
Chapter 8

Generalized composition of

aggregation operators

Let A be the class of binary aggregation operators (=agops). In this section, we
denote by Θ the class of all increasing functions f : [0, 1] → [0, 1]. Given f1, f2, g1
and g2 in Θ and a binary operation H on [0, 1], let F be the mapping defined on
[0, 1]2 by

F (x, y) := H (A(f1(x), g1(y)), B(f2(x), g2(y))) , (8.1)

for all A and B in A. The function F is called generalized composition of (A,B) with
respect to the 5–ple (f1, g1, f2, g2,H), which is called generating system. The prefix
“generalized” is used here to distinguish the function F from the classical composition
that is obtained when f1 = g1 = f2 = g2 = id[0,1], and already studied for agops (see,
for instance, [10, 90]).

This chapter aims to establish which conditions on the generating system ensure
that, for every choice of A and B in a given subset B ⊆ A (for instance, B is the set
of copulas, semicopulas, etc.), F is also an agop belonging to B. Thus, in section 8.1
we analyse the case of agops and sections 8.2, 8.3 and 8.4 are devoted, respectively,
to the study of generalized composition in the class of semicopulas, 1–Lipschitz and
2–increasing agops. The case of copulas is considered in section 8.5, where several
examples are given together with an interesting application of this method.

The results of this chapter can be also found in [35, 38, 37].

8.1 Composition of agops

As above, given a generating system (f1, g1, f2, g2,H), for all agops A and B, let
F be the mapping defined by (8.1). If H is an agop, then F is increasing, because it
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is a composition of increasing functions. Moreover, in order to ensure that

F (0, 0) = H (A(f1(0), g1(0)), B(f2(0), g2(0))) = 0,

one among the following conditions is sufficient:

f1(0) = g1(0) = 0 and f2(0) = g2(0) = 0, (8.2)

f1(0) = g1(0) = 0 and H(0, b) = 0, for every b ∈ [0, 1], (8.3)

f2(0) = g2(0) = 0 and H(a, 0) = 0, for every a ∈ [0, 1]. (8.4)

Analogously, in order to obtain

F (1, 1) = H (A(f1(1), g1(1)), B(f2(1), g2(1))) = 1,

one among the following conditions is sufficient:

f1(1) = g1(1) = 1 and f2(1) = g2(1) = 1, (8.5)

f1(1) = g1(1) = 1 and H(1, b) = 1, for every b ∈ [0, 1], (8.6)

f2(1) = g2(1) = 1 and H(a, 1) = 1, for every a ∈ [0, 1]. (8.7)

In the sequel, we suppose that a generating system satisfies one condition among
(8.2)–(8.4) and another one among (8.5)–(8.7).

Proposition 8.1.1. Let (A,B) ∈ A×A and (f1, g1, f2, g2,H) be a generating system.
Then the function F given by (8.1) is an agop.

The very general form of composition (8.1) allows a great flexibility in constructing
new agops and, in particular, the new method includes well-known procedures (see
[10] for more details about them), as the following examples show.

Example 8.1.1. Let (f1, g1, f2, g2,H) be a generating system such that, for every
(x, y) ∈ [0, 1]2, H(x, y) = x. For every A and B in A, the function F given in (8.1) is
equal to the agop A(f1(x), g1(y)). In particular, if f1 and g1 are greater than id[0,1],
this transformation was used for augmenting the output given by A (see [92]).

Example 8.1.2. If f1 = g1 = f2 = g2 = id[0,1] and H is an agop, then the generating
system (f1, g1, f2, g2,H) generates, for all agops A and B, an agop F that is the
classical composition in A, which includes as special cases the weighted arithmetic
mean of agops, by taking H(x, y) = λx + (1 − λ)y (λ ∈ [0, 1]), and the weighted
geometric mean of agops, by taking H(x, y) = xλ · y1−λ (λ ∈ [0, 1]). In particular,
if A is a t–norm and B is a t–conorm, F is a triangular norm–based compensatory
operator, a special agop introduced as a means for providing compensation between
the small and the large degrees of memberships when we combine fuzzy sets (see [92]
and the references therein).
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Example 8.1.3. Let A,B ∈ A and let (f1, g1, f2, g2,H) be a generating system of
the function F given by (8.1). If f1 = g1 is a bijection and H(x, y) := f−1

1 (x),
then F (x, y) = f−1

1 (A(f1(x), f1(y))) is the transformation of A by f1, considered in
chapter 9.

