
Chapter 7

Binary operations on

bivariate d.f.’s

Let H be a binary operation on [0, 1] and let ∆2 be the set of bivariate d.f.’s. A
binary operation η on ∆2 is said to be induced pointwise by H if, for all A and B in
∆2 and for all (x, y) ∈ R2

,

η(A,B)(x, y) = H(A(x, y), B(x, y)). (7.1)

The function η(A,B) : [0, 1]2 → [0, 1] given by (7.1) is called composition of A and B
via H.

The major result of this chapter is the characterization of the induced pointwise
operations on the set ∆2 (section 7.2). A similar operation has been studied, in the
univariate case, by C. Alsina et al. ([4]) in order to solve some problems arising in
the theory of probabilistic metric spaces. However, in the bivariate case, the charac-
terization is quite different and involves the new notion of “P–increasing function”,
a generalization of the 2–increasing functions, here introduced and studied (section
7.1). Section 7.3 is devoted mainly to questions related to the Fréchet classes and the
convergence of d.f.’s. We conclude with some remarks of this problem on the class of
copulas (section 7.4). These results can be also found in [45, 48, 38].

7.1 P–increasing functions

The focus of this section is on the new concept of P–increasing function, which
will be needed for the characterization of induced pointwise operations on bivariate
d.f.’s.
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Definition 7.1.1. A function H : [0, 1]2 → [0, 1] is said to be P–increasing (i.e.
probabilistically increasing) if, and only if,

H(s1, t1) +H(s4, t4) ≥ max [H(s2, t2) +H(s3, t3),H(s3, t2) +H(s2, t3)] , (7.2)

for all si, ti ∈ [0, 1] (i ∈ {1, 2, 3, 4}) such that

s1 ≤ s2 ∧ s3 ≤ s2 ∨ s3 ≤ s4, t1 ≤ t2 ∧ t3 ≤ t2 ∨ t3 ≤ t4, (7.3)

s1 + s4 ≥ s2 + s3, t1 + t4 ≥ t2 + t3. (7.4)

Here we present a geometric interpretation of the P–increasing property.
Given si, ti (i ∈ {1, 2, 3, 4}) as in Definition 7.1.1, let

u1 := s2 ∧ s3, u4 := s2 ∨ s3, v1 := t2 ∧ t3, v4 := t2 ∨ t3.

Set

p = (s1, t1), q = (s4, t1), r = (s4, t4), s = (s1, t4)
p’ = (u1, v1), q’ = (u4, v1), r’ = (u4, v4), s’ = (u1, v4)

Consider the rectangle R1 with vertices p, q, r and s, and the rectangle R2 with
vertices p’, q’, r’ and s’. Hence R2 ⊆ R1 and conditions (7.3) and (7.4) imply that
the centre of R2 lies below and to the left of the centre of R1 (unless R1 = R2).

Figure 7.1: Geometric interpretation of the P–increasing property

Now, there are four choices for (u1, v1) – namely (s2, t2), (s2, t3), (s3, t2) and (s3, t3)
– each leading to corresponding choices for the other vertices of R2. For example, if



Chap. 7 Binary operations on bivariate d.f.’s 103

(u1, v1) = (s2, t2) then (u4, v4) = (s3, t3), and so on. In each case, (7.2) yields the two
inequalities

H(p) +H(r) ≥ H(p’) +H(r’),

H(p) +H(r) ≥ H(q’) +H(s’).

In particular, when R1 = R2, the above inequalities establish that the P–increasing
property implies the 2–increasing property.

Remark 7.1.1. Notice that conditions (7.3) and (7.4) on the points si and ti (i =
1, 2, 3, 4) ensure that (s2, s3) ≺w (s1, s4) and (t2, t3) ≺w (t1, t4).

