Chapter 7

Binary operations on
 bivariate d.f.'s

Let H be a binary operation on $[0,1]$ and let Δ^{2} be the set of bivariate d.f.'s. A binary operation η on Δ^{2} is said to be induced pointwise by H if, for all A and B in Δ^{2} and for all $(x, y) \in \overline{\mathbb{R}}^{2}$,

$$
\begin{equation*}
\eta(A, B)(x, y)=H(A(x, y), B(x, y)) \tag{7.1}
\end{equation*}
$$

The function $\eta(A, B):[0,1]^{2} \rightarrow[0,1]$ given by (7.1) is called composition of A and B via H.

The major result of this chapter is the characterization of the induced pointwise operations on the set Δ^{2} (section 7.2). A similar operation has been studied, in the univariate case, by C. Alsina et al. ([4]) in order to solve some problems arising in the theory of probabilistic metric spaces. However, in the bivariate case, the characterization is quite different and involves the new notion of " P-increasing function", a generalization of the 2 -increasing functions, here introduced and studied (section 7.1). Section 7.3 is devoted mainly to questions related to the Fréchet classes and the convergence of d.f.'s. We conclude with some remarks of this problem on the class of copulas (section 7.4). These results can be also found in $[45,48,38]$.

7.1 P -increasing functions

The focus of this section is on the new concept of P-increasing function, which will be needed for the characterization of induced pointwise operations on bivariate d.f.'s.

Definition 7.1.1. A function $H:[0,1]^{2} \rightarrow[0,1]$ is said to be P-increasing (i.e. probabilistically increasing) if, and only if,

$$
\begin{equation*}
H\left(s_{1}, t_{1}\right)+H\left(s_{4}, t_{4}\right) \geq \max \left[H\left(s_{2}, t_{2}\right)+H\left(s_{3}, t_{3}\right), H\left(s_{3}, t_{2}\right)+H\left(s_{2}, t_{3}\right)\right] \tag{7.2}
\end{equation*}
$$

for all $s_{i}, t_{i} \in[0,1](i \in\{1,2,3,4\})$ such that

$$
\begin{array}{cl}
s_{1} \leq s_{2} \wedge s_{3} \leq s_{2} \vee s_{3} \leq s_{4}, & t_{1} \leq t_{2} \wedge t_{3} \leq t_{2} \vee t_{3} \leq t_{4} \\
s_{1}+s_{4} \geq s_{2}+s_{3}, & t_{1}+t_{4} \geq t_{2}+t_{3} \tag{7.4}
\end{array}
$$

Here we present a geometric interpretation of the P-increasing property.
Given $s_{i}, t_{i}(i \in\{1,2,3,4\})$ as in Definition 7.1.1, let

$$
u_{1}:=s_{2} \wedge s_{3}, \quad u_{4}:=s_{2} \vee s_{3}, \quad v_{1}:=t_{2} \wedge t_{3}, \quad v_{4}:=t_{2} \vee t_{3}
$$

Set

$$
\begin{array}{llll}
\mathbf{p}=\left(s_{1}, t_{1}\right), & \mathbf{q}=\left(s_{4}, t_{1}\right), & \mathbf{r}=\left(s_{4}, t_{4}\right), & \mathbf{s}=\left(s_{1}, t_{4}\right) \\
\mathbf{p}=\left(u_{1}, v_{1}\right), & \mathbf{q}^{\prime}=\left(u_{4}, v_{1}\right), & \mathbf{r}^{\prime}=\left(u_{4}, v_{4}\right), & \mathbf{s}^{\prime}=\left(u_{1}, v_{4}\right)
\end{array}
$$

Consider the rectangle R_{1} with vertices $\mathbf{p}, \mathbf{q}, \mathbf{r}$ and \mathbf{s}, and the rectangle R_{2} with vertices $\mathbf{p}^{\prime}, \mathbf{q}^{\prime}, \mathbf{r}^{\prime}$ and \mathbf{s}^{\prime}. Hence $R_{2} \subseteq R_{1}$ and conditions (7.3) and (7.4) imply that the centre of R_{2} lies below and to the left of the centre of R_{1} (unless $R_{1}=R_{2}$).