Example 8.1.4. Let A,B ∈ A and let (f1, g1, f2, g2,H) be a generating system of
the function F given by (8.1). If f1 = g1 = f2 = g2 = id[0,1], take H(x, y) =
min{1, x + βy} (β ∈ [0, 1]). Then F is the augmentation of A. Similarly, taking
H(x, y) = max{0, x − β(1 − y)} (β ∈ [0, 1]), the corresponding F is the reduction of
A. This is another method proposed in [31] for augmenting (reducing) the outputs.

Remark 8.1.1. Given two associative agops A and B and a generating system
(f1, g1, f2, g2,H) with f1 = g1 and f2 = g2, the function F defined by (8.1) is called
a quasi–associative operator (see [158]).

8.2 Composition of semicopulas

Now, we give some sufficient conditions for the generalized composition of semi-
copulas.

Proposition 8.2.1. Let (A,B) be in S× S and let (f1, g1, f2, g2,H) be a generating
system satisfying (8.5) and one condition among (8.2)–(8.4). The function F given
by (8.1) is a semicopula if, and only if,

H(f1(x), f2(x)) = x and H(g1(x), g2(x)) = x for every x ∈ [0, 1]. (8.8)

Proof. In view of Proposition 8.1.1 it suffices to show that F has neutral element
equal to 1. Let x be in [0, 1]. We have

F (x, 1) = H (A(f1(x), g1(1)), B(f2(x), g2(1))) = H(f1(x), f2(x)) = x,

and, analogously, F (1, x) = x.

Example 8.2.1. For every a ≥ 1, we consider the following generating system:

f1(x) = g1(x) = min{ax, 1}, f2(x) = g2(x) = x, H = min{x, y}.

For all A,B ∈ S, the semicopula F defined by (8.1) is given by

F (x, y) :=

min{A(ax, ay), B(x, y)}, if (x, y) ∈ [0, 1/a[2;

B(x, y), otherwise.

Example 8.2.2. For every a ≥ 1, we consider the following generating system:

f1(x) = g1(x) = max{ax+ (1− a), 0}, f2(x) = g2(x) = x, H = max{x, y}.



116 Chap. 8 Generalized composition of agops

For all A,B ∈ S, the semicopula F defined by (8.1) is given by

F (x, y) :=

B(x, y), if (x, y) ∈
[
0,
a− 1
a

]2
;

max {A(ax+ (1− a), ay + (1− a)), B(x, y)} , otherwise.

Example 8.2.3. For all α, β > 0, we consider the following generating system:

f1(x) = xα, g1(x) = xβ , f2(x) = x1−α, g2(x) = x1−β , H = Π.

For all A,B ∈ S, the semicopula F defined by (8.1) is given by

F (x, y) := A(xα, yβ) ·B(x1−α, y1−β),

which is a non–symmetric agop for α 6= β.

In the case of semicopulas, we can give a full characterization of the classical
composition. To this end, first, we give a technical result.

Lemma 8.2.1. Let s1, s2 and t be points in [0, 1[ with s1 ≤ s2. Then there exist two
semicopulas A and B and two points (x1, y1) and (x2, y2) in [0, 1]2, with x1 ≤ x2 and
y1 ≤ y2 such that

A(x1, y1) = s1 and A(x2, y2) = s2, B(x1, y1) = t = B(x2, y2).

Proof. Three cases will be considered.
Case 1: t ≤ s1 ≤ s2. Let A be the ordinal sum given by

A = (〈si, si+1, Z〉)i∈I ,

with I = {0, 1, 2, 3} and s0 = 0, s3 = 1, so that

A(x, y) =


0, if (x, y) ∈ [0, s1[

2 ;

s1, if (x, y) ∈ [s1, s2[
2 ;

s2, if (x, y) ∈ [s2, 1[2 ;

x ∧ y, otherwise;

and let B be the ordinal sum given by B = (〈0, t, Z〉 , 〈t, 1, Z〉), so that

B(x, y) =


0, if (x, y) ∈ [0, t[2 ;

t, if (x, y) ∈ [t, 1[2 ;

x ∧ y, otherwise.