Remark 7.1.2. In the sequel, in order to prove that a function H is P–increasing,
we restrict ourselves to showing that, for all si, ti as in Definition 7.1.1,

H(s1, t1) +H(s4, t4) ≥ H(s2, t2) +H(s3, t3), (7.5)

instead of inequality (7.2) that can be easily obtained by means of a relabelling of
the points. In fact, this was the primary definition of P–increasing function (see
[45]). The equivalent definition given above was suggested by A. Sklar in a personal
communication and it is adopted here because of its straightforward geometrical in-
terpretation.

The P–increasing property is connected with the property of being directionally
convex ([147, 111, 99]). We recall that a function H : [0, 1]2 → [0, 1] is called direc-
tionally convex if, for all si, ti (i ∈ {1, 2, 3, 4}) in [0, 1] such that (7.3) holds together
with the condition, stronger than (7.4),

s1 + s4 = s2 + s3, t1 + t4 = t2 + t3, (7.6)

we have
H(s1, t1) +H(s4, t4) ≥ H(s2, t2) +H(s3, t3).

Theorem 7.1.1. For a function H : [0, 1]2 → [0, 1] the following statements are
equivalent:

(a) H is P–increasing;

(b) H is directionally convex and increasing in each place.

Proof. (a) =⇒ (b): Given a P–increasing function H, it suffices to show that H is
increasing in each place. Consider b ∈ [0, 1] and, for all i ∈ {1, 2, 3, 4}, take si and ti

as in Definition 7.1.1, but satisfying the further conditions s1 = s2 and ti = b. Hence

H(s4, b)−H(s3, b)−H(s2, b) +H(s2, b) ≥ 0,
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from which H(s4, b) ≥ H(s3, b), viz. t 7→ H(t, b) is increasing. The isotony of H in
the other variable is established in an analogous manner.

(b) =⇒ (a): Let the s1’s and the ti’s (i ∈ {1, 2, 3, 4}) be as in Definition 7.1.1 and
choose v4 and w4 in [0, 1] such that v4 ∈ [s2 ∨ s3, s4], w4 ∈ [t2 ∨ t3, t4] and

s1 + v4 = s2 + s3, t1 + w4 = t2 + t3.

Hence

H(s2, t2) +H(s3, t3) ≤ H(s1, t1) +H(v4, w4) ≤ H(s1, t1) +H(s4, t4),

which is the desired conclusion.

In particular, by using a characterization of the directionally convex functions
([111, Theorem 2.5]), we can obtain the following

Theorem 7.1.2. A function H : [0, 1]2 → [0, 1] is P–increasing if, and only if, the
following statements hold:

(a) H is 2–increasing;

(b) H is increasing in each place;

(c) H is convex in each place.

Note that the convex combinations of two P–increasing functions are P–increasing.

Corollary 7.1.1. Let H : [0, 1]2 → [0, 1] be P–increasing. The following statements
hold:

(a) H is jointly continuous on [0, 1[2;

(b) H ≤ Π.

Proof. (a): By classical properties of convex functions, it follows that every P–
increasing function H : [0, 1]2 → [0, 1] is continuous in each variable on [0, 1[ and
then, in view of Proposition 2.1.2, it is jointly continuous on [0, 1[2.

(b) If there exists (x0, y0) in ]0, 1[ such that H(x0, y0) > x0y0, then the horizontal
section of H at y0 is not be convex and, thus, H is not be P–increasing.

Corollary 7.1.2. Let H : [0, 1]2 → R be twice differentiable. Then H is P–increasing
if, and only if, all the derivatives of the first and the second order of H are greater
than (or equal to) 0 on [0, 1]2.

Example 7.1.1. The copulas Π and W are P–increasing, and so is their convex sum
Cα = αΠ + (1− α)W . But, the copula M is not P–increasing; in fact, if we consider
si and ti in [0, 1] (i ∈ {1, 2, 3, 4}) such that

s1 = 2/10 ≤ s2 = 3/10 = s3 ≤ s4 = 5/10,

t1 = 0 ≤ t2 = 3/10 = t3 ≤ t4 = 1,
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then

M(2/10, 0)−M(3/10, 3/10)−M(3/10, 3/10) +M(5/10, 1) = −1/10 < 0.

