= Mu, —w)(z0) — Alu, — w)(x0) > Alu, — w)(x) > 0,

which is impossible. Hence u,(z) —w(x) < u,(zo) —w(zo) < 0 for every x € B,. Letting p — +00
and recalling that lim,_, . u, = R(X, A)f, we have R(A\, A)f < w, as claimed.

A sufficient condition for the injectivity of A — A on Dy (A) is the existence of a Liapunov
function, i.e. a function V € C?(RY), such that lim|, 4o V(2) = 400 and AV — AV > 0.
This assumption leads to growth conditions on the coefficients of A. Indeed, in order to find a
Liapunov function, one often considers some simple function V' which goes to +o0o as || — 400,
plugs it into A\ — A and imposes that AV — AV > 0. By taking for example V(z) = 1 + |z|2, one

requires that
N

N
> gil@) + ) Fi(w)z < AL+ [2?), zeRY.
=1 i=1

If A — A is injective on Diax(A) then the semigroup T'(¢) yields the unique bounded classical
solution to problem (5.2.2).

Proposition 5.2.6 Suppose that X\ — A is injective on Dyax(A) for some A > 0 and let w €
CH2(()0,7] x RY) N C([0,7] x RY) be a bounded solution of problem (5.2.2). Then w(t,x) =

T(t)f(x).

PROOF. By linearity, it is sufficient to prove the statement in the case where w solves problem
(5.2.2) with f =0. For 0 <e <t <7 and z € R" we have

(5.2.13) w(t, z) — w(e, 7) :/: ;sw(s,x)dSZ/: Aw(s,x)ds:A/:w(s,x)ds.

Since (A, Dmax(A)) is the weak generator of T'(t) (see Proposition 5.2.3), from [48, Proposition
3.4] it follows that it is closed with respect to the m-convergence, defined as

fo==f = fale) = f@) and [|ful <C.

Since w € C([0, 7] x RY), we have that f: w(s, x)ds converges to fot w(s,x)ds as e — 0, for every

x € RY. Moreover f; w(s, .)dSHoo < ||wl|sot, which implies that

¢ t
/ w(s,)ds / w(s,-)ds, ase— 0.
€ 0
1
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From (5.2.13) we infer that Af; w(s, z)ds converges to w(t,z) when € goes to zero, for every

z € RN, and
t
HA/ w(s,-)ds

ie. Af; w(s, )ds — w(t,-). The closedness of (A, Dyax(A)) yields

= [lw(t, ) —w(e,)lloo < 2fwllo,

(5.2.14) /0 w($,-)ds € Dpax(A) and w(t,z) = A/o w(s, x)ds,

for t < 7. Setting w(r + s,2) = T(s)w(r,)(x) we obtain a bounded function w which belongs
to C([0, +0o[xR¥) and such that (5.2.14) holds for every ¢t > 0. Indeed, it is clear that the
extended function is bounded in [0, co[xRY. As regards the continuity, by the semigroup law, it
is sufficient to show that if s,, — 0 and z,, — z then w(7 + sy, x,) — w(r,z). To this aim we
observe that

T (sn)w(r, ) (2n) — w(T, )|
T(sn)w (T, ) (@n) = w(r, 2n)| + [w(7, 2n) — w(r, )]

sup [T'(sn)w(7,-)(y) — w(7,y)| + [w(7, 20) — w(T, 2)],
yeK

Iw(T + 8p, Tp) — w(T, 7|

IA A

where K is a compact subset of R such that x, € K for all n € N. Since the semigroup T'(t)
is strongly continuous with respect to the uniform convergence on compact sets (see Proposition
5.2.1), the first term tends to zero as n — oo. The second one is infinitesimal, too, by the
continuity of w. Now, we claim that (5.2.14) is true for every ¢ > 7. Since

/0 w(s,x)dSZ/O w(s,z)der/o (T'(o)w(r,-))(x)do
the claim is proved, because [ w(s,-)ds € Dmax(A) by (5.2.14) and fg_T(T(U)w(T7~))(£L’)d0’

€ Dmax(A) by [48, Proposition 3.4].
Using again the closedness of (A, Dyax(A) with respect to the m-convergence and Fubini’s

Theorem we obtain
+oo t
A(/ e_M/ w(s, z)ds dt)
0 0

+oo
/ e Mw(t, x)dt
0
+oo +oo
= A(/ w(s,x)/ e_’\tdtds>
0 s
1 e
= A(/ e/\sw(s,ac)ds>.
A \Jo

It follows that the function v(x) = f0+oo e~ Mw(s, x)ds belong to Diax(A) and satisfies A\v — Av =
0. Since A— A is injective on Dyax(A) we infer that v = 0. This means that the Laplace transform
of w(-, x) is identically zero, hence w = 0. O

Moreover, the following result can be proved.
Proposition 5.2.7 X\ — A is injective on Duax(A) if and only if T(£)1 =1, for all t > 0.

PROOF. If A — A is injective on Dp,ax(A), then from Proposition 5.2.6 it follows that the
semigroup 7'(t) yields the unique bounded classical solution to problem (5.2.2). Since 1 is in fact

a bounded classical solution of problem (5.2.2) with initial datum f = 1, by uniqueness it turns
out that T'(¢t)1 = 1.
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Conversely, if T'(t)1 = 1 for all ¢ > 0, then R(1,A)1 =1 (see (5.2.6)). Let u € Dyyax(A) be
such that u — Au = 0 and |[uljoc < 1. The function v = 1 — u € Dyax(A) is nonnegative and
satisfies v — Av = 1. On the other hand, by Remark 5.2.5, R(1, A)1 = 1 is the minimal positive
solution of w — Aw = 1, hence 1 < 1—wu, i.e. u < 0. The same argument applied to —u proves
that w > 0 and therefore u = 0. O

If T(t)1 = 1 then, collecting all the results so far, we have that (7'(¢)) is a Feller semigroup,
according to the terminology introduced in the previous section.

5.2.2 Invariant measures

Our aim is to establish now some criteria for the existence of an invariant measure for T'(¢)
in terms of the coefficients of the operator A. Since T'(t) is irreducible and has the strong Feller
property (see Proposition 5.2.2) we already know that if an invariant measure exists, then it is
unique and ergodic (see Theorem 5.1.8). Therefore, we limit our study to the existence part.

We start by a preliminary lemma which is similar to Proposition 5.1.2. We note, however,
that here the semigroup is not strongly continuous and A is only its weak generator. For the
proof see [38].

Lemma 5.2.8 Assume that A — A is injective on Dyax(A). Then a probability measure u is
invariant for (T(t)) if and only if [, Afp(dz) =0, for all f € Dyax(A).

PROOF. Since (A, Dnax(A)) is the weak generator of T'(t), if u € Dpax(A), we have that T'(¢t)u €
Dpax(A) and £T(t)u(z) = (AT (t)u)(z) = (T(t)Au)(x). Therefore H%T(t)uHoO < || Au||oo and
by dominated convergence

9 Tyt = [ AT@u()u(dn).
RN RN

This shows that p is an invariant measure for the restriction of T'(t) to Dpax(A) if and only
if [on Aup(dz) = 0, for every u € Diax(A). If this is the case and f € Cy(RY), then f, =
nfol/n T(s) fds belongs to Dy (A) and satisfies || fnlloo < || floos fn(x) — f(2), for every x € RN
(see [48, Proposition 3.4]). It follows that T'(t) f,(x) converges to T'(t) f(z) (see [38, Proposition
4.6]) and [|T'(t) fulloo < [Ifnlloc < ||flloc- Since

| rOs@ntin) = [ fu@nto),

RN
by dominated convergence we have
| TOs@utdn) = [ fouis)
RN RN
and the proof is complete. ]

The following result is due to Khas’minskii.

Theorem 5.2.9 (Khas’minskii) Assume that there exists a function V€ C?(RN) such that
| ‘lim V(z) = +o0 and ‘ ‘hm AV (z) = —oo. Then there is an invariant measure p for (T(t)).
| —+00 x|——4o0

PROOF. We observe preliminarily that the existence of a function V satisfying the stated prop-
erties implies that A — A is injective on Dpax(A), hence T'(t)1 = 1 (see Proposition 5.2.7) and
(A, Dpmax(A)) is the generator of T'(t) (see Proposition 5.2.3). Without loss of generality, we can
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assume that V' > 0 (otherwise we consider V +c instead of V, for a suitable constant ¢). Recalling
Theorem 5.1.6, it is sufficient to prove that the family of measures

1 T
(5.2.15) T/ plt,zo,-)dt, T >Tp
0

is tight for some zop € RY and Ty > 0. Let M > 0 be such that AV (z) < M for all z € RV,
Consider ¢, € C*(R) such that 1,(t) = t for t < n, 9, is constant in [n + 1,+o0[ and
Pl > 0,4 < 0. It is easily seen that 1, o V belongs to Dpax(A4). Indeed, ¥, o V is obviously
continuous in RY and sup,cpn [¢0n (V(2))| < supysq¥n(t) < +oo. It is also clear that 1, 0V and
its first and second order derivatives -

Di(¢n o V)(x) = ¢, (V () DV (),
Dij(¢n 0 V() = ¢ (V(2)) DiV (2) D;V () + by, (V () D V ()

are locally p-summable, for every p < oo. It remains to show that A(), o V) is bounded in R¥.
To this aim, we observe that, by the assumption, there exists R > 0 such that V(z) > n + 1 if
|z| > R. It follows that ¢} (V(z)) = ¢(V(x)) =0, if |z] > R and therefore

sup [A(¢fn o V)(z)] = sup |4, (V(2))AV () + ¢ (V Z aij(x x)D;V (x)
zeRN z€RN i,j=1
= sup (¢, (V(2)AV(2) + ¢ (V Z qij (@ ) D,V (x)
"ngR 7] 1
< +00.