Then
A(s1, s1) = s1, A(s2, s2) = s2, B(s1, s1) = t = B(s2, s2).
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Case 2: s1 ≤ t ≤ s2. Choose B as in the previous case and let A be the frame
semicopula defined by

A(x, y) :=



0, (x, y) ∈ [0, 1[2 \ [s1, 1[2 ,

s1, (x, y) ∈ [s1, 1[2 \ ]t, 1[2 ,

t, (x, y) ∈ ]t, 1[2 \ [s2, 1[2 ,

s2, (x, y) ∈ [s2, 1[2 ,

x ∧ y, x ∨ y = 1.

Then

A(t, t) = s1, A(s2, s2) = s2 and B(t, t) = B(s2, s2) = t.

Case 3: s1 ≤ s2 ≤ t. Choose B as in the two previous cases and let A be the frame
semicopula

A(x, y) :=


0, (x, y) ∈ [0, 1[2 \ [t, 1[2 ,

s1, (x, y) ∈ [t, 1[2 \ [x1, 1[2 ,

s2, (x, y) ∈ [x1, 1[2 ,

x ∧ y, x ∨ y = 1,

where the point x1 belongs to ]t, 1]. Then we have

A(t, t) = s1, A(x1, x1) = s2, B(x1, x1) = B(t, t) = t,

which proves the assertion.

Theorem 8.2.1. Let A and B be semicopulas and let H be a binary operation on
[0, 1]. Let F (x, y) := H (A(x, y), B(x, y)). The following statements are equivalent:

(a) for all semicopulas A and B, F is a semicopula;

(b) H is an idempotent agop.

Proof. (a) =⇒ (b): If F is a semicopula, then for every x ∈ [0, 1]

x = F (x, 1) = H (A(x, 1), B(x, 1)) = H(x, x).

Let s1, s2 and t be in [0, 1[ with s1 ≤ s2. Hence, because of Lemma 8.2.1, there
are two points (x1, y1) and (x2, y2) in [0, 1]2 with x1 ≤ x2 and y1 ≤ y2 such that
A(x1, y1) = s1, A(x2, y2) = s2 and B(x1, y1) = B(x2, y2) = t. Therefore

H(s1, t) = H (A(x1, y1), B(x1, y1)) = F (x1, y1)

≤ F (x2, y2) = H (A(x2, y2), B(x2, y2)) = H(s2, t).

In an analogous manner, we prove that, for all s ∈ [0, 1[, the function t 7→ H(s, t) is
increasing. Thus H is an idempotent agop.

The converse implication, (b) =⇒ (a), is a consequence of Proposition 8.2.1.
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8.3 Composition of 1–Lipschitz agops

The following result gives a sufficient condition for the generalized composition of
1–Lipschitz agops, whose class is denoted by A1.

Theorem 8.3.1. Let (A,B) be in A1 ×A1 and let (f1, g1, f2, g2,H) be a generating
system. Let F be the function defined by (8.1). If H has the kernel property and fi

and gi are 1–Lipschitz (i = 1, 2), then F is in A1.

Proof. Set Ã(x, y) := A(f1(x), g1(y)) and B̃(x, y) := B(f2(x), g2(y)). For every x, x′,
y, y′ in [0, 1] we have

|F (x, y)− F (x′, y′)| = |H
(
Ã(x, y), B̃(x, y)

)
−H

(
Ã(x′, y′), B̃(x′, y′)

)
|

≤ max{|Ã(x, y)− Ã(x′, y′)|, |B̃(x, y)− B̃(x′, y′)|}

≤ max{|f1(x)− f1(x′)|+ |g1(y)− g1(y′)|, |f2(x)− f2(x′)|+ |g2(y)− g2(y′)|}

≤ |x− x′|+ |y − y′|,

which concludes the proof.

Example 8.3.1. Let (A,B) be in A1×A1 and let (id[0,1], id[0,1], id[0,1], id[0,1],Ha) be
a generating system where, for every a ∈ [0, 1], Ha(x, y) = med(x, y, a) is the median
among x, y and a. Then the corresponding 1–Lipschitz agop Fa defined by (8.1) is

Fa(x, y) = med (A(x, y), B(x, y), a) .

In particular, if a = 0 (resp. a = 1), then we obtain that the minimum (resp.
maximum) of two 1–Lipschitz agops is a 1–Lipschitz agop.