Notice that P–increasing copulas are associated with a random pair (X,Y ) that is
both SD(X|Y ) and SD(Y |X) (see Proposition 1.7.3). For example, we can consider
the family of copulas given, for every α ∈ ]−1, 0], by

Cα(x, y) = xy + αxy(1− x)(1− y),

which is a subclass of the FGM class (see Example 1.6.3).

Important examples of P–increasing functions are given by the following result.

Proposition 7.1.1. Let f and g be increasing and convex functions from [0, 1] into
[0, 1]. Let H : [0, 1]2 → [0, 1] be P–increasing. Then, the function Hf,g defined by

Hf,g(x, y) := H(f(x), g(y))

is P–increasing.

Proof. From Proposition 3.2.1, it follows that the function Hf,g is a 2–increasing
agop. Moreover, every horizontal (resp., vertical) section of H is convex, because it
is composition of the convex and increasing horizontal (resp., vertical) section of A
with f (resp. g). Now, the desired assertion follows from Theorem 7.1.2.

Example 7.1.2. For every α, β ≥ 1, Λα,β(x, y) := λxα + (1− λ)yβ (λ ∈ [0, 1]) and
Πα,β(x, y) := xα · yβ are P–increasing. In particular, the weighted arithmetic mean
is P–increasing, but it is not the case of the weighted geometric mean. Consider, for
instance, si and ti in [0, 1] (i ∈ {1, 2, 3, 4}) given by

s1 = 0 < s2 =
4
10

= s3 < s4 =
8
10
, t1 =

4
10

< t2 =
7
10

= t3 < t4 = 1,

then
√
s1 t1 +

√
s4 t4 −

√
s2 t2 −

√
s3 t3 =

√
80

10
−
√

112
10

< 0.

7.2 Induced pointwise operations on d.f.’s

Here we characterize the induced pointwise operations on ∆2.

Lemma 7.2.1. If H is a 2–increasing agop, then, for all s, s′, t, t′ in [0, 1], it satisfies
the condition

|H(s′, t′)−H(s, t)| ≤ |H(s′, 1)−H(s, 1)|+ |H(1, t′)−H(1, t)| .
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Family Parameters

Λα,β(x, y) := λxα + (1− λ)yβ α, β ≥ 1

Πα,β(x, y) := xα · yβ α, β ≥ 1

Fα(x, y) := αxy + (1− α) max{x+ y − 1, 0} α ∈ [0, 1]

Gα(x, y) := xy + αxy(1− x)(1− y) α ∈ [−1, 0]

Sα(x, y) := xy + α sinπx
x

sinπy
y α ∈ [−1, 0]

Mα(x, y) := xy + αmin{x, 1− x}min{y, 1− y} α ∈ [−1, 0]

Table 7.1: Family of P–increasing functions

Proof. Let s and s′ be in [0, 1] with s ≤ s′. Then, for every t ∈ [0, 1],

H(s′, 1)−H(s, 1) ≥ H(s′, t)−H(s, t).

Similarly, for all s ∈ [0, 1] and for t and t′ in [0, 1], with t ≤ t′,

H(1, t′)−H(1, t) ≥ H(s, t′)−H(s, t).

Therefore, for all s, s′, t, t′ in [0, 1], we have

|H(s′, t′)−H(s, t)| ≤ |H(s′, t′)−H(s, t′)|+ |H(s, t′)−H(s, t)|

≤ |H(s′, 1)−H(s, 1)|+ |H(1, t′)−H(1, t)| .

Theorem 7.2.1. For a function H : [0, 1]2 → [0, 1] the following statements are
equivalent:

(a) H induces pointwise a binary operation η on ∆2;

(b) H fulfils the conditions

(b.1) H(0, 0) = 0 and H(1, 1) = 1,

(b.2) H is P–increasing,

(b.3) H is left–continuous in each place.