Hence we deduce that u,(t,) = T(t)(¢¥n 0 V)(-) € Dmax(A) and

Du(t.a) = TWAWoV)(a) = [ plt..9) Al o V)(0)dy

[ vt (v navi) DS 4l VDY) )y

1,j=1

Integrating this identity and recalling that ¢!/ < 0 we have

wla) = V@) < [ [ ptage vV
T
= [ [sttamuiveaveaya

+/0 /RN\EP(@ 2, y)Pn (V () AV (y)dy dt,

where E = {y € RN | 0 < AV(y) < M}. In the first integral we can use dominated convergence
since p(t,z, y)., (V(y))AV(y) < p(t,z,y)M. In the second one, where AV is unbounded but
negative, we use monotone convergence because v¥;, < ¢, ;. Letting n — oo we deduce that

/ (T2, y)V(y)dy — V(z / / p(t, z,y)AV (y)dy dt.
RN RN
Let €, p > 0 be such that AV (y) < —1/e if |y| > p. It follows that

1 [T 1 [T

f/ / p(t,z,y) AV (y)dy dt < ——/ / p(t, @, y)dy dt

T 0 RN eT 0 RN\B,
1 /T 1 [T

+—/ / p(t,z,y)AV (y)dy dt < ——/ / p(t, z,y)dy dt + M
T Jo B, eT Jo RN\ B,
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hence -

1 Vix)

= t, e, RN\ B))dt <e | M+ ——=

T() p(azr \ p) —€< + T >7
where we have set p(t,z,RV \ B,) = f]RN\Bp p(t,x,y)dy. Therefore, we have established that the
set of the measures (5.2.15) is tight for every fixed zo € RY and Ty > 0 and this completes the
proof. ]

Khas’minkii’s Theorem relies upon the existence of suitable supersolutions of the equation
Au — Au = 0. Next, we give a different criterion, due to Varadhan, to establish the existence of
an invariant measure for a special class of operators (see [40, Proposition 2.1]).

Theorem 5.2.10 Consider the operator
A=A—-(D®+G,D),

where ® € CL(RY) and G € CLRY;RY). Assume that e=® € LY(RY) and |G| € L*(RY, ),
with p(dz) = ae=*@dz, a = ||e=®|| . Suppose also that

(5.2.16) divG = (G, D®),

i.e. div(Ge™®) = 0. If (T(t)) denotes the semigroup associated with A, then (T(t)) is generated
by (A, Dmax(A)) and p is its unique invariant measure.

PROOF. Uniqueness follows immediately from the irreducibility and the strong Feller property
(see Proposition 5.2.2 and Theorem 5.1.8). For the existence part, we split the proof in two steps.
Stepl. The closure (B, D(B)) of (A,C°(RY)) generates a strongly continuous semigroup
(S(t)) in L} (RY, p).
Let us prove that (A4, C°(RY)) is dissipative in LY(RY, ). Let A > 0 and u € C°(RY) be
fixed. Multiplying the equation Au — Au = f by signu and integrating on R with respect to p
we obtain

)\/ |u|e_¢’dac—/ (Au—(D@,Du>)signue_q>dx+/ (G, Du) signu e~ *dx
RN RN RN

= fsignue ®dz.
RN

Since Au — (D®, Du) = e®div(e~®Du) and (Du)signu = D|u| we get

A \u|e_<bdx—/ div(e_q)Du)signudx—l—/ (G,D|u|>e_q>dx:/ fsignue *dz.
RN RN RN RN

We claim that [,y div(e™®Du)signudz < 0. Let ¢, € C*(R) be such that |¢,| < 1, ¢}, > 0 and
©n(t) — signt for all ¢ # 0. Then, by dominated convergence, we have

/ div(e"®Du)signudz = lim div(e=® Du) g, (u)dz
RN

n—oo [pN

= — lim e~ ®|Dul?¢!, (u)dx < 0,

n—oo JpN

as claimed. Integrating by parts and taking (5.2.16) into account we deduce that

/ (G, Dl|ulye™®dz = 0.
RN

)\/ |u|e_¢’d:£§/ |fle”®dz,
RN RN
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which means A|ul| 1wy ) < ([ A — Aull i@y -
Next we show that (I — A)C2°(RY) is dense in L'(RY, u). Let g € L>(RY) be such that

(5.2.17) / (u — Au)ge~®dx = 0, YV u € CP(RY).
RN

2
loc

solutions of elliptic equations (see [1] for p = 2 and [2] for general p and also [5]) it follows that

Since, in particular, ge=® € L2 (R™), from a classical result of local regularity for distributional

ge~® € HL _(RY), if A is sufficiently large and, as a consequence, g € H (R™). This leads to
(5.2.18) / uge Pdx Jr/ (Du, Dg)e~*dx + / (G, Du)ge ®dx =0
RN RN RN

for every u € H*(RY) with compact support. Indeed, if u is such a function, set u,, = g, *u, where
0n is a standard sequence of mollifiers. Then u,, € C2°(RY) and u,, converges to u in H'(RY),
as n — 0o. Moreover, we can find R > 0 sufficiently large in such a way that supp u,, and supp u
are contained in Bpg, for every n € N. Now, each u,, satisfies (5.2.17), hence, integrating by parts,
we have

/ ungeféda:—&—/ <Dun,Dg>67¢dx+/ (G,Duy)ge ®dx =0
RN RN RN

Letting n — oo, we obtain (5.2.18). Let 1 be in C°(RY) such that n=1in B;,0<n < 1,7 =0
in RV \ By and set n,,(z) = n(£). Plugging gn?2 into (5.2.18) we find

n
(5.2.19) / @nle ®dr + / n,2L|Dg\2e_<Dda:+2/ (D1, Dg)nng e 2 da
RN RN RN
N

+ / <G,Dg>gnie‘¢daﬁ + 2/ (G,Dnn>92nne_<bdx =0.
RN R

Integrating by parts and recalling (5.2.16) it follows that

/ (G,Dg)gnpe Pdx = —/ (G, Dnn)g*nne*da,
RN RN

therefore from (5.2.19) we deduce

/anie‘q’der/ np|Dgl*e”* dw
RN RN

—2/ (Dnn,DgMnge_q’dx
RN
—/ (G, Dnn)g*nne ®da
RN
2¢ _ c _
= [ mllIDgle tdo+ £ [ JgP|Gle?d
n Jrn n Jrn

C _ C _
¢ / i Dgl2e i + < g% / i
RN n RN

IN

IA

n
c 2 —®
+E gl / Gle~®dz.
n RN

For n large 1 — = > 0, hence

_ C _ C _
/ Pr2evdz < S|gl2 / e+ g2 / Gle®de.
RN n RN n RN

Letting n — oo and using monotone convergence, we find that g = 0, which implies that I — A
has dense range.

Since C2°(RY) is dense in L*(RY, 1), from the Lumer-Phillips Theorem (see e.g. [21, Theorem
11.3.15]) Stepl follows. We observe that, by construction, C°(R¥) is a core for B. Then u is
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an invariant measure for the generated semigroup (S(t)), since, integrating by parts we have
Jan Aup(dz) =0, for all u € C°(RY) (see Proposition 5.1.2).

Step2. The semigroups (7'(t)) and (S(t)) coincide on Cy(RY).

Let first f € C°(RY), f > 0. By construction, u(t,z) = T(t) f(z) is the limit of u,(t, x), as
p — +oo, where u, solves (5.2.4). Since f is positive, the classical maximum principle implies
that the sequence (u,) increases with p. Moreover, if suppf C Bg, then ug € C12([0,T] x BR).
Integrating the equation Dyugp = Augr on Br with respect to p and using (5.2.16), we find

Dt/B ur(t,x)pu(dx) = /BAuR(t,x)u(dx):a/B div(e”* Dug)dx

—a / (G, Dug)e”®dx
Br

— a/ %(t7 .’L‘)e_(I)O'(de') + a/ divG UR €_q>d$
oBp OV Br

—a/ (G, D®)up e_@dx—a/ (G, v)yuge *dx
Br 8Br

auR —d
= a —(t,z)e” “o(dx
|, Gttt

where o is the surface measure on dBg and v the outward unit normal vector to Bg. Since ugp > 0
in Br and ur = 0 on OBg, it follows that aaif(t,m) < 0, hence the map t — fBR ug(t, x)p(dr)
is decreasing. This yields

/ unlt, Dp(de) < [ f@)u(de), £ 0

Br Br

and, by monotone convergence, ||T(t)f|lr @~ ) < [[flloi@y - I f € Cp(RN) and f > 0, let
fn € C(RYN) be such that f, > 0, [[falloo < [|[flle and fn(z) — f(z), for every z € RYN.
Then T(¢t) fn(z) — T(t)f(x) and the same estimate holds by dominated convergence. Finally,
since T'(t) is positive, we have [T'(t) f| < T'(t)|f|, for every f € Cy(RY), hence [|T(t) f| 11 @y ) <
Ilfll1 &~ - Tt follows that (7(t)) can be extended to a strongly continuous semigroup of positive
contractions on L' (RN, 11), denoted by (T'(t )) with generator (A, D(A)).

Let f € C°(RY). Then f belongs to D where D is the domain of A as weak generator of
(T'(t)). This means that sup, M is finite and lim;_, M = Af(x), for every
z € RYN. By dominated convergence the above equality is also true in Ll(RN ,it). Therefore
feD(A) and Af = Af = Bf. Hence, C°(RY) is contained in D(A) and A coincide with B on
C>(RN). If f € D(B), since C°(RY) is a core of B, we can find a sequence (f,) in C>(RY)
such that f, — f and gfn = Bf, — Bf in LY(RN, ). Since (A, D(A) is closed in L'(RN, p)
it turns out that f € D(A) and A f = Bf. Thus we have established that A is an extension
of B. Since they are both generators, they must coincide, hence T(t) = S(t) on L*(RN, z). In
particular T'(t) = S(t) on Cy(RY), as claimed Concerning the last assertion, we observe that
T(t)1 =1, since T(t)1 < 1and [pn (T(£)1— 1)e~*dx = 0. Proposition 5.2.7 concludes the proof.

([

Let us consider again A as in (5.2.1). Our next result shows that the invariant measure of
T'(t), when exists, is absolutely continuous with respect to the Lebesgue measure |-|. In this way,
we extend the situation of Theorem 5.2.10 to the general case, even though it is not possible any
more to know the density explicitly.