Example 8.3.2. Let (A,B) be in A1 × A1 and let (fa, fa, id[0,1], id[0,1],H) be a
generating system where a ∈ ]0, 1[ and

fa(x) =
ax

a+ (1− a)x
, H(x, y) = min{x, y}.

Then the corresponding 1–Lipschitz agop Fa defined by (8.1) is

Fa(x, y) = min
{
A

(
ax

a+ (1− a)x
,

ay

a+ (1− a)y

)
, B(x, y)

}
.

Notice that the range of fa is not the whole [0, 1].

Corollary 8.3.1. Let A and B be quasi–copulas and let (f1, g1, f2, g2,H) be a gen-
erating system satisfying the assumptions of Proposition 8.2.1. Let F be the function
defined by (8.1). If one of the following statementes holds:

(a) fi = gi = id[0,1] (i = 1, 2) and H is a kernel agop;
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(b) f1 = g1 = id[0,1], f2 and g2 are 1–Lipschitz and H(x, y) = min{x, y};

(c) f1 and g1 are 1–Lipschitz, f2 = g2 = id[0,1] and H(x, y) = min{x, y};

then F is a quasi–copula.

Proof. The assertion follows easily from both Theorem 8.3.1 and Proposition 8.2.1
because the function id[0,1] is 1–Lipschitz and the function H(x, y) = min{x, y} is a
kernel agop.

The characterization of the classical composition of quasi–copulas was given in
[90] and it is reproduced here.

Proposition 8.3.1. Let H be a binary operation on [0, 1] and denote by Ω the subset
of the unit square defined by

Ω :=
{

(u, v) ∈ [0, 1]2 : v ∈
[
max{2u− 1, 0}, u+ 1

2

]}
.

The following statements are equivalent:

(a) for all quasi–copulas A and B, H(A(x, y), B(x, y)) is a quasi–copula;

(b) H is an agop which satisfies the kernel property on Ω.

8.4 Composition of 2–increasing agops

We denote by A2 the class of 2–increasing agops.

Theorem 8.4.1. Let A and B be 2–increasing agops and let (f1, g1, f2, g2,H) be a
generating system. If H is P–increasing, then the function F defined by (8.1) is a
2–increasing agop.

Proof. Set Ã(x, y) := A(f1(x), g1(y)) and B̃(x, y) := B(f2(x), g2(y)). The function F
given by (8.1) satisfies the 2–increasing property if, and only if, for all x, x′, y, y′ in
[0, 1], x ≤ x′ and y ≤ y′,

F (x′, y′)− F (x′, y)− F (x, y′) + F (x, y)

= H(Ã(x′, y′), B̃(x′, y′))−H(Ã(x′, y), B̃(x′, y))

−H(Ã(x, y′), B̃(x, y′)) +H(Ã(x, y), B̃(x, y)) ≥ 0.

Now, take

s1 = Ã(x, y), s2 = Ã(x′, y), s3 = Ã(x, y′), s4 = Ã(x′, y′)

t1 = B̃(x, y), t2 = B̃(x′, y), t3 = B̃(x, y′), t4 = B̃(x′, y′).

The functions Ã and B̃ are increasing in each place and 2–increasing (in view of
Proposition 3.2.1). Therefore the points si and ti (i ∈ {1, 2, 3, 4}) satisfy (7.3) and
(7.4) and, because H is P–increasing, it follows that F is 2-increasing.
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Notice that the assumptions of Theorem 8.4.1 are only sufficient: for particular
agops A and B, in fact, they could be weakened, as the following example shows.

Example 8.4.1. Let AS be the smallest agop. Consider fi = gi = id[0,1] (i = 1, 2)
and let B be an agop in A2. For every P–increasing agop H, the composition F of
AS and B given by (8.1) is equal to H(0, B(x, y)) for every (x, y) 6= (1, 1). Therefore,
in order to ensure that F is 2–increasing, it is sufficient to give conditions only on the
vertical section y 7→ H(0, y), and no other assumption on the values of H on [0, 1]2 is
required.

The classical composition of 2–increasing agops is characterized here.

Theorem 8.4.2. Let H be an agop. The following statements are equivalent:

(a) H is P–increasing;

(b) for every (A,B) ∈ A2 × A2, F (x, y) = H(A(x, y), B(x, y)) is a 2–increasing
agop.