Figure 7.1: Geometric interpretation of the P-increasing property

$$
\text { Now, there are four choices for }\left(u_{1}, v_{1}\right) \text { - namely }\left(s_{2}, t_{2}\right),\left(s_{2}, t_{3}\right),\left(s_{3}, t_{2}\right) \text { and }\left(s_{3}, t_{3}\right)
$$ - each leading to corresponding choices for the other vertices of R_{2}. For example, if

$\left(u_{1}, v_{1}\right)=\left(s_{2}, t_{2}\right)$ then $\left(u_{4}, v_{4}\right)=\left(s_{3}, t_{3}\right)$, and so on. In each case, (7.2) yields the two inequalities

$$
\begin{aligned}
& H(\mathbf{p})+H(\mathbf{r}) \geq H\left(\mathbf{p}^{\prime}\right)+H\left(\mathbf{r}^{\prime}\right) \\
& H(\mathbf{p})+H(\mathbf{r}) \geq H\left(\mathbf{q}^{\prime}\right)+H\left(\mathbf{s}^{\prime}\right)
\end{aligned}
$$

In particular, when $R_{1}=R_{2}$, the above inequalities establish that the P-increasing property implies the 2 -increasing property.

Remark 7.1.1. Notice that conditions (7.3) and (7.4) on the points s_{i} and $t_{i}(i=$ $1,2,3,4)$ ensure that $\left(s_{2}, s_{3}\right) \prec_{w}\left(s_{1}, s_{4}\right)$ and $\left(t_{2}, t_{3}\right) \prec_{w}\left(t_{1}, t_{4}\right)$.

Remark 7.1.2. In the sequel, in order to prove that a function H is P-increasing, we restrict ourselves to showing that, for all s_{i}, t_{i} as in Definition 7.1.1,

$$
\begin{equation*}
H\left(s_{1}, t_{1}\right)+H\left(s_{4}, t_{4}\right) \geq H\left(s_{2}, t_{2}\right)+H\left(s_{3}, t_{3}\right) \tag{7.5}
\end{equation*}
$$

instead of inequality (7.2) that can be easily obtained by means of a relabelling of the points. In fact, this was the primary definition of P-increasing function (see [45]). The equivalent definition given above was suggested by A. Sklar in a personal communication and it is adopted here because of its straightforward geometrical interpretation.

The P-increasing property is connected with the property of being directionally convex ($[147,111,99]$). We recall that a function $H:[0,1]^{2} \rightarrow[0,1]$ is called directionally convex if, for all $s_{i}, t_{i}(i \in\{1,2,3,4\})$ in $[0,1]$ such that (7.3) holds together with the condition, stronger than (7.4),

$$
\begin{equation*}
s_{1}+s_{4}=s_{2}+s_{3}, \quad t_{1}+t_{4}=t_{2}+t_{3} \tag{7.6}
\end{equation*}
$$

we have

$$
H\left(s_{1}, t_{1}\right)+H\left(s_{4}, t_{4}\right) \geq H\left(s_{2}, t_{2}\right)+H\left(s_{3}, t_{3}\right)
$$

Theorem 7.1.1. For a function $H:[0,1]^{2} \rightarrow[0,1]$ the following statements are equivalent:
(a) H is P-increasing;
(b) H is directionally convex and increasing in each place.

Proof. $(\mathrm{a}) \Longrightarrow(\mathrm{b})$: Given a P-increasing function H, it suffices to show that H is increasing in each place. Consider $b \in[0,1]$ and, for all $i \in\{1,2,3,4\}$, take s_{i} and t_{i} as in Definition 7.1.1, but satisfying the further conditions $s_{1}=s_{2}$ and $t_{i}=b$. Hence

$$
H\left(s_{4}, b\right)-H\left(s_{3}, b\right)-H\left(s_{2}, b\right)+H\left(s_{2}, b\right) \geq 0
$$

from which $H\left(s_{4}, b\right) \geq H\left(s_{3}, b\right)$, viz. $t \mapsto H(t, b)$ is increasing. The isotony of H in the other variable is established in an analogous manner.
(b) $\Longrightarrow(\mathrm{a})$: Let the s_{1} 's and the t_{i} 's $(i \in\{1,2,3,4\})$ be as in Definition 7.1.1 and choose v_{4} and w_{4} in $[0,1]$ such that $v_{4} \in\left[s_{2} \vee s_{3}, s_{4}\right], w_{4} \in\left[t_{2} \vee t_{3}, t_{4}\right]$ and

$$
s_{1}+v_{4}=s_{2}+s_{3}, \quad t_{1}+w_{4}=t_{2}+t_{3} .
$$

Hence

$$
H\left(s_{2}, t_{2}\right)+H\left(s_{3}, t_{3}\right) \leq H\left(s_{1}, t_{1}\right)+H\left(v_{4}, w_{4}\right) \leq H\left(s_{1}, t_{1}\right)+H\left(s_{4}, t_{4}\right)
$$

which is the desired conclusion.
In particular, by using a characterization of the directionally convex functions ([111, Theorem 2.5]), we can obtain the following

Theorem 7.1.2. A function $H:[0,1]^{2} \rightarrow[0,1]$ is P-increasing if, and only if, the following statements hold:
(a) H is 2-increasing;
(b) H is increasing in each place;
(c) H is convex in each place.