Proposition 5.2.11 Assume that p is the invariant measure of T'(t). Then u is absolutely
continuous with respect to | - | and its density o(x) is strictly positive | - | almost everywhere.
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PROOF. Since (T'(t)) is regular (see Propositions 5.2.2 and 5.1.9) all the probability measures
p(t,x,-) are equivalent. Moreover, p is equivalent to p(t,z,-) for all ¢ > 0 and z € RY (see
Theorem 5.1.8). Since p(t, z, -) is absolutely continuous with respect to the Lebesgue measure |- |
(see (5.2.5)), it follows that u is absolutely continuous with respect to | - |, too. Let o € L*(RY)
be its density. It is clear that ¢ > 0. We prove that g is strictly positive |- |-a.e. If I is a Borel set
such that |T'| > 0, then fr o(x)dx = u(T') = Pixr = fF p(t,x,y)dy > 0 since p is positive. Since
I" was arbitrary the thesis follows. ]

Remark 5.2.12 As a consequence of the above proposition, we have that if an invariant measure
of (T'(t)) exists, then T'(¢)1 = 1 and therefore T'(t) is generated by (A, Dax(A)) (see Propositions
5.2.3 and 5.2.7). Indeed, one has T'(t)1 < 1 and [, (T(t)1—1)o(z)dz = 0, with o(z) > 0 |- |-a.e.
from Proposition 5.2.11.

Moreover, recalling Proposition 5.1.2, we have that (T'(t)) extends to a strongly continuous
semigroup in LP(R™, ), for every 1 < p < oco. Here we have more information, since we can
identify the generator (A,, D(A,)), relating it to the original operator A.

Proposition 5.2.13 Assume that p is an invariant measure of (T'(t)). Then Dmax(A) is a core
of (Ay, D(Ap)) in LP(RN 1), hence (A,, D(A,)) is the closure of (A, Dimax(A)) in LP(RY, ).

PRrROOF. We continue to denote by (T'(t)) the extended semigroup in LP(RY, ). In order to
prove that Dpax(A) is a core of (Ap, D(A,)), it is sufficient to show that

(i) Dmax(A) C D(A;D)§
(ii) Dmax(A) is dense in LP (RN u);
(iil) Dmax(A) is invariant under the semigroup.

Let f € Dmax(A). Then sup,.q w is finite and lim;_.o w = Af(x), for every
2 € RY. By dominated convergence, we have easily that

[Fr=s

P — 0, ast—0.

LP(RN,p)

Therefore f € D(A,) and A, f = Af. Concerning (i), we show that C2°(R"), which is contained
in Dpax(A), is dense in LP(RN, u). Let first u € C.(RY). If (p,) is a standard sequence of
mollifiers, then o, * u € C°(RY) converges uniformly to u as n — oo. Since

[ Jewsuta) — u@)Pe(w)de < g+l
R

it follows that o, * u converges to u in LP(R™ u), too. This proves that C2°(RY) is dense in
C.(RY) with respect to the norm of LP(R™, p). Since C.(RY) is dense in LP(RY u) (see [51,
Theorem II1.3.14)), assertion (i7) follows.

Finally, taking into account the fact that (A, Dyax(A)) generates (T'(t)) in Cy(RY), (i44) is
clear. At this point, [21, Proposition I1.1.7] leads to the conclusion. ]

5.3 Characterization of the domain of a class of elliptic
operators in LP(RY, )

The aim of the present section is to study the following class of operators

B = div(¢D) — (¢D®, D) + (G, D)
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in the space LP(R™, 1), 1 < p < oo, where du = e~®dx. In particular, our purpose is to provide
an explicit description of the domain under which B generates a strongly continuous semigroup
in LP (RN , ). Our main tools are the results of Chapter 1, where the same problem has been
studied for differential operators in LP(RY). In fact, via the transformation v = efgu, the
operator B on LP(RY | y) is similar to an operator A of the form (1.0.1) in the unweighted space
LP(RY). Suitable assumptions on the coefficients ¢, ®, G allow to apply the generation results
of Chapter 1 to the transformed operator so that, via the inverse transformation, we can deduce
that B, endowed with the domain

(5.3.1) D, = {uc W*P(RY 1) | (G, Du) € LP(RY, 1)}

generates a strongly continuous semigroup (7'(t)) on LP(RY, ). We note that, in particular, the
measure p can be the invariant measure of (T'(t)). This is the case if an additional condition is
satisfied (see (A4’) below). By W*P(RY 1) we mean the weighted Sobolev space

WEPRN, 1) = {u e WEP(RY) | D € LP(RY, 1), |a] < k.

loc

In order to prove that (B,D,) is a generator, we make the following assumptions on the coeffi-
cients:

(A1) ¢ = (g;) is a symmetric matrix, with ¢;; € C}(RY) and there exists v > 0 such that
(46.€) = S0y i (2)€i€; > V€], for all 7,6 € RV,

(A2) ® € C*(RY), G € CY(RY;RY) and [pn e *@da < oo,

(A3) for all € > 0 there exists c. > 0 such that |G| + |DG| + |D?®|? < ¢|D®|? + .,
(Ad) [divG — (G, D®)| < e|DP|? + c.,

(A4’) div G = (G, D®).

Since |divG| < v/N|DG| and (A3) holds, (A4) actually says that |(G, D®)| < ¢|D®|? + c.. Here
and in the sequel, c. denotes a nonnegative constant which may go to infinity when ¢ goes to
zero. It may change from line to line, but this is irrelevant to our interests.

We observe that the condition on @ included in (A3) is satisfied by any polynomial whose
homogeneous part of maximal degree is positive definite. However, it fails in R? for the function
x?y?. Moreover, we note that it implies the weaker condition |D?®| < ¢|D®|? + ¢., which is
assumed in [41] together with a more restrictive assumption on G. If ¢;; = §;; and ® = |z|*/2
then we obtain the Ornstein Uhlenbeck operator perturbed with a non symmetric drift G:

A— <$aD> + <G7D>
If G is such that (G(x),z) = 0 for every € R, then assumption (A3) is verified if
|G ()| + |DG(2)| < ela]” + e,

i.e. if G and its derivatives grow a little bit less than quadratically. Since (G(x),z) = 0, this
implies automatically (A4). For example, in R? one can consider G(z1, 22) = (—2, 1) xh(x1, 2),
where h € C'(R?). Since |G| = |z||h], and |DG|?> = |z|?|Dh|? + 2h? + 2h(z, Dh), the function
h has to satisfy the condition |h(x)| < e|z| + ¢, for every € > 0. Then a possible choice is
h(x) = (|z|? +1)*/2, with 0 < a < 1. This situation is excluded in [41].

Replacing (A4) with (A4’) we obtain that p is the invariant measure for the generated semi-
group, as we will see in Proposition 5.3.4.
We first need some technical lemmas. These results are completely similar to those of [41] and
we give the proof for the sake of completeness. It is useful to observe that one can easily check,
as in Lemma 1.3.1, that C>°(R") is dense in W*? (RN ).
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Lemma 5.3.1 Let 1 < p < oo and assume that ® € C*(RYN) with fRN e~ ®@dy < co. If for
some € < 1 there exists c. > 0 such that

(5.3.2) AD + (p—2)(1 + |DP|*)"YD?*®DP, DP) < £|DP|? + c.

then the map u — u|D®| is bounded from WLP (RN ) to LP(RY, 1) and the map u — |Du| |D®|
is bounded from W2P(RN 1) to LP(RN u). Therefore, the operator B is bounded from D, in
LP(RY, ).

PROOF. Let 1 < p < oo be fixed. Since C°(RY) is dense in W1P(RYN 1), it is sufficient to prove
that
ul DO || Loy ) < e(llull e @y ) + 1Dl Lo @y ),

for u € C°(RY) and for some constant ¢ > 0. Since t? < a(1 +#2)5 =142 + b for all ¢ > 0 and for
some suitable constants a,b > 0, we have only to estimate [y (1 + [D®[?)2 | D®[2|uPe~®dz.
Integrating by parts and using (5.3.2) we obtain

/]RN(l +|D®?) 5 DO |uPe™ P da = — /RN(1 +|D®%) 5~ (D®, De™®)|u|Pdx =
(p—2) /RN \u|p(1+|D<I>|2)%*2<D2<I>D<I>,D<I>>e*q’dx+/RN(l+|D<I>|2)%*1A<I>\u|pe*q’dx
+p/RN lulP~2u(1 + |D® %)% 1 (D®, Du)e™da < E/RNQ +|D®?) %7 D®|?|ulP du +
. / 1+ DO E T ul? d ot p / a1+ DO E DB [ Dl
Applying the inequality (1 + )5~ < 5(1 + )52 + ¢,, which holds for all 5 > 0, we deduce
(5.3.3) (1—¢) /RN(H|D<1>|2)%—1\Dq>\2|u|pe—®dx gcgn/RN(l-i- |D®|?) 2 D®|?|ulPdp +
Ce Cp /RN |u\pd,u+p/RN <|u|p_1(1 + |D<I>|2)g_1|D<I>|) | Du|d .

Choosing n = % and using Young’s inequality to estimate the last term in (5.3.3), we find that
for all 6 >0

1—¢

/ (14 [D®)5 1D |uPePdx < c. cn/ lulPdu
RN RN
+5/ |u|p(1+\D<I>\2)(%*1)p'|D<I>|p/d,u+05/ | DulPdp,
RN RN

where p' is the conjugate exponent of p. Now, the inequality (1 +t2)(%71)p/t1’/ <k (14227124
ko, which holds for certain constants k1, ko > 0, and a suitable choice of ¢ conclude the proof. []

Lemma 5.3.2 Let 1 < p < oo and assume that ® € C*(RN) with [,y e~*@dz < co and such
that for all € > 0 there exists c. with the following property

(5.3.4) |D?®| < e|DOJ? + c..

Then the map u — u|D®|? is bounded from W2P(RN u) to LP(RYN, ).