Proof. Part (a) =⇒ (b) is a particular case of Theorem 8.4.1. Conversely, let si, ti ∈
[0, 1] (i ∈ {1, 2, 3, 4}) such that (7.3) and (7.4) hold, namely

s1 ≤ s2 ∧ s3 ≤ s2 ∨ s3 ≤ s4, t1 ≤ t2 ∧ t3 ≤ t2 ∨ t3 ≤ t4, (8.9)

s1 + s4 ≥ s2 + s3, t1 + t4 ≥ t2 + t3. (8.10)

Define the following agops:

A(x, y) :=



0, if min{x, y} = 0;

s1; if (x, y) ∈ ]0, 1/2]× ]0, 1/2];

s2; if (x, y) ∈ ]0, 1/2]× ]1/2, 1];

s3; if (x, y) ∈ ]1/2, 1]× ]0, 1/2];

s4; if (x, y) ∈ ]1/2, 1[× ]1/2, 1[;

1; if (x, y) = (1, 1);

B(x, y) :=



0, if min{x, y} = 0;

t1; if (x, y) ∈ ]0, 1/2]× ]0, 1/2];

t2; if (x, y) ∈ ]0, 1/2]× ]1/2, 1];

t3; if (x, y) ∈ ]1/2, 1]× ]0, 1/2];

t4; if (x, y) ∈ ]1/2, 1[× ]1/2, 1[;

1; if (x, y) = (1, 1).

Let F (x, y) = H(A(x, y), B(x, y)) be the composition of A and B. Then

VH
(
[1/3, 2/3]2

)
= H(s1, t1) +H(s4, t4)−H(s2, t2)−H(s3, t3) ≥ 0,

viz. H is P–increasing.
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Corollary 8.4.1. Let f : [0, 1] → [0, 1] be such that f(0) = 0 and f(1) = 1. The
following statements are equivalent:

(a) f is convex and increasing;

(b) for every (A,B) ∈ A2 ×A2, F (x, y) = f(A(x, y)) is a 2–increasing agop.

Proof. It suffices to apply the above Theorem to the function H(x, y) = f(x), which
is P–increasing because of Theorem 7.1.2.

8.5 Composition of copulas

The following result on the generalized composition of copulas is a direct conse-
quence of Theorem 8.4.1 and Proposition 8.2.1.

Proposition 8.5.1. Let (A,B) be in C× C and let (f1, g1, f2, g2,H) be a generating
system satisfying the assumptions of Proposition 8.2.1. If H is P–increasing, then
the function F defined by (8.1) is a copula.

Example 8.5.1. Consider, for all 0 < α < β < 1,

f1(x) =
βx

(β − α)x+ α
and f2(x) =

(β − α)x+ α

β
;

for every γ ∈ [0, 1],
g1(x) = xγ and g2(x) = x1−γ ;

and H = Π. For all copulas A and B, in view of Proposition 8.5.1 we have the
following family of copulas:

Cα,β,γ(x, y) = A

(
βx

(β − α)x+ α
, yγ
)
·B
(

(β − α)x+ α

β
, y1−γ

)
.

Example 8.5.2. Consider, for all α and β in ]0, 1],

f1(x) = αx+ (1− α), f2(x) = (1− α)x+ α,

g1(x) = βx+ (1− β), f2(x) = (1− β)x+ β,

and H = W . For all copulas A and B, in view of Proposition 8.5.1 we obtain the
following family of copulas:

Cα,β(x, y) = max
(
A(αx+ α, βx+ β) +B(αx+ α, βx+ β)− 1, 0

)
,

where α := 1− α and β := 1− β.
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Remark 8.5.1. For particular copulas A and B, the conditions of the previous
proposition are only sufficient. In fact, let (A,B) be in C×C with B(x, y) = min{x, y}
and let (f, g,H) be the generating triple defined, for every λ ≥ 1, by

f(x) = min{λx, 1}, g(x) = x, H(x, y) = min{x/λ, y}.

Thus H is not P–increasing (the horizontal section of H is concave), but, for every
copula A, the function F given in (8.1) is

F (x, y) =


1
λ
A(λx, λy), if (x, y) ∈

[
0, 1

λ

]2 ;

min{x, y}, otherwise;

and F is the ordinal sum (〈0, 1/λ,A〉) and, hence, it is a copula.