Note that the convex combinations of two P-increasing functions are P-increasing.
Corollary 7.1.1. Let $H:[0,1]^{2} \rightarrow[0,1]$ be P-increasing. The following statements hold:
(a) H is jointly continuous on $\left[0,1\left[^{2}\right.\right.$;
(b) $H \leq \Pi$.

Proof. (a): By classical properties of convex functions, it follows that every P_{-} increasing function $H:[0,1]^{2} \rightarrow[0,1]$ is continuous in each variable on $[0,1[$ and then, in view of Proposition 2.1.2, it is jointly continuous on $\left[0,1\left[^{2}\right.\right.$.
(b) If there exists $\left(x_{0}, y_{0}\right)$ in $] 0,1\left[\right.$ such that $H\left(x_{0}, y_{0}\right)>x_{0} y_{0}$, then the horizontal section of H at y_{0} is not be convex and, thus, H is not be P-increasing.

Corollary 7.1.2. Let $H:[0,1]^{2} \rightarrow \mathbb{R}$ be twice differentiable. Then H is P-increasing if, and only if, all the derivatives of the first and the second order of H are greater than (or equal to) 0 on $[0,1]^{2}$.

Example 7.1.1. The copulas Π and W are P-increasing, and so is their convex sum $C_{\alpha}=\alpha \Pi+(1-\alpha) W$. But, the copula M is not P-increasing; in fact, if we consider s_{i} and t_{i} in $[0,1](i \in\{1,2,3,4\})$ such that

$$
\begin{aligned}
& s_{1}=2 / 10 \leq s_{2}=3 / 10=s_{3} \leq s_{4}=5 / 10 \\
& t_{1}=0 \leq t_{2}=3 / 10=t_{3} \leq t_{4}=1
\end{aligned}
$$

then

$$
M(2 / 10,0)-M(3 / 10,3 / 10)-M(3 / 10,3 / 10)+M(5 / 10,1)=-1 / 10<0
$$

Notice that P-increasing copulas are associated with a random pair (X, Y) that is both $\mathrm{SD}(X \mid Y)$ and $\mathrm{SD}(Y \mid X)$ (see Proposition 1.7.3). For example, we can consider the family of copulas given, for every $\alpha \in]-1,0]$, by

$$
C_{\alpha}(x, y)=x y+\alpha x y(1-x)(1-y)
$$

which is a subclass of the FGM class (see Example 1.6.3).
Important examples of P-increasing functions are given by the following result.
Proposition 7.1.1. Let f and g be increasing and convex functions from $[0,1]$ into $[0,1]$. Let $H:[0,1]^{2} \rightarrow[0,1]$ be P-increasing. Then, the function $H_{f, g}$ defined by

$$
H_{f, g}(x, y):=H(f(x), g(y))
$$

is P-increasing.
Proof. From Proposition 3.2.1, it follows that the function $H_{f, g}$ is a 2 -increasing agop. Moreover, every horizontal (resp., vertical) section of H is convex, because it is composition of the convex and increasing horizontal (resp., vertical) section of A with f (resp. g). Now, the desired assertion follows from Theorem 7.1.2.

Example 7.1.2. For every $\alpha, \beta \geq 1, \Lambda_{\alpha, \beta}(x, y):=\lambda x^{\alpha}+(1-\lambda) y^{\beta}(\lambda \in[0,1])$ and $\Pi_{\alpha, \beta}(x, y):=x^{\alpha} \cdot y^{\beta}$ are P-increasing. In particular, the weighted arithmetic mean is P-increasing, but it is not the case of the weighted geometric mean. Consider, for instance, s_{i} and t_{i} in $[0,1](i \in\{1,2,3,4\})$ given by

$$
s_{1}=0<s_{2}=\frac{4}{10}=s_{3}<s_{4}=\frac{8}{10}, \quad t_{1}=\frac{4}{10}<t_{2}=\frac{7}{10}=t_{3}<t_{4}=1
$$

then

$$
\sqrt{s_{1} t_{1}}+\sqrt{s_{4} t_{4}}-\sqrt{s_{2} t_{2}}-\sqrt{s_{3} t_{3}}=\frac{\sqrt{80}}{10}-\frac{\sqrt{112}}{10}<0
$$