PROOF. Let u € C°(RY). Then the vector function uD® € WHP(RY) and from Lemma 5.3.1
it follows that

lul DOl Lo (g 1 ClluD®(lw1p @y )

C(|uD®| Lo @ iy + (D, DO || Lo@n ) + [uD*®|| Lo@n 0))-

IN A
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Using again Lemma 5.3.1 and applying (5.3.4) we have
[u| DR Lo en ) < C'([ullwro@y oy + Nl wee @y + el DR Lo @y ) + cellull o @y p))-

Choosing ¢ sufficiently small we get the statement for u € C2°(RY). The general case follows by
density. ]

We observe that under assumptions (A2) and (A3) Lemmas 5.3.1 and 5.3.2 hold.
Now, we are ready to prove the main result of this section. It is useful to introduce the
quantities

N 1
5.3.5 L = sup Dg;i(z)|? :
(5.3.5) %M(g; J@)P)
N 1
M = sup max(g&, &) = su i4x22
sup (a6, €) R£<§§;fqﬂ()))

Theorem 5.3.3 Let 1 < p < oo and assume that hypotheses (A1), (A2), (A3) and (A4) are
satisfied. Then the operator (B,D,,) generates a positive strongly continuous semigroup (T'(t)) in
LP(RY, ).

ProoF. Fix p € (1,00). As pointed out at the beginning of the section, we introduce a trans-
formation in order to deal with an operator in the unweighted space LP?(RY). Let us define the
isometry
J: LPRN,p) — IP(RY)
ur— Ju=e ru.
A straightforward computation shows that Bu = J =B Ju, for u € C>(RYN), where
B =div (¢D) + (F,D) -V
with
2
F= <1> qD® + G,
p

1 [ (1 - 11)) (¢qD®, D®) — Tr (¢D?*®) — (G, D) — i Diqiijtb}

p i,j=1

The proof is structured as follows. Setting U = % (1 — %) (¢gD®, D®), we first prove that
Stepl A =div(¢D)+ (F, D) — U, endowed with the domain
(5.3.6) D, = {u e W*P(RY) | (F, Du), Uu € LP(RV)},
generates a positive strongly continuous semigroup in LP(R™V).
Then we deduce that
Step2 (E, D,) generates a positive Cy semigroup in LP(RY).
Finally, we show that
Step3 (B,D,,) generates a positive Cy semigroup in LP (R, p1).
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Proof of Stepl. We want to show that under assumptions (Al)-(A4) the coefficients of A
satisfy the hypotheses of Theorem 1.1.2 with 0 = 1 and p = 0. More precisely, we claim that
there exist a constant a > 0, sufficiently small constants 3,0 > 0, and constants c,,cg,co > 0
such that

(i) |DU| < aU + cq,
(ii) |DF| < BU + cg,
(iii) |F| < 60U + cp.
As far as (i) is concerned, we have

0-3)

| Dy U]

Z DkqijDi(bDjé + ; <1 — ) Z QijDik:(bDj@

i,j=1 i,5=1

1 1 al 2
< - (1 - > |DP|? sup ( Z |Dk(Iij|2>
p p RN\ 5T
(1) oo Simee) s (32 e
R " sup Gii
p p il RY Nij=1 ?
<

1 1 2 1
- (1 — ) LID®* + = (1 - ) M|D?®||D®|,
p p p p

where L and M are given in (5.3.5). From (A1) and (A3) and applying the inequality t < nt?+c,,
which holds for every n > 0, it follows that

1 1 2 1
|IDU| < — (1 - ) L{gD®, D®) + = <1 — ) M (e| DO + c.|D®|)
pv p p p

1 1 2 1
< — (1 - ) (¢D®, D®) + — (1 - ) Me(qgD®, D)
pv p pbv p

i
/N

—_

|
D=
N——— ~

2 1
Meceon(qD®, DP) + — (1 - ) Mec.c,
p p
= alU+c,

where o = LE2M(teen) g ¢ = % (1 — %) Mec.c,, for arbitrary ¢,n7 > 0. This leads to (i).

v

Now, similar computations yield

2 2
|DF| < \/§(‘p — 1'L|D<I>| + ’p — 1‘ M|D*®| + |DG|>
< e(L+ M +1)|D®|? + CE),

(-

where ¢, depends on €, p, L, M. Therefore |DF| < SU +cg, with § = O(¢) and ¢g > 0 depending
on g,p, M, L. Finally, condition (iii) follows easily from (A3). Indeed, one has

||

IN

\/i(‘; _ 1’M|D<I>| + G|>

IN

2 2

\/§<‘ — 1’M€D<I>|2 + ’ — 1’Mc5 +¢|D®J? + c5>
p p

= 00U + ¢y

with § = O(e) and ¢y depending on e, M,p. At this point, assumptions (H1’), (H2’), (H4’) and
(H5) of Theorem 1.1.2 are satisfied with ¢ = 1 and g = 0. The smallness condition (1.1.7) is
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guaranteed by a suitable choice of € and 7. Note that the product a6, and not « itself, has to
be small. Then Theorem 1.1.2 applies and we find that (A,D,) generates a positive, strongly
continuous semigroup in LP(RY), with D, given by (5.3.6). This concludes the proof of Stepl.

Proof of Step2. Let us prove that divF + p(V 4+ X\g) > 0, for a suitable A\g > 0. From
assumption (A3) we infer

N
1 1 1
divF +pV =2 < - 1) > DrgjrD;® +2 ( - 1) Tr(¢D?®) + (1 — ) (qD®, D®)
P Pyt p P
+divG — (G, D®)
1 1 1
2 ( - 1> VNL|D®| + 2 ( - 1> M|D?®| + <1 - > v|D®?
p P p

—e|D®|? — c.

(o2 ) o) o-3) oo

+2 (; - 1) (VNL + M)c. — c..

Vv

v

Choosing € > 0 sufficiently small, we obtain divF + pV > —p Xy, where A\g > 0 depends on
p,v, L, M. Under this condition, the operator (§7 D,) is quasi-dissipative in LP(RY) (see Lemma
1.3.2 and Remark 1.3.4). Moreover, we observe that, setting W = V — U, by (A4), (A3) and
(A1) respectively, we have

1 1 NL
Wl < ];M|D2cl>| + §|<G,Dq>>| + \/;|D<I>|
1 1 N NL NL
< —(M +1)e|DOP* + = (M + 1)c. + £\DG| + Le\D@\z + ch
p p p p p
1
< E(M+\/N+\/JVL) |D@|2+*(M+\/N+\/NL)CE,
p p
which means
(5.3.7) (W <nU + ¢,

for all n > 0. Then, if u € D, one deduces
_1
[Wull, < 277 MlUullp + ey llullp)
and applying estimate (1.3.10) to the operator A we obtain
_1
(5.3.8) [Wull, < 2177 (nel| Aull, + nellull, + eqllull,) = 6l Aull, + eslull,

with § > 0 arbitrarily small. Now, if A > 0 is large enough, then A € p(A), since A is the generator
of a strongly continuous semigroup. This means that A— A : D, — LP(RY) is invertible, therefore
we may write

A—B=XA—A+W =[I+WR(\ A)]\—A).

It follows that A — B is invertible on D, if and only if I + WR(X, A) is invertible on L?(RY).
This is the case if |[WR(\, A)|| < 1. Let f € LP(RY). Applying (5.3.8) with u = R(\, A)f and
considering the fact that (A, D)) is quasi-dissipative, (see Lemma 1.6.1), we deduce

IWRA A flly < SIARMN, A)fllp + csl[ RN, A) flp
SMIRA A) fllp + 0l fllp + es RN, A) flp

oA Cs
)
<)\_)\p+ +)\_)\p)”.fp?
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if A > ), for a suitable \,. Choose § < &. Then § (1 + /\_7*/\10) < iforall A >2)\,. Let A >2X,
be such that A > A\, 4+ 2¢;. This implies that [|[WR(A, A)fll, < a||fllp, with @ < 1. Thus, we

have established that if X is large enough, then A — B is invertible on D,,. This implies also that
(B,D,) is closed and Step2 follows from the Hille Yosida Theorem [21].

Proof of Step3. As a consequence of Step2, B = J 'BJ with domain D(B) = {u €
LP(RN u) | Ju € D,} generates a positive Cp-semigroup (T'(¢)) in LP(RY, u). We have to
show that D(B) = D,,.

Let u € D(B). Then v = Ju € D,, so in particular v € W2P(RY) and Uv € LP(R"). Since
|D®|? < —U, we have that |[D®|*v € LP(RY). Therefore

p2

(r—1)
_e 1 N

e »Dju= ];ijq) + Djv € LP(RY),

since |[D®| < |D®|? 4 1. Moreover, (A3) and the estimate
1
1U= Dol < K(||Av]lp + [[Uv]]p)

(see [41, Proposition 2.3]) yield
_2 1 1 1 1 N
e P Diju = 71)Dijq) + Dij’l) —+ *Dj’UDi(I) + *D{UD]'(I) -+ fZ’UDZ(I)Dj(I) S LP(R ),
p p p p

ie. u € W2P(RY p). Recalling (5.3.7), we have
(5.3.9) VI<(+1U +cy,

hence Vv € LP(RY). Since v € D,, we have that v € W?P(RY) and (F,Dv) € LP(RY),
then Bv € LP(RY), which implies that Bu = J1Bv € LP(RY ). From Lemma 5.3.1 and
the fact that ¢;; € CH(RY) it follows that div(gDu), (¢D®, Du) € LP(RY, u). By difference,
(G,Du) € LP(RN, 1) and then u € D,,.

Conversely, let v € D, and set v = Ju. Then, by Lemma 5.3.1

1
Djv=e"¥ (—uDjCP + Dju) € LP(RY).
p

Now, Lemma 5.3.2 implies that |[D®|?v € LP(RY™). Then, since U < % (1 — %) M|D®|? and
(5.3.9) holds, we obtain that Uv, Vv € LP(RY). Using again Lemma 5.3.1 and (A3) we get

1 1 1 1
DijQ} = 6_% <D2]’LL — *’U,Dijq) + quDZq)DJ(I) - *Dj’U/Diq) - DZU.DJCI)> S LP(RN)
p p p p

Therefore v € W2P(RY). Since Bu € LP(RY, ), we have that Bv = JBu € LP(RN). By
difference, it follows that (F, Dv) € LP(RY). Therefore u € D(B) and we have proved that
D(B) = D,,. This concludes the proof. O

In the proposition below, we show that assuming (A4’) instead of (A4), the measure p turns
out to be the invariant measure of the semigroup yielded by Theorem 5.3.3.