Proof. (a) =⇒ (b): Let H induce pointwise the binary operation η on ∆2, viz. for all
A and B in ∆2 and (x, y) ∈ R2

, the function

η(A,B)(x, y) := H(A(x, y), B(x, y))

is in ∆2. For all 2–d.f.’s A and B we have

H(0, 0) = H (A(x,−∞), B(x,−∞)) = η(A,B)(x,−∞) = 0
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and

H(1, 1) = H (A(+∞,+∞), B(+∞,+∞)) = η(A,B)(+∞,+∞) = 1.

Let si and ti be in [0, 1] (i ∈ {1, 2, 3, 4}) such that (7.3) and (7.4) hold. Hence, there
exist two d.f.’s A and B in ∆2 and four points x1, x2, y1, y2 in R, with x1 ≤ x2 and
y1 ≤ y2, such that

s1 = A(x1, y1), s2 = A(x1, y2), s3 = A(x2, y1), s4 = A(x2, y2),

t1 = B(x1, y1), t2 = B(x1, y2), t3 = B(x2, y1), t4 = B(x2, y2).

Since η(A,B) is 2–increasing,

η(A,B)(x1, y1) + η(A,B)(x2, y2)− η(A,B)(x1, y2)− η(A,B)(x2, y1) ≥ 0,

which, with the above positions, is equivalent to

H(s1, t1) +H(s4, t4) ≥ H(s2, t2) +H(s3, t3).

But we may exchange s2 and s3 and find a bivariate d.f. A′ such that

s1 = A′(x1, y1), s3 = A′(x1, y2), s2 = A′(x2, y1), s4 = A′(x2, y2).

Hence, with B unchanged, we have

H(s1, t1) +H(s4, t4) ≥ H(s3, t2) +H(s2, t3),

from which it follows (7.2).
In order to prove (b.3), let s be any point in [0, 1] and let {sn} be any sequence

in [0, 1] that increases to s, sn ↑ s. Let A and B be in ∆2 such that (i) the margin
F (x) := A(x,+∞) of A is continuous and strictly increasing and (ii) the margin
G(x) := B(x,+∞) of B is constant on R and equal to t, G(x) = t for all x ∈ R. Thus
the sequence {xn}, where xn := F−1(sn) for all n ∈ N, converges to x := F−1(s),
xn ↑ x. Now, for all t ∈ [0, 1]

H(sn, t) = H (F (xn), G(xn)) = H (A(xn,+∞), B(xn,+∞))

= η(A,B)(xn,+∞) n→+∞−−−−−→ η(A,B)(x,+∞)

= H (A(x,+∞), B(x,+∞)) = H (F (x), G(x)) = H(s, t).

In an analogous manner, the function t 7→ η(A,B)(s, t) is proved to be left–continuous
for all s ∈ [0, 1].
(b) =⇒ (a): Let H satisfy conditions (b.1) through (b.3) and define an operation η

on ∆2 via

η(A,B)(x, y) := H(A(x, y), B(x, y)) for all A,B ∈ ∆2.
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It is a straightforward matter to verify that η(A,B) thus defined satisfies the boundary
conditions η(A,B)(+∞,+∞) = 1, and η(A,B)(t,−∞) = 0 = η(A,B)(−∞, t) for all
t ∈ R. Moreover, given x, x′, y, y′ in R with x ≤ x′ and y ≤ y′, we have

η(A,B)(x′, y′)− η(A,B)(x′, y)− η(A,B)(x, y′) + η(A,B)(x, y)

= H(A(x′, y′), B(x′, y′))−H(A(x′, y), B(x′, y))

−H(A(x, y′), B(x, y′)) +H(A(x, y), B(x, y)).

Now, take

s1 = A(x, y), s2 = A(x′, y), s3 = A(x, y′), s4 = A(x′, y′)

t1 = B(x, y), t2 = B(x′, y), t3 = B(x, y′), t4 = B(x′, y′);

then si and ti (i ∈ {1, 2, 3, 4}) satisfy (7.3) and (7.4) and, because H is P–increasing,
it follows that η(A,B) is 2-increasing. Thus it remains to verify that η(A,B) is left–
continuous in each variable. Let x be in R, let y be any point in R, and let {xn} be
a sequence of reals such that xn ↑ x. Hence

|η(A,B)(xn, y)− η(A,B)(x, y)|

= |H (A(xn, y), B(xn, y))−H (A(x, y), B(x, y))| −−−−−→
n→+∞

0,

since s 7→ A(s, y) and s 7→ B(s, y) are left–continuous and Proposition 2.1.2 holds. In
an analogous manner, t 7→ η(A,B)(x, t) is proved to be left–continuous for all x ∈ R.
This completes the proof.