7.2 Induced pointwise operations on d.f.'s

Here we characterize the induced pointwise operations on Δ^{2}.
Lemma 7.2.1. If H is a 2 -increasing agop, then, for all $s, s^{\prime}, t, t^{\prime}$ in $[0,1]$, it satisfies the condition

$$
\left|H\left(s^{\prime}, t^{\prime}\right)-H(s, t)\right| \leq\left|H\left(s^{\prime}, 1\right)-H(s, 1)\right|+\left|H\left(1, t^{\prime}\right)-H(1, t)\right|
$$

Family	Parameters
$\Lambda_{\alpha, \beta}(x, y):=\lambda x^{\alpha}+(1-\lambda) y^{\beta}$	$\alpha, \beta \geq 1$
$\Pi_{\alpha, \beta}(x, y):=x^{\alpha} \cdot y^{\beta}$	$\alpha, \beta \geq 1$
$F_{\alpha}(x, y):=\alpha x y+(1-\alpha) \max \{x+y-1,0\}$	$\alpha \in[0,1]$
$G_{\alpha}(x, y):=x y+\alpha x y(1-x)(1-y)$	$\alpha \in[-1,0]$
$S_{\alpha}(x, y):=x y+\alpha \frac{\sin \pi x}{x} \frac{\sin \pi y}{y}$	$\alpha \in[-1,0]$
$M_{\alpha}(x, y):=x y+\alpha \min \{x, 1-x\} \min \{y, 1-y\}$	$\alpha \in[-1,0]$

Table 7.1: Family of P-increasing functions

Proof. Let s and s^{\prime} be in $[0,1]$ with $s \leq s^{\prime}$. Then, for every $t \in[0,1]$,

$$
H\left(s^{\prime}, 1\right)-H(s, 1) \geq H\left(s^{\prime}, t\right)-H(s, t)
$$

Similarly, for all $s \in[0,1]$ and for t and t^{\prime} in $[0,1]$, with $t \leq t^{\prime}$,

$$
H\left(1, t^{\prime}\right)-H(1, t) \geq H\left(s, t^{\prime}\right)-H(s, t) .
$$

Therefore, for all $s, s^{\prime}, t, t^{\prime}$ in $[0,1]$, we have

$$
\begin{aligned}
\left|H\left(s^{\prime}, t^{\prime}\right)-H(s, t)\right| & \leq\left|H\left(s^{\prime}, t^{\prime}\right)-H\left(s, t^{\prime}\right)\right|+\left|H\left(s, t^{\prime}\right)-H(s, t)\right| \\
& \leq\left|H\left(s^{\prime}, 1\right)-H(s, 1)\right|+\left|H\left(1, t^{\prime}\right)-H(1, t)\right|
\end{aligned}
$$

Theorem 7.2.1. For a function $H:[0,1]^{2} \rightarrow[0,1]$ the following statements are equivalent:
(a) H induces pointwise a binary operation η on Δ^{2};
(b) H fulfils the conditions
(b.1) $H(0,0)=0$ and $H(1,1)=1$,
(b.2) H is P-increasing,
(b.3) H is left-continuous in each place.

Proof. (a) $\Longrightarrow(\mathrm{b})$: Let H induce pointwise the binary operation η on Δ^{2}, viz. for all A and B in Δ^{2} and $(x, y) \in \overline{\mathbb{R}}^{2}$, the function

$$
\eta(A, B)(x, y):=H(A(x, y), B(x, y))
$$

is in Δ^{2}. For all 2-d.f.'s A and B we have

$$
H(0,0)=H(A(x,-\infty), B(x,-\infty))=\eta(A, B)(x,-\infty)=0
$$

and

$$
H(1,1)=H(A(+\infty,+\infty), B(+\infty,+\infty))=\eta(A, B)(+\infty,+\infty)=1
$$