Proposition 5.3.4 Assume that (A1), (A2), (A3), (A4’) hold. Then w is, up to a multiplicative
constant, the unique invariant measure of the semigroup (T(t)) generated by (B,D,,).

PROOF. We claim that C2(R”) is a core of B. Recalling the notation introduced in the proof
of Theorem 5.3.3, from Lemma 1.3.1 it follows that C°(RY) is a core of B. This easily implies
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that J~1(C°(RY)) is a core of B. Indeed, take u € D,, and consider v = Ju € D,. Let (v,) be
a sequence in C2°(R™N) such that v, — v and Bv, — Bv in LP(RY). Set u, = J 'v,. Then
up € JH(C®(RY)) and u, — u, Bu, = J 'Bv, — J'Bv = Bu in LP(RY, x). Now, since
JHCx(RN)) C C*(RYN) C D, the statement follows. Therefore, in order to show that y is
an invariant measure of (T'(t)), it is sufficient to prove that [,y Budy = 0, for all u € C2(RY)
(see Proposition 5.1.2). This follows easily integrating by parts and taking condition (A4’) into
account. Indeed,

/ Budy = / div(e*q’un)d:v+/ (G, Du)ye®dx
RN RN

RN

—/ divGue*‘bdx—i—/ (G, D®)ue Pdx = 0.

RN RN

To see that u is the unique invariant measure of T'(t), we first note that T'(¢) is the extension
to LP(RY, 1) of the semigroup generated by (B, Dpax(B)) in Cy(RY), where Dpax(B) = {u €
Cy(RN) N WELRN) for all ¢ < oo | Au € Cy(RN)} (see Section 5.2). Indeed, since C2(RN)
is a core for (B,D,) and since CZ(R") is contained in Dyax(B), we deduce that Diyax(B) is
also a core for (B,D,), hence (B,D,,) is the closure of (B, Dyax(B)) in LP(RY, 11). Recalling
Proposition 5.2.13, we get that the semigroup generated by (B,D,) is the extension of that
generated in Cy(RY), as claimed. At this point, the uniqueness of yx as invariant measure follows,
as usual, from the irreducibility and the strong Feller property (see Proposition 5.2.2). ]
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Appendix A

Maximum principles

In this appendix we state and prove the maximum principles used in the previous chapters.
They are not classical, since the coefficients of the involved operator are unbounded. More
precisely, let us consider

N N
(A.0.1) A= q;Dij+> FiD; -V,
i=1

ij=1

with ¢;; = g4, F3, V continuous real-valued functions in RY, satisfying

N
V >0, Z ¢ (2)&&5 > wolél?, vo > 0.

i,j=1
To overcome the unboundedness of the coefficients, we make the following assumption

(H) there exists a positive function ¢ € C2(RN), such that limy,— 4. ¢(z) = +o0 and Ap —
Ao <0, for some Ay > 0.

@ is called a Liapunov function. Clearly, assumption (H) gives growth bounds on the coefficients
of A. If for instance ¢(x) = 1 + |x|2, then (H) is satisfied if there exists A9 > 0 such that

Tr Q(z) + (F(x), ) < Xo(1 + |zf*).

It can be assumed that supgn(A@ — Aop) < +oo. This does not make any difference since
replacing ¢ with ¢ + C for a suitable constant C, we return exactly to (H). Moreover, when
one deals with parabolic problems, it is possible to consider ¢ dependent also on time and to
require that ¢ € C2([0,T] x RY), ¢ > 0, lim|y|— 400 ¢(t,#) = +oo uniformly in [0,7] and
(Dt — A+ M) > 0. Since we are concerned both with parabolic and elliptic problems and since
the coefficients of A do not depend on ¢, we keep assumption (H) throughout the manuscript.

We start by proving maximum principles for parabolic and elliptic problems in a regular,
(possibly) unbounded open set Q of RY with Neumann boundary conditions. Such results have
been used in Chapter 2. In this case it is sufficient for ¢ to be defined in €, but we have to
require an additional condition concerning its normal derivatives on 0€2. The proof is similar to
[34, Proposition 2.1].

Proposition A.0.5 Let §) be an open set in RN with C' boundary. Assume (H) and in addition
0
suppose that 8—('0 > 0 on 0N, where n is the outward unit normal vector to 9Q. Let z € C([0,T] x
n
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Q)N CH0,T) x Q)N CY2(]0,T] x Q) be a bounded function satisfying

zi(t, ) — Az(t,x) <0, 0<t<T, €,
0

a—;(t,x)go, 0<t<T, zcdf,
z(0,2) <0 x e Q.

Then z < 0.

PROOF. Set v(t,z) = e~ *'2(t, x); we prove that v < 0, then the statement follows. We consider
the sequence

1
vp(t,x) =v(t,z) — —p(x), 0<t<T, z€Q,
n

and we observe that

Doy (t, ) — (A — Ao)up(t,z) <0, 0<t<T, z€Q,

dvp

ai(m«)go, 0<t<T, zedQ,
n _

'Un(O,I) S 07 €T € Q

For every n € N the function v, attains its maximum in [0,7] x Q at some point (t,,z,). If
t, >0 and x, € Q then

Dtvn(tnavn) >0, Avn(tnvxn) + V(xn)vn(tnaxn) <0,
and consequently, using the equation
()‘0 + V(xn))vn(tn, xn) < ()‘0 + Dt - A)Un(tnvl'n) <0.

Since \g > 0 this implies that vy, (¢, z,) < 0.

If t,, = 0 we immediately have v, (t,,2,) < 0. Finally, it is not possible that ¢, > 0 and
Zn € 02, without any interior maximum point because of the strong maximum principle (24,
Theorem 2.14]).

Therefore we have proved that v(t,z) < n~lp(x) for all 0 <t < T and x € Q. Thus letting
n — +oo we conclude that v < 0, as claimed. O

A similar maximum principle holds in the elliptic case. However, we point out that the
involved solutions are only of class W?2P and not C? in general. To prove such a result we need
a maximum principle for operators with bounded coefficients, which is due to Bony (see [9]).

Lemma A.0.6 Let Q be an open subset of RN and let F : Q — RN be a function of class WP,
with p > N. Then the image through F of a set with measure zero has still measure zero.

PROOF. Let @Q; be a unitary cube of RY. By Morrey’s inequality (see [10, Teorema IX.12]), if
(RS Wl’p(Ql) then

1
P
9

T,y € Qh

(A.02) |¢@—¢@n<0x—mkﬁ(490ﬂﬂ

where C is a positive constant depending on p and N. In the sequel, we keep the same notation to
denote a constant which has such a dependence. If @, is a cube with side [, and % is a function
in WHP(Q,), then ¢(z) = ¥(l,x) belongs to WP(Q;) and (A.0.2) applied to ¢ yields

|wmmw@w>scum“5(/zszm@pw)7 1€ 0.

1
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By changing variables in the integral we get

(laz) — v(lay)| < c|:cy|1—if( /Q Z§N|Dw<z>|pdz)p

= czi‘w—mlg(/@ |Dw<z>|pdz>p

czﬂ(/ |Dw<z>|pdz)p, 2.y € Q1.

IN

Therefore

(A.0.3) ¢<s>w<n>sczi’5< / |D¢<:c>|pdx>p, e Q.

o

Let M be a subset of Q with |M| = 0, where | - | denotes the Lebesgue measure. Then, for every
€ > 0 there exists a family {Qq}» of disjoint cubes such that M C U,Q, € Q2 and > N <e,
where [, denotes the side of Q. By applying (A.0.3) to the scalar components F1, ..., Fiy of the
function F', we obtain for every « and every z,y € Q,

[F(x) ~ F(y)] < Z\F |<czl’5i</ IDFy( >|pdz>“
< Cla 7 </ Z|DF|)p);::)\a.

o q5=1

This means that F(Q,) is contained in the cube @a with side \,. It follows that
Fn) € F(|JQo) € UF(@a) €U

and consequently

M1 16 = =N ([ (ZDF|)) ]

Qa 7,7=1
Applying Holder’s inequality with exponents 7 = p/N and 7’ = (1 — N/p)~!, we get
1—7 » %
pan < e (xw) (X ( |DjFi|))
a 7,75=1
< czvglf:(/ ( Z ID;F) >
1,7=1
Since € was arbitrary, the thesis follows. O

Proposition A.0.7 Let ) be a bounded open set of RN with C! boundary and let u € W2P (1),
with p > N. Assume that u attains its mazimum M at xo € Q and that u(x) < M, for every
x € Q\ {zo}. Then, for each closed neighborhood V of xq there exists E C V with |E| > 0, such
that for almost all x € E the Hessian matriz of u, (D*u(z)), is nonpositive, i.e. (D*u(z)¢,€) <0,
for all ¢ € RV,
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PROOF. Let S be the hypersurface of RV*! given by the equation y = u(z), € Q,y € R.
Since p > N, by the Sobolev embeddings the function u belongs to C1(£2), hence S is of class
C'. This ensures that the tangent hyperplane is well defined at each point of S. Let V be a
closed neighborhood of zy contained in 2 and let us denote by E the set of points z in V' with
the property that S lies locally under the tangent hyperplane at (x,u(x)). We observe that E
is nonempty since it contains xg. Now, we claim that E has positive measure. Let us first show
that there exists § > 0 such that if h € RY and |h| < 4, then there are a point £ € E and a
real number « such that the hyperplane of equation y = (h,x) + « is tangent to S at the point
(& u(€)). To this aim, we observe that infg, (M —u(z)) > 0. Otherwise, there exists a sequence
(r,) € Q\ V such that u(z,) converges to M. By compactness, we can find y € Q\ {z}
and a subsequence (zp, ) such that z,, — y and therefore, by continuity, u(z,,) — u(y) = M.
But this is impossible since zy was, by the assumption, the unique maximum point of u in .
Now consider A = inf (M — u(x))(sup |z — x0|> ' > 0 and choose 0 < § < A. Then, for every
oV o\v
h € RY with |h| < § and every z € Q\ V we have

w(z) — M — (h,x —x9) < u(xz)— M+ inf (M—u(x))(ﬁup |x_x0|)_1|$—$0

Vv Q\v
< inf (M = u(w)) — (M — u(z)) <0,
Q\v
hence
(A.0.4) u(z) < (h,z) + M — (h, x0), forallz € Q\ V.