The class of all functions that induce pointwise a binary operation on ∆2 shall be
denoted by P. In particular, notice that if H is in P, then H is a binary aggregation
operator.

Theorem 7.2.1 is similar to the characterization of induced pointwise operations
on ∆, which is reproduced here (see [4]).

Theorem 7.2.2. For a function H : [0, 1]2 → [0, 1] the following statements are
equivalent:

(a’) H induces pointwise a binary operation η on ∆, viz. for every F and G in ∆,
η(F,G)(t) := H(F (t), G(t)) is a d.f.;

(b’) H fulfils the conditions

(b.1’) H(0, 0) = 0 and H(1, 1) = 1,

(b.2’) H is increasing in each variable,

(b.3’) H is left–continuous in each place.

Because every P–increasing function satisfies (b.2’) (see section 7.1), every function
in P induces pointwise also a binary operation on ∆.
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7.3 Some connected questions

Let A and B be bivariate d.f.’s defined for all x, y ∈ R by

A(x, y) = C (F1(x), G1(y)) and B(x, y) = D (F2(x), G2(y)) ,

where Fi, Gi (i = 1, 2) are their respective margins and C and D are their respective
copulas (we adopt, if necessary, the method of bilinear interpolation in order to single
out one copula, see [140]). In other words, A and B are, respectively, in the Fréchet
classes Γ(F1, G1) and Γ(F2, G2). If H is in P, we can obtain some information on the
margins of the pointwise induced d.f. η(A,B) defined as in (7.1).

Proposition 7.3.1. Under the above assumptions, η(A,B) belongs to the Fréchet
class determined by the (unidimensional) d.f.’s

x 7→ H(F1(x), F2(x)) and y 7→ H(G1(y), G2(y)).

Proof. For all x, y ∈ R, we have

η(A,B)(x,+∞) = H(A(x,+∞), B(x,+∞)) = H(F1(x), F2(x)),

and, analogously,

η(A,B)(+∞, y) = H(A(+∞, y), B(+∞, y)) = H(G1(y), G2(y)),

as claimed.

Moreover, if H satisfies the assumptions of Theorem 7.2.1 and, then, it induces
pointwise a binary operation η on ∆2, it is entirely natural to ask whether anything
may be said about the copula C̃ of η(A,B) for all A and B in ∆2.

Proposition 7.3.2. Under the above assumptions, if F1 = F2 = F , G1 = G2 = G

and H is idempotent, then C̃(x, y) = H(C(x, y), D(x, y)).

Proof. For every H in the Fréchet class Γ(F,G), (x, y) 7→ H(A(x, y), B(x, y)) is a
bivariate d.f. with marginal d.f.’s given by

H(F (x), F (x)) = F (x) and H(G(y), G(y)) = G(y).

It follows that there exists a copula C̃ such that

C̃ (F (x), G(y)) = H (A(x, y), B(x, y)) = H [C(F (x), G(y)), D(F (x), G(y))] ,

from which an argument similar to that used in the proof of Sklar’s theorem ([114])
yields C̃(s, t) = H (C(s, t), D(s, t)) for all s, t ∈ [0, 1].

In general, when F1 6= F2 and G1 6= G2, the above result is not true.
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Example 7.3.1. Let H(x, y) = λx+ (1− λ)y be the weighted arithmetic mean and
let C = D = Π be the product copula, then, for λ ∈ ]0, 1[, we have

H(A(x, y), B(x, y)) = λF1(x)G1(y) + (1− λ)F2(x)G2(y)

6= [λF