Let s_{i} and t_{i} be in $[0,1](i \in\{1,2,3,4\})$ such that (7.3) and (7.4) hold. Hence, there exist two d.f.'s A and B in Δ^{2} and four points $x_{1}, x_{2}, y_{1}, y_{2}$ in $\overline{\mathbb{R}}$, with $x_{1} \leq x_{2}$ and $y_{1} \leq y_{2}$, such that

$$
\begin{array}{llll}
s_{1}=A\left(x_{1}, y_{1}\right), & s_{2}=A\left(x_{1}, y_{2}\right), & s_{3}=A\left(x_{2}, y_{1}\right), & s_{4}=A\left(x_{2}, y_{2}\right), \\
t_{1}=B\left(x_{1}, y_{1}\right), & t_{2}=B\left(x_{1}, y_{2}\right), & t_{3}=B\left(x_{2}, y_{1}\right), & t_{4}=B\left(x_{2}, y_{2}\right)
\end{array}
$$

Since $\eta(A, B)$ is 2-increasing,

$$
\eta(A, B)\left(x_{1}, y_{1}\right)+\eta(A, B)\left(x_{2}, y_{2}\right)-\eta(A, B)\left(x_{1}, y_{2}\right)-\eta(A, B)\left(x_{2}, y_{1}\right) \geq 0
$$

which, with the above positions, is equivalent to

$$
H\left(s_{1}, t_{1}\right)+H\left(s_{4}, t_{4}\right) \geq H\left(s_{2}, t_{2}\right)+H\left(s_{3}, t_{3}\right) .
$$

But we may exchange s_{2} and s_{3} and find a bivariate d.f. A^{\prime} such that

$$
s_{1}=A^{\prime}\left(x_{1}, y_{1}\right), \quad s_{3}=A^{\prime}\left(x_{1}, y_{2}\right), \quad s_{2}=A^{\prime}\left(x_{2}, y_{1}\right), \quad s_{4}=A^{\prime}\left(x_{2}, y_{2}\right)
$$

Hence, with B unchanged, we have

$$
H\left(s_{1}, t_{1}\right)+H\left(s_{4}, t_{4}\right) \geq H\left(s_{3}, t_{2}\right)+H\left(s_{2}, t_{3}\right)
$$

from which it follows (7.2).
In order to prove (b.3), let s be any point in $[0,1]$ and let $\left\{s_{n}\right\}$ be any sequence in $[0,1]$ that increases to $s, s_{n} \uparrow s$. Let A and B be in Δ^{2} such that (i) the margin $F(x):=A(x,+\infty)$ of A is continuous and strictly increasing and (ii) the margin $G(x):=B(x,+\infty)$ of B is constant on \mathbb{R} and equal to $t, G(x)=t$ for all $x \in \mathbb{R}$. Thus the sequence $\left\{x_{n}\right\}$, where $x_{n}:=F^{-1}\left(s_{n}\right)$ for all $n \in \mathbb{N}$, converges to $x:=F^{-1}(s)$, $x_{n} \uparrow x$. Now, for all $t \in[0,1]$

$$
\begin{aligned}
& H\left(s_{n}, t\right)=H\left(F\left(x_{n}\right), G\left(x_{n}\right)\right)=H\left(A\left(x_{n},+\infty\right), B\left(x_{n},+\infty\right)\right) \\
& =\eta(A, B)\left(x_{n},+\infty\right) \xrightarrow{n \rightarrow+\infty} \eta(A, B)(x,+\infty) \\
& =H(A(x,+\infty), B(x,+\infty))=H(F(x), G(x))=H(s, t) .
\end{aligned}
$$

In an analogous manner, the function $t \mapsto \eta(A, B)(s, t)$ is proved to be left-continuous for all $s \in[0,1]$.
(b) \Longrightarrow (a): Let H satisfy conditions (b.1) through (b.3) and define an operation η on Δ^{2} via

$$
\eta(A, B)(x, y):=H(A(x, y), B(x, y)) \quad \text { for all } A, B \in \Delta^{2}
$$

It is a straightforward matter to verify that $\eta(A, B)$ thus defined satisfies the boundary conditions $\eta(A, B)(+\infty,+\infty)=1$, and $\eta(A, B)(t,-\infty)=0=\eta(A, B)(-\infty, t)$ for all $t \in \mathbb{R}$. Moreover, given $x, x^{\prime}, y, y^{\prime}$ in \mathbb{R} with $x \leq x^{\prime}$ and $y \leq y^{\prime}$, we have

$$
\begin{aligned}
\eta(A, B) & \left(x^{\prime}, y^{\prime}\right)-\eta(A, B)\left(x^{\prime}, y\right)-\eta(A, B)\left(x, y^{\prime}\right)+\eta(A, B)(x, y) \\
& =H\left(A\left(x^{\prime}, y^{\prime}\right), B\left(x^{\prime}, y^{\prime}\right)\right)-H\left(A\left(x^{\prime}, y\right), B\left(x^{\prime}, y\right)\right) \\
& -H\left(A\left(x, y^{\prime}\right), B\left(x, y^{\prime}\right)\right)+H(A(x, y), B(x, y)) .
\end{aligned}
$$