Since V is compact and u(z) — (h,x) is a continuous function in V, there exists £ € V such that

max(u(e) - (h,)) = u() - (h,€) = a.

zeV

In particular, o > u(zg) — (h, o) = M — (h,x0) and therefore from (A.0.4) it follows that
u(z) < (h,z) + a, for all z € Q\ V.
On the other hand, by construction,
u(z) < (h,z) + a, forall z € V,

then u(z) < (h,x) + a, for every z € Q. Since u(§) = (h,£) + a, we deduce also that Du(§) = h
and therefore the hyperplane y = (h,z) + « is in fact the tangent hyperplane to S at (&, u(€)).
Since it lies over S, we have that £ € E. Now, define F : Q — R as F(x) = Du(z). From the
previous step, if h € RV and |h| < 4, then there exists £ € E such that h = Du(¢) = F(€). This
means that B; C F(E) and, as a consequence, |F(E)| > 0. Since F is of class WP(Q), from the
previous lemma it follows that E has positive measure, too.

Now, the regularity of u implies that u is almost everywhere twice differentiable in the classical
sense. Let x € E be such that u is twice differentiable at x in the classical sense and assume,
by contradiction, that there exists y € RY such that Zﬁrj:l D;ju(x) y;y; > 0. Without loss
of generality we can suppose that |y| = 1. Set f(t) = u(zx + ty) — t(Du(x),y), for [t| < ¢, for
some £ > 0. Then f is differentiable in (—e,e) with f/(0) = 0 and f” exists at ¢ = 0 with
1) = zgj:l D;;ju(x) y;y; > 0. This implies that ¢ = 0 is a strict relative minimum point
for f, hence f(t) > f(0) for t € (—¢,¢) \ {0}, which means u(z + ty) > u(x) + t(Du(z),y), for
t € (—e,¢e) \ {0}. On the other hand, since z € E, for every z sufficiently close to x we have

u(z) < u(z) + (Du(z), z — ).
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Choosing z = x + ty we find
u(e + ty) < u(@) + {Du(x), y),

which is a contradiction. Thus, we have established that at each point z € E where u is twice
differentiable in the classical sense, (D?u(x)) is nonpositive. This concludes the proof. ]

At this point, we are ready to prove the announced maximum principle for W?2? functions
involving operators with bounded coefficients. More precisely, let

N N
L= Z OzijDij+ZﬁiDi+7~

ij=1 i=1
Assume that all the coefficients are real-valued functions in L>°({2) and that the matrix (ay;) is

symmetric and nonnegative and that v < 0.

Theorem A.0.8 Let Q be a bounded open set with C' boundary and let u € W?P(Q), with
p > N. Assume that u attains a nonnegative mazimum at o € Q). Then

lim inf ess (Lu)(z) <0,

r—X

where liminf ess (Lu)(xz) = sup  inf ess Lu(x).
T—To p>0 z€B,(x0)

PROOF. Let € > 0 and set v(z) = u(z) — |z — zo|?. It is readily seen that v € W2P(Q2) and that
To is a strict maximum point for v. Then, from Proposition A.0.7 for each p > 0, there exists
a set E, C B,(xo) such that |E,| > 0 and (D?v(z)) is nonpositive for almost all x € E,. Since
(cvi;) is nonnegative a.e., we deduce that

N
Z a;;(xz)Dijv(x) <0, for almost all z € E,,.
ij=1
On the other hand, since v € C1(Q), we have that lim D;v(z) = D;v(zo) = 0 and hence, using

r—x
the boundedness of 3;
N
li i () D; =0.
Jig, 2 Bilx) Div()

Finally, since y(z) < 0 and v(zg) = u(zg) > 0 we have that lim,_,,, v(x)v(z) = 0, if v(xg) = 0.
If v(zo) > 0 then, by continuity, v(z) > 0 for = close to zg, hence y(x)v(z) < 0. Therefore we
have

liminfess (Lv)(z) = sup inf ess(Lv)(z)
T—To p>0 zeB,(x0)
N
< sup inf ess x)Djv(x) + i
< sup infe (z_j ; Zﬂ (@) +2()(o))
< 0

Thus we have established that lim inf ess (Lv)(z) < 0. Since

T—T0

Lv(z) =L —25204“ —262@ (z; — xb) — ey(z) |z — 0],

we obtain that

N
lim inf ess Lu(z) < 252 lleviill oo -

Tr—T0

Letting € — 0, we get the statement. ]
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In the sequel, we use the previous result to derive an elliptic maximum principle for the
operator A defined in (A.0.1). First we state an easy corollary of Theorem A.0.8, which is more
useful for our aims.

Corollary A.0.9 Let u belong to VVi’Cp(RN) for any p < oo and suppose that Au € C(RN). Ifu
has a relative nonnegative maximum at the point xq, then Au(zg) < 0.

Proposition A.0.10 Let Q be an open set in RN with C? boundary. Let u € Cy(Q) NW2P(Q2N
Br) for all R > 0 and p < oo, such that Au € Cy(Q) and

Au(z) — Au(z) <0, €9,

for some A > 0. Let xg € 0 such that u(zg) > 0 and u(x) < u(xo) for all x € Q. Then

du

(A.0.5) o

(x()) > 0.

ProOOF. We follow the proof of the classical Hopf maximum principle (see e.g. [26, Lemma
3.4]). By the regularity assumption on 9, we can consider a ball B(y,r) C € such that B(y,r)N
00 = {xo}. Assume that u > 0in B(y,r). It is readily seen that there exists a > 0 such that the
function z(z) = e~l*=vI" — ¢=or* gatisfies Az > 0 in D = B(y,r) \ B(y,7/2). Set w = u + ez,
where € > 0 is chosen in such a way that w(z) < u(zo) for all x € dB(y,r/2). Then w(z) < u(xo)
in 0D and

(A.0.6) Aw(z) = Au(z) + eAz(x) > Mu(z) >0, x€D.

Let Z € D the maximum point of w in D. It is not possible that € D, otherwise from Corollary
A.0.9 we should have Aw(Z) < 0, which is in contradiction with (A.0.6). Then T € 9D and
necessarily T = xg. It follows that

ow Ju 0z
= — >
on € an (o) + an (z0) =0
Since 9z/9n(xg) < 0, this implies (A.0.5). U

Proposition A.0.11 Let ) be an open set in RN with C? boundary. Assume (H) and in addition

0
suppose that 6—S0 >0 on 09, where n is the outward unit normal vector to 0. Let u € Cp(£2) N
n —
W2P(Q N Bg) for all R > 0 and p < 0o, such that Au € Cy(Q) and

Au(x) — Au(z) <0, x € Q,
(A.0.7) ou

—(z) < Q

an () <0, x € 01,

for some A > \g. Then u < 0.

PROOF. As in Proposition A.0.5, we introduce the sequence

up () = u(z) — %gp(m), reN

and we note that

Mg (x) — Aup(z) <0, x €,
(A.0.8)
%Lnn(a:) <0, x € 0.
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We prove that u,, <0, for all n € N; then the conclusion follows letting n — oco. Each u,, has a
maximum point z,, € Q. If z,, € Q then uy,(x,) < 0. Indeed, if u,(z,) > 0, then from Corollary
A.0.9 it follows that Au,(z,) < 0 and, using (A.0.8), un,(z,) < 0, which is a contradiction.
Now assume that z,, € 9Q and u,(z) < un(z,) for all x € Q (otherwise there would exist an
interior maximum point and we could apply the previous step). Then from Proposition A.0.10
and (A.0.8) it follows that u,(z,) < 0 and this completes the proof. O

Next, we deal with Dirichlet parabolic problems. We skip the proof of the following proposi-
tion, since it is exactly the same as that of Proposition A.0.5.

Proposition A.0.12 Let Q be an open set of RN and assume hypothesis (H). Let u € C([0,T] x
Q)N CH2(J0, T[xQ) be a bounded function satisfying

ue(t, ) < Ault, z), 0<t<T, z€q,
(A.0.9) u(t,z) <0, 0<t<T, ze€dQ,
u(0,2) <0 x € 9,

Then v < 0.

Now we present a maximum principle for discontinuous solutions to the Dirichlet parabolic
problem (A.0.9). The result is suggested in [29] and involves special domains.

Theorem A.0.13 Assume hypothesis (H). Let 2 be an open subset of RN, g; : Q@ — R, i =
1,...,n, be C%-functions. Suppose that

Q={z:9;(x) >0, i=1,...,n}, |Dgi|>1onT; =00nN{g; =0}.

Define Q = (0,T) x Q, &Q = (0,T) x 92 U {0} x Q and 8:.Q = {0} x Q. Let u € C13(Q), u
continuous on Q \ 01, Q, bounded on Q. If uy < Au in Q and u < 0 in 0'Q\ 0.Q, then u <0 in
Q.

Finally, if uy = Au, |u(t, )| < K fort >0, € 0Q and |u(0,z)| < K, x € Q, then ||ul|e < K.

PROOF. The proof is given into two steps.
Step 1. We assume in addition that Q is bounded.

In this case the functions g; are bounded in §2 together with their derivatives up to the second
order. A long but straightforward computation shows that the functions

(A.0.10) Yilt,x) = t%” exp ()\t — sgi(x))

verify, for £ > 0 small enough and A large enough, (D; — A)y; >0,i=1,...,n,in (0,00) x Q.
Let M =supu = sup u > 0 (otherwise the proof is finished). Let v > 0 and define
Q Q\0:Q

n

uy(t, ) = u(t, ) — M~ Z
i=1

where ¢ and X are given in (A.0.10). Clearly (D; — A)u, < 0. Take n > 0 such that Ay — 877’ >0
and consider

egi ()
e (- T,

I,={ze€Q: Ji=i(x)=1,....,n : gi(z) <n}.
For each x € I,), one has

~ 1 egi (x) en
SV pe exp <)«y — Zy) > exp <)\7 - 7) > 1.

i=1
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By continuity, there exists 6 > 0 such that for any (¢,z) € [0, 4] x I,,,

. 1 69-2(96))
wNT__ — exp(ANt+A) - 2L >,
¥ > T p< (t+7) I

?