In Proposition 8.5.1, when either f1 6= g1 or f2 6= g2, we generate a family of
non–symmetric copulas. In fact, the idea of this kind of composition arises from the
paper [61] where the following mechanism is given.

Proposition 8.5.2 (Khoudraji, 1995). Let C be a symmetric copula, C 6= Π. A
family of non–symmetric copulas Cα,β with parameters 0 < α, β < 1 (α 6= β) that
includes C as a limiting case is defined by

Cα,β(x, y) := x1−αy1−βC(xα, yβ).

Proof. It suffices to apply Proposition 8.5.1 with H = Π, f2(t) = tα, f1 = f−1
2 ,

g2(t) = tβ , g1 = g−1
2 . Then Cα,β is the generalized composition of (Π, C) with respect

to the generating system (f1, f2, g1, g2,Π).

In the same manner, we prove:

Proposition 8.5.3. Let A and B be symmetric copulas. A family of non–symmetric
copulas Cα,β with parameter 0 < α, β < 1, α 6= 1/2, is defined by

Cα,β(x, y) := A(xα, yβ) ·B(x1−α, y1−β). (8.11)

An interesting statistical interpretation can be given for this family. Let U1, V1,
U2 and V2 be random variables uniformly distributed on [0, 1]. If A is the connecting
copula of (U1, V1) and B is the connecting copula of (U2, V2) and the pairs (U1, V1)
and (U2, V2) are independent, then Cα,β is the joint d.f. of

U = max{U1/α
1 , U

1/(1−α)
2 } and V = max{V 1/β

1 , V
1/(1−β)
2 }.

Example 8.5.3. In the recent paper [96], a generalization of the bivariate survival
d.f. of type Marshall–Olkin was considered. This function is given, for every x, y ≥ 0,
by

S∗(x, y) = S(x, y) exp(−λ12 max{x, y}),
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where S is a bivariate survival d.f. with continuous survival marginal d.f.’s F (x) =
e−λx, λ > 0 and λ12 > 0. If A is the copula of S, it is an easy computation to
obtain that the copula of S∗ is of the type (8.11), where A = C, B = M and
α = β = λ/(λ+ λ12).

Example 8.5.4. Let A and B two Archimedean copulas generated, respectively, by ϕ
and φ. In view of Proposition 8.5.3, for every α and β in [0, 1] the following functions
are copulas

Cα,β(x, y) := ϕ[−1](ϕ(xα) + ϕ(yβ)) · φ[−1](φ(x1−α) + φ(y1−β)). (8.12)

In particular, if ϕ(t) = φ(t) = (− ln t)γ (γ ≥ 1), then A and B are the members of
the so–called Gumbel–Hougaard family of copulas. By considering (8.12), we obtain
a three–parameter family of non–symmetric copulas,

Cα,β,γ(x, y) := exp
(
− [(−α lnx)γ + (−β ln y)γ ]1/γ −

[
(−α lnx)γ + (−β ln y)γ

]1/γ)
,

where α := 1− α and β := 1− β, which can be considered a non–symmetric general-
ization of the Gumbel–Hougaard family.

The importance of having at disposal families of asymmetric copulas is crucial in
copula modelling. In applications, in fact, we have a (bivariate) data set and we have
interested in the joint d.f. H that is the best–possible approximation to our data.
Thanks to Sklar’s theorem, this problem can be decomposed into two steps: the
modelling of the marginal d.f.’s and the estimating of a copula that summarizes the
dependence between the margins. In several practical cases, we select a large family of
copulas Cθ, where θ = (θ1, . . . , θn) is a multiparameter belonging to a subset Jn ⊆ Rn,
and we choose θ̂ ∈ Jn such that Cθ̂ optimaly fits our data (see [60] for more details on
the copula modelling). A suitable family Cθ could have a simple representation (like
the Archimedean copulas), or a simple way to computing it by numerical procedure
(like the normal copula), and a sufficiently large dependence structure. In particular,
and this is often neglected, no assumptions on the simmetry of the copulas should be
made, unless it is explicitly required by the problem at hand. In fact, if the copula
C is symmetric and the marginals d.f.’s F1 and F2 are continuous and both equal
to a d.f. F , then the joint d.f. H = C(F, F ) is exchangeable and, therefore, it is
not suitable to describe situations in which the appropriateness of this symmetry
condition is doubtful.