Now, take

$$
\begin{array}{llll}
s_{1}=A(x, y), & s_{2}=A\left(x^{\prime}, y\right), & s_{3}=A\left(x, y^{\prime}\right), & s_{4}=A\left(x^{\prime}, y^{\prime}\right) \\
t_{1}=B(x, y), & t_{2}=B\left(x^{\prime}, y\right), & t_{3}=B\left(x, y^{\prime}\right), & t_{4}=B\left(x^{\prime}, y^{\prime}\right)
\end{array}
$$

then s_{i} and $t_{i}(i \in\{1,2,3,4\})$ satisfy (7.3) and (7.4) and, because H is P-increasing, it follows that $\eta(A, B)$ is 2-increasing. Thus it remains to verify that $\eta(A, B)$ is leftcontinuous in each variable. Let x be in \mathbb{R}, let y be any point in $\overline{\mathbb{R}}$, and let $\left\{x_{n}\right\}$ be a sequence of reals such that $x_{n} \uparrow x$. Hence

$$
\begin{aligned}
& \left|\eta(A, B)\left(x_{n}, y\right)-\eta(A, B)(x, y)\right| \\
& \quad=\left|H\left(A\left(x_{n}, y\right), B\left(x_{n}, y\right)\right)-H(A(x, y), B(x, y))\right| \xrightarrow[n \rightarrow+\infty]{ } 0
\end{aligned}
$$

since $s \mapsto A(s, y)$ and $s \mapsto B(s, y)$ are left-continuous and Proposition 2.1.2 holds. In an analogous manner, $t \mapsto \eta(A, B)(x, t)$ is proved to be left-continuous for all $x \in \overline{\mathbb{R}}$. This completes the proof.

The class of all functions that induce pointwise a binary operation on Δ^{2} shall be denoted by \mathcal{P}. In particular, notice that if H is in \mathcal{P}, then H is a binary aggregation operator.

Theorem 7.2.1 is similar to the characterization of induced pointwise operations on Δ, which is reproduced here (see [4]).

Theorem 7.2.2. For a function $H:[0,1]^{2} \rightarrow[0,1]$ the following statements are equivalent:
(a') H induces pointwise a binary operation η on Δ, viz. for every F and G in Δ, $\eta(F, G)(t):=H(F(t), G(t))$ is a d.f.;
(b') H fulfils the conditions
(b.1') $H(0,0)=0$ and $H(1,1)=1$,
(b.2') H is increasing in each variable,
(b.3') H is left-continuous in each place.

Because every P-increasing function satisfies (b.2') (see section 7.1), every function in \mathcal{P} induces pointwise also a binary operation on Δ.

7.3 Some connected questions

Let A and B be bivariate d.f.'s defined for all $x, y \in \overline{\mathbb{R}}$ by

$$
A(x, y)=C\left(F_{1}(x), G_{1}(y)\right) \quad \text { and } \quad B(x, y)=D\left(F_{2}(x), G_{2}(y)\right),
$$

where $F_{i}, G_{i}(i=1,2)$ are their respective margins and C and D are their respective copulas (we adopt, if necessary, the method of bilinear interpolation in order to single out one copula, see [140]). In other words, A and B are, respectively, in the Fréchet classes $\Gamma\left(F_{1}, G_{1}\right)$ and $\Gamma\left(F_{2}, G_{2}\right)$. If H is in \mathcal{P}, we can obtain some information on the margins of the pointwise induced d.f. $\eta(A, B)$ defined as in (7.1).

Proposition 7.3.1. Under the above assumptions, $\eta(A, B)$ belongs to the Fréchet class determined by the (unidimensional) d.f.'s

$$
x \mapsto H\left(F_{1}(x), F_{2}(x)\right) \quad \text { and } \quad y \mapsto H\left(G_{1}(y), G_{2}(y)\right) .
$$

Proof. For all $x, y \in \overline{\mathbb{R}}$, we have

$$
\eta(A, B)(x,+\infty)=H(A(x,+\infty), B(x,+\infty))=H\left(F_{1}(x), F_{2}(x)\right)
$$

and, analogously,

$$
\eta(A, B)(+\infty, y)=H(A(+\infty, y), B(+\infty, y))=H\left(G_{1}(y), G_{2}(y)\right)
$$

as claimed.
Moreover, if H satisfies the assumptions of Theorem 7.2.1 and, then, it induces pointwise a binary operation η on Δ^{2}, it is entirely natural to ask whether anything may be said about the copula \widetilde{C} of $\eta(A, B)$ for all A and B in Δ^{2}.