It follows that u, < M — M =01in ([0,4] x I,;) \ 01 Q.

Since u(0,z) <0, x € Q\ I,,, we have u,(0,2) <0, z € Q\ I,, as well. Because € is bounded,
by continuity we obtain u(t,z) <0, (t,z) € [0,0] x Q\ I, for some ¢ > 0.

We have obtained that u, < 0in ([0, 6] x Q) \ 9:.Q. Applying the classical maximum principle
in [6,T] x Q, we get that u, <0 in ([0,7] x Q) \ 9;.Q. Letting v — 0T, we infer the claim.

Step 2. We consider a possibly unbounded 2.
Here we will use the Lyapunov function ¢. Set v = e~*°*y and observe that v; — Av+ \gv < 0.
We prove that v < 0 in Q. Fix R > 1 and consider

QR:QQBR:{QZ‘>0}Q{R2—‘J}|2>O}, QRZ(O,T)XQR.

Note that Qg satisfies the same geometric assumptions of €2 if one adds to the set {g1,...,9n}
the function go(x) = R? — |z|?. Let Cr = aénfﬂ ¢. Remark that Cr — 0o as R — oo. Define
RN

x
onlt, ) = vlt,2) ~ ol 5 (1,2) € Q.
R
It is easy to see that (D; — A+ A\g)vg < 0 in Qr. Moreover vg(0,2) <0, x € Qg.
If t € (0,T), then vg(t,x) < 0 for z € 9Br N Q, since & > 1. Moreover vg(t,x) < 0 for
x €090, t € (0,T). This shows that vg < 0 on the parabolic boundary of Qg.

Applying Step 1 to the operator A = A — )\ in Qp, we get v < 0, in Qp, that is

p(x)
u(t,z) < ||”||0007R'
Letting R — oo, we get the claim.
The last statement easily follows considering the functions +u — K. ]

Observe that the above theorem covers also the case of certain non smooth domains, whose
boundaries can be described by a finite number of functions g; as in the statement, see e.g.
Example 3.6.1.

Let us show that uniformly C? domains are covered by Theorem A.0.13.

Corollary A.0.14 . Theorem A.0.138 holds for uniformly C?-domains.

ProOF. It suffices to show that there exists a C?-function g : @ — R such that g > 0 in Q,
|Dg| > 1in 992 = {g = 0}. Let r be the distance function from 9. Then r € C%(Qs) for some
§ >0 and |Dr| =1 on 9. Let moreover § be a smooth function such that 0 <6 < 1,6 =1 in
Q5/2, 0 = 0 outside 5. It is easy to check that g = 6r + 1 — 0 satisfies the claim. O

140



Appendix B

Smooth domains and regularity
properties of the distance function

In this Appendix we collect some regularity results of the distance function r(x) = dist(z, 9),
when 0 is the boundary of a smooth open subset Q of RY. These results are well-known in the
case where  is bounded (see e.g. [26, section 14.6]), but most of them may be extended, without
much effort, to the unbounded case, as it is shown below.

First we define open sets with uniformly C?*“ boundaries, for 0 < a < 1.

Definition B.0.15 Let Q be an open subset of RY. We say that 0 is uniformly of class C**
if there exist a covering of 02, at most countable, {U;};en, and a sequence of diffeomorphisms
¢j: Uj — By of class C*** such that

(pj(UjﬁQ) = {yEBl‘yN>0}
¢;(U;n0Q) = {y € Bi|yy =0}

and the following properties are satisfied:
(i) there exists k € N such that (\;c,; U; =0, if [J| > k;

(i) there exists 0 < e <1 such that {x € Q | r(z) <e} C U;en V), where V; = @;1(31/2);

(i) there exists C > 0 such that

sup Y D79l + D705 oo < C.
I o<|8|<2+a

Now we show that such a set 2 satisfies a uniform interior sphere condition, i.e. at each point
Yo € O there exists a ball By, depending on yo, contained in 2 and such that By, N9Q = {yo};
moreover the radii of these balls are bounded from below by a positive constant.

Proposition B.0.16 If 99 is uniformly of class C?, then it satisfies a uniform interior sphere
condition.

PROOF. Using condition (iii) and taking into account that ¢; is a diffeomorphism from U; into
By, it is easy to see that if y € V; and |z — y| < 1/(2C), then z € Uj.
Let yo € 09 and let n(yo) denote the unit inward normal vector to 9Q at yo. For 0 < ¢t <
(V)

1/(2C) the point & = yo + t1(yo) belongs to U; and (p; denotes the N-th component of ;)

P\ (@) = tD™ (yo) - n(yo) + R(1)
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with [R(t)| < C1?/2. Since '™ =0 on U; 1 90, then Dp'™ (yo) = kn(yo), with k > C~*, by

(iii). This yields ¢\ (z) > t0~! = C1?/2 > 0 for 0 < t < 2/C? := 4.
Thus, we have proved that

y+tn(y) € Q, y € 99, t €]0,4].

Now, let y € 9Q and set B = B(z,6/2), where z = y + n(y)d/2. Then, it is easy to see that
B C Qand y € 9B. If y is not the unique point in 92 N IB, then it suffices to replace the above
ball with that of radius 6/4, centered at z = y + n(y)d/4. O

We are now ready to prove the properties of the distance function used in this paper.

Proposition B.0.17 Assume that 00 is uniformly of class C? and let § be a positive constant
such that at each point of 0N) there exists a ball which satisfies the interior sphere condition at
Yo with radius greater or equal to 6. Then

(a) for every x € Qs = {y € Q|r(y) < &} there exists a unique & = &(z) € OQ such that
[z —¢| = r(z);

(b) 1 € C§(Qs);
(¢) Dr(z)=n(&(x)), for every x € Q5.

PROOF. (a) The existence part is obvious. For the uniqueness assertion, let z € Q5 and y € 92
such that r(z) = | — y|. From Proposition B.0.16 there exists a ball B = B(z,p) such that
B C Q and BNdQ = {y}. Moreover from the definition of 6, x € B. It is easy to see that z and z
lie on the normal direction n(y) and that the balls B(z,r(z)) and B(z, p) are tangent at y. Then
B(z,r(z)) still verifies the interior sphere condition at y. It follows that for every 7 € 9Q \ {y},

one has § ¢ B(x,r(x)), so that y is actually the unique point such that |x — y| = r(z).
The proof of the last two assertions relies on the first statement and the implicit function
theorem and it is completely similar to that of the case Q bounded. We refer to [26, section 14.6].
0
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Appendix C

Some a priori estimates

The present appendix is devoted to the proof of some a priori estimates involving uniformly
elliptic operators. More precisely, we derive a Schauder type parabolic estimate and an LP elliptic
estimate, by making use of classical methods suitably adapted for our purposes. Even though
such estimates are well known, we have not found a proof for them exactly in the form we need.

C.1 A Schauder type parabolic estimate

Suppose we are given a second order differential operator

N N
(C.1.1) r'= Z a;jDij + ZbiDi +c,
i=1

4,j=1

whose coefficients a;; = a;i, bi, ¢ belong to C'2:*(]0, T[xQ), where a €]0, 1], © is a bounded open
subset of RV with C?T® boundary and T' < +0o. Assume also that

N

(C.1.2) Z aij&i&; > v[€)?,

ij=1
for some v > 0. Then the operator L = D; —T" is uniformly parabolic in ]0, T[x£2. Set

K = maX{||az‘j||c%,a(]oyT[XQ)’ Hbi”c%*“(]oj[xg)’ HC||C%7(Y(]07T[XQ)} )

where we recall that

||U||C%*°‘(]O,T[><Q) = [[vflee + [U]C%’a(]QT[XQ)
t, — t, t; - )
[U]c%v"(]o T(xQ) — sup w T Sup e Uis .
’ t€)0,T[, 2,y€Q, a#y |z —yl t,5 €]0,T'[, t#s, 1€Q It = sl

Classical parabolic interior Schauder estimates, (see [29, Section 8.11]), say that for every € > 0
and Q; CC Qy CcC Q with dist(Qq,Q\ Q2) > 0, there exists a constant C' > 0, depending on
N,a,v, K, e,dist(21, 2\ Q), such that for every function u € C*+2:27(]0, T[x23) one has

||u||01+%’2+°‘(]5,T[><91) < C(||L“Hc%~a(]o,T[xnz) + H“||C(]07T[x92))»
where (we do not write explicitly the domain)

lulli+g 240 = lulli2 + [u]1+2 240
lulli2 = ulloe + lluelloo + 1 Dulloo + [[D?ul| oo,

[ui+g 240 = [u]g,a + [D?u]g q
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(see [30, Theorem IV.10.1]). Here, we derive interior estimates only with respect to the time
variable. More precisely, we set

Q = (—o00,T)xQ,
Q: = (,7)xQ,
Se = (g,T) x 99.

Then, under the stated assumptions on 2 and T, the following theorem holds.

Theorem C.1.1 There exists C > 0 depending on N,«a,v, K, e, such that for every u €
C1*2:2+2(Q,) with normal derivative %; equal to 0 on 0X), one has

lullgaeg 2o g,y < C(IEullps.m g, + Iulc.)-

The proof of the above theorem relies on the classical technique used to prove interior estimates,
namely, the introduction of a sequence of suitable cut-off functions. In this case, we choose such
functions depending only on ¢.

PRrOOF. We recall that, given a function v € C'T%:27%(Q), the following interpolatory
estimate holds (see [29, Lemma 10.2.1])

(C.1.3) [velloo + 1 Dvlloe + [D*0lloc + [Dv] g 0 + [U] g, < Ollvllitg 240 + MO 0]l

where v and M are positive constants and 6 > 0 is arbitrarily small. Such an estimate can be
deduced from the analogous one in RV*! by using suitable extension operators (which do exist
thanks to the regularity of Q). Moreover if v has normal derivative equal to zero on 952 then

(C.1.4) HUHCH%:Q*’“(Q) < C(”L””C%va(Q) + ”U”C(Q))’

with C = C(a,v, N, K,Q) > 0. Let us introduce the sequences
tn :ZQ_j, Sn =¢e(3 —1tn).
3=0

We observe that (s,,) is decreasing with sg = 2¢, soo = ¢ and s, — Spa1 = €27"~1. Moreover, let
1y, be a sequence of functions in C*°(R) such that ¢, (t) = 1 for t € (s,,T), supp ¥, C (Sn+1,2T),
0<y <1and

(C.1.5) [Pnlloe < L27, |l < L4,

for some constant L > 0 depending also on e. Hence, the function t,u is in C'*2:2¥9(Q) and

on

0

=2l =0, on 9.
o

Applying estimate (C.1.4) we obtain

(C.1.6) lntll s g 250 gy < C (1@l 5.0 g + lntllci@ )

with C > 0 independent of n. One has L(¢¥pu) = ¥, Lu + ¢, u. Then, from (C.1.5) it follows
that

(C.1.7) WnLulogag < Mullos e, + ITulo@un¥nlos ).,
S ||Lu||C%’Q(Q5) + 2n6(57 K)||u||cl’2(Qn+l)7
<

||Lu||c%("(Q€) + 4”0(67 K) ||u||cl’2(Qn+1)7
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where I;,41 = (sp+1,T) and Qpi1 = L1 x Q. Analogously,

(C18)  lnullogeg < I¥nllctunlulosag,.,) + 1¥nlosq, lullo@.
< 2"Lllullggeg, ) T4 Llulle@an
< 4nL||u||c%’“(Qn+1)'

Taking (C.1.7) and (C.1.8) into account, from (C.1.6) we infer (for a possibly different C')

lentllgrrgareg < C(ILullagn g, +lullow.) )
+47e(K,2) ([ullor2(@un) + Il o g, )
C(Iullpg.0 g, + lulle.)

+4" (K €) (H¢n+1u||01'2(Q) + ||¢n+1“”c%*"<62>>’

IN

where in the last inequality we have used the fact that ¥,,41 = 1 in @,41. Using the interpolatory
estimate (C.1.3) we find that for every ¢ > 0
||¢nu||cl+%,2+a(Q) < C(”LUHC%”(QE) + ||UHC(Q5)> + 4nC(Ka 5)6||wn+1u||cl+%v2+”(Q)
+4"C(K, )07 [[¢nullc(q)-
Let us consider £ = 4"¢(K,¢)0, with £ independent of n. Choosing a small § we may assume

-
that £ < 1. Since 677 = (%) 4™ the last estimate becomes

||1/’nu||cl+%‘2+”(Q) < C(”LUHC%“(QE) + ||uHC(Qs)>
+€||1/)n+1u||c1+%,2+a(Q) + Cl(K,c‘:,M, 7)4(’Y+1)nHu”C(Q).

Taking, if necessary, a smaller ¢ in order to have 47*1¢ < 1, by multiplying by ¢" and summing
from 0 to oo we obtain

= C
z_;)fn‘wnul'd*%’“a(@) = EG‘LUHO%’“(QE) + ”“”C@a))
+ Z:lfnuwnU”CH%vHQ(Q) + CQHUHC(Q)'
Hence
||¢0u||cl+%12+a(Q) < C(HLUJ”C%’Q(QE) + HUHC(QE))7
with C = C(¢, K, N,v,, ). Since 1)y = 1 in Qac, the statement follows. O

C.2 An [? elliptic estimate

Let T' be the operator defined in (C.1.1). Unlike the previous section, here it is sufficient
to assume that the coeflicients a;; are uniformly continuous and bounded in {2 and that b;,c
belong to L>(£2), with  bounded open subset of RY of class C2. We also assume the ellipticity
condition (C.1.2).

We present interior elliptic estimates, where the involved subdomains are not assumed to
have compact closure in €2, but are allowed to have a part of the boundary overlapped on 0f2.
Neumann boundary conditions are prescribed only on this part.
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Theorem C.2.1 Let 1 < p < 0o and let Qy and Qy be open subsets contained in 2 such that
NN # B, 001NN # O and dist (Qo, 2\ Q1) > 0. Assume also that Qy is of class C?. Then
there exists a constant C' > 0, depending on p, N,v,$g,Qq, the L™ norms of all the coefficients
and the modulus of continuity of a;j, such that for every function u € WP (Qy) with g—z =0 on
001 N 0N, the estimate

||u||W21P(Qo) < C(HFUHLP(Ql) + Hu”LP(Ql))
holds.

PROOF. Let us consider an increasing sequence of domains €2,, such that Q.. = Q; and dist(€2,,, Q\
Qny1) = O(27™). Let 6,, be a function in C>°(RY) such that 6,, = 1 in ,, 6,, = 0 in an open
set containing Q\ 2,41, 0 < 0 < 1, g—?? = 0 on 0f2. We note that in the case where € is the
halfspace {zx > 0}, it is sufficient to take 6, as an even reflection with respect to zy in order
to have g—*;l = 0 when zy = 0. For a regular bounded set, one can constructed such a function
using the first step and local coordinates. Moreover, the first and second order derivatives of the

functions 6,, satisfy the estimates
D0, |00 < L27, 1D?0, |00 < LA™.

Since 6,,u € W?P(Q;) and

o,0) _ 00, 0
on  On on

0, =0, on JQ

we may apply the classical global LP estimate (see [32, Theorem 3.11(iii)]) and we find that

(C.2.1) 0nullw2r @) < CUIT(Onu)llLr ) + [10nullr)))-

Now, it is readily seen that T'(6,,u) = 6,T'u + B,u, where B, is a first order differential operator,
whose coefficients involve the coefficients of T, 8,,, D6,, and D?@,,. Therefore

) S A"Cl0nrrullwrea,)

[Brulrroy < 4"Cllullwir(,,,
<

4nC(5||0n+1U||W2=P(Ql) + 571”0n+1uHLP(§21))>

where we have used the interpolatory estimate |[v[|w1.(0,) < €||lv[lwzr ) +ce 0] Lr(q,), Which
holds for every function v € W2P?(Q;) and every & > 0.
Besides, we have [|0,Tul|Lr(q,) < [[Tul|1r(o,). From (C.2.1) it follows that
1Onullwzry < C(TullLe@,) +4"l0nrrullwzr @)
4 Ons1ull Loy + lullLogan))-

Set ¢ = C4"e. We need ¢ independent of n. Then ¢! = (£/C)~'4™ and the last inequality
becomes

10nullw2ry < CUTullLr@y) + [ullzr@)) + El0ns1ullwer@y) + C142™[0nir1ul| Lo ay)-

Choose ¢ in such a way that ¢ < 1 and £€4% < 1. Then multiplying by £” and summing on n from
0 to +o0o we obtain

IN

Y Ellbnullwzr o

n=0

C
fg(HFUHLP(Ql) +llullze )

+ ) Onullwe ) + Collullzo ),

n=1
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which yields
l0oullw2r) < CUITullLr @y + [[ulle@,))-

Since 0y = 1 in Qy we get

[ullwzr @) < CUTU|Lr ) + [[ullr @)

and the proof is concluded.
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Notation

Let Q be an open set of RV, 1 <p < 400, kE,N €N, 0<a<1,T>0,a<b.

||
(z,y)
B(z,r)
B,

Q

2'Q
8tzQ
card J
||

JC

X

D%y

()

c

Cy(Q)

euclidean norm of z € RY;

euclidean inner product in RY;

open ball in RY centered in = with radius r > 0;
B(0,7);

(0,T) x

(0,T) x 90Q U {0} x Q;

{0} x 0%

cardinality of a given set J;

Lebesgue measure of a given set J;
complementary set of J;

characteristic function of a set J, that is the function defined as
xs(x)=1ifx e Jand x;(z) =0if x & J;
characteristic function of RY;

support of a given function wu;

partial derivative with respect to the variable t;
partial derivative with respect to x;;

Dy.nos
sp:cxé, grjsdient of a real-valued function w« with norm
|Dul? =Y " (Diu)?;
Hessian I;T;trix of a real-valued f]bmction u with respect to the space
variables with norm |D?u|* = Z (Diju)?;

ij=1

space of real-valued C'*° functions with compact support in €2;
space of bounded continuous functions in €;
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CH(Q)
Co(92)
Co(RM)
CH(RN;RY)

C12((a,b) x Q)

Crk+a (Q) — Ck+a (ﬁ)

Crre/22re((a,b) x Q)
= C1Fe/224([q,b] x Q)

CLT/22T (0, +00) x Q)

loc

CLr(Q)

loc
C*(E)

[ulla.p

HUHC%’“(]O,T[XQ)

[U]C%’“(]O,T[XQ)

llullr,2

[u]i+g 2+4a
||U||1+%,2+a
(L2, [ - IIp)
WE2(Q), || - lk.p)
WieZ (€2)

Wer(9)
M(RN)

space of real-valued functions with derivatives up to order k
in Cb(§>,

space of functions in Cy(Q) vanishing at 9Q and at infinity;
space of functions in C'(RY) vanishing at infinity;

space of functions F' = (F}, ..., Fy) such that F; € CY(RY),
for every i;

space of functions (¢, ) which are continuous in (a,b) x
with their indicated derivatives (not necessarily bounded);
space of functions such that the derivatives of order k are
a-Holder continuous in €;

space of functions u = u(t, z) such that Dyu and Dy, ;u are
a-Holder continuous in (a, b) x Q with respect to the parabolic
distance d((t, ), (s,y)) = [t — s|*/? + |z — y|;

space of functions u such that u € C1Te/22+a([¢ T] x ),
for all 0 < € < T' and bounded open ' C Q;

space of the functions which belong to C’l‘“l(ﬁ/), for all
bounded open set Q' C Q;

space of continuous functions with finite limits at oo to-
gether with their derivatives up to order k;

sup-norm;
sup |u(z)[;
z€[a,b]
||U’||OO + [u]c%’a(]O,T[XQ);
t —u(t t —
wp D) ) ) s 2)]
t €10, T, |z =yl t,s €0, T], |t —s|2
z,y € Q, t#s,
T #y €N

[ulloo + lluelloo + 1 Dulloo + 1 D?ullocs

[ut]%,a + [D2U]%,a§

ulli2 + [u]1+2 240

usual Lebesgue space;

usual Sobolev space;

space of functions belonging to W*» () for all bounded open
set €’ such that Q' C Q;

closure of C2°() in WkP(Q);

set of all Borel probability measures in RV,
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