Proposition 7.3.2. Under the above assumptions, if $F_{1}=F_{2}=F, G_{1}=G_{2}=G$ and H is idempotent, then $\widetilde{C}(x, y)=H(C(x, y), D(x, y))$.

Proof. For every H in the Fréchet class $\Gamma(F, G),(x, y) \mapsto H(A(x, y), B(x, y))$ is a bivariate d.f. with marginal d.f.'s given by

$$
H(F(x), F(x))=F(x) \quad \text { and } \quad H(G(y), G(y))=G(y)
$$

It follows that there exists a copula \widetilde{C} such that

$$
\widetilde{C}(F(x), G(y))=H(A(x, y), B(x, y))=H[C(F(x), G(y)), D(F(x), G(y))]
$$

from which an argument similar to that used in the proof of Sklar's theorem ([114]) yields $\widetilde{C}(s, t)=H(C(s, t), D(s, t))$ for all $s, t \in[0,1]$.

In general, when $F_{1} \neq F_{2}$ and $G_{1} \neq G_{2}$, the above result is not true.

Example 7.3.1. Let $H(x, y)=\lambda x+(1-\lambda) y$ be the weighted arithmetic mean and let $C=D=\Pi$ be the product copula, then, for $\lambda \in] 0,1[$, we have

$$
\begin{aligned}
H(A(x, y), B(x, y)) & =\lambda F_{1}(x) G_{1}(y)+(1-\lambda) F_{2}(x) G_{2}(y) \\
& \neq\left[\lambda F_{1}(x)+(1-\lambda) F_{2}(x)\right]\left[\lambda G_{1}(y)+(1-\lambda) G_{2}(y)\right] \\
& =\Pi\left(H\left(F_{1}(x), F_{2}(x)\right), H\left(G_{1}(y), G_{2}(y)\right)\right) .
\end{aligned}
$$

We conclude this section with a remark on the convergence in Δ^{2}. Assume that $\left\{A_{n}\right\}$ and $\left\{B_{n}\right\}$ are two sequences of d.f.'s in Δ^{2} that converge weakly to the d.f.'s A and B, respectively; in other words, if $C(A)$ and $C(B)$ are the dense subsets of $\overline{\mathbb{R}}^{2}$ formed by the points of continuity of A and B, respectively, then

$$
\forall(x, y) \in C(A) \quad \lim _{n \rightarrow+\infty} A_{n}(x, y)=A(x, y)
$$

and

$$
\forall(x, y) \in C(B) \quad \lim _{n \rightarrow+\infty} B_{n}(x, y)=B(x, y)
$$

The question naturally arises of whether, for $H \in \mathcal{P}$ that induces the operation η on Δ^{2}, the sequence of bivariate d.f.'s $\left\{\eta\left(A_{n}, B_{n}\right)\right\}$ converges weakly to $\eta(A, B)$. While we do not know a general answer to this question, the following result provides a useful sufficient condition.

Theorem 7.3.1. Under the conditions just specified, if H is continuous in each place, then the sequence $\left\{\eta\left(A_{n}, B_{n}\right)\right\}_{n \in \mathbb{N}}$ converges weakly to $\eta(A, B)$.

Proof. The set $C(A) \cap C(B)$ is dense in $\overline{\mathbb{R}}^{2}$. For every point (x, y) in $C(A) \cap C(B)$

$$
A_{n}(x, y) \xrightarrow[n \rightarrow+\infty]{ } A(x, y) \quad \text { and } \quad B_{n}(x, y) \xrightarrow[n \rightarrow+\infty]{ } B(x, y)
$$

In view of Lemma (7.2.1), we have

$$
\begin{aligned}
& \left|\eta\left(A_{n}, B_{n}\right)(x, y)-\eta(A, B)(x, y)\right| \\
& =\left|H\left(A_{n}(x, y), B_{n}(x, y)\right)-H(A(x, y), B(x, y))\right| \\
& \leq\left|H\left(A_{n}(x, y), 1\right)-H(A(x, y), 1)\right|+\left|H\left(1, B_{n}(x, y)\right)-H(1, B(x, y))\right|
\end{aligned}
$$

The assertion now follows directly from the continuity of H.

7.4 Remarks on the composition of copulas

Since every copula is also the restriction of a bivariate d.f. to the unit square, it is natural to study also induced pointwise binary operations on \mathcal{C}. Note that the function $H(x, y)=\lambda x+(1-\lambda) y$ induces pointwise a binary operation on \mathcal{C}, which is a convex set.

Proposition 7.4.1. If $H:[0,1]^{2} \rightarrow[0,1]$ induces pointwise a binary operation ρ on \mathcal{C}, then H is idempotent.

Proof. Suppose that there exists a binary aggregation operator H that induces pointwise a binary operation ρ on \mathcal{C}, namely, for all A and B in \mathcal{C},

$$
\rho(A, B)(x, y)=H(A(x, y), B(x, y))
$$

is a copula. It can be easily proved that $\rho(A, B)$ satisfies the boundary conditions (C1) if, and only if, $H(x, x)=x$ for all x in $[0,1]$.

In particular, no copula induces pointwise a binary operation on \mathcal{C} : in fact, M is the only idempotent copula but the minimum of two copulas need not be a copula (see Example 2.3.2).

Because the P-increasing property preserves the 2 -increasing property, we have that, if H is a P -increasing and idempotent agop, then H induces pointwise a binary operation on copulas. However, this procedure is not useful in view of the following result.

Proposition 7.4.2. Let A be a binary aggregation operator such that $A(x, x) \geq x$ for every $x \in[0,1]$. Then A is P-increasing if, and only if, there exists $a \in[0,1]$ such that $A(x, y)=a x+(1-a) y$.

Proof. Let A be a P-increasing agop such that $A(x, x) \geq x$ for every $x \in[0,1]$. In particular, on account of Theorem 7.1.2, A is 2 -increasing and its horizontal and vertical sections are convex. Set $a:=A(1,0)$ and $b:=A(0,1)$ and notice that $a+b \leq 1$.

In view of the 2 -increasing property, for every $y \in[0,1]$ we have

$$
\begin{equation*}
A(0, y)+A(y, 1) \geq A(y, y)+A(0,1) \geq y+b \tag{7.7}
\end{equation*}
$$

and, from the convexity of $y \mapsto A(0, y)$,

$$
A(0, y) \leq y A(0,1)+(1-y) A(0,0)=b y
$$

Therefore, connecting the two inequalities above, we obtain $A(y, 1) \geq y+(1-y) b$. On the other hand, from the convexity of $y \mapsto A(y, 1)$,

$$
A(y, 1) \leq y A(1,1)+(1-y) A(0,1)=y+(1-y) b,
$$

viz. $A(y, 1)=y+(1-y) b$. Analogously $A(1, y)=(1-a) y+a$.
From (7.7), it follows also that

$$
A(0, y) \geq y+b-(1-b) y-b=b y
$$

and, because $A(0, y) \leq y A(0,1)=b y$, we have $A(0, y)=b y$. In the same manner, $A(x, 0)=a x$.

Now, because A is 2 -increasing, for every $y \geq x$, we have

$$
A(x, y) \geq A(x, 1)+A(y, y)-A(y, 1) \geq(1-b) x+b y
$$

and

$$
A(x, y) \leq A(x, 1)+A(0, y)-b=(1-b) x+b y
$$

viz. $A(x, y)=(1-b) x+b y$. In the same manner, for every $x \geq y$, we obtain $A(x, y)=a x+(1-a) y$.

Finally, notice that

$$
A(x, 1 / 2)= \begin{cases}(1-b) x+b / 2, & \text { if } x \leq 1 / 2 \\ a x+(1-a) / 2, & \text { if } x>1 / 2\end{cases}
$$

and, from the convexity of $x \mapsto A(x, 1 / 2)$, we have

$$
A\left(\frac{1}{2}, \frac{1}{2}\right) \leq \frac{1}{2} A\left(0, \frac{1}{2}\right)+\frac{1}{2} A\left(1, \frac{1}{2}\right)
$$

which is equivalent to $a+b \geq 1$. Therefore $a+b=1$ and, for every $(x, y) \in[0,1]^{2}$, $A(x, y)=a x+(1-a) y$.

Corollary 7.4.1. Let A be a P-increasing agop. The following statements are equivalent:
(a) A is idempotent;
(b) there exists $a \in[0,1]$ such that $A(x, y)=a x+(1-a) y$.

Thus, in the class of copulas, the characterization of induced pointwise operation is still an open problem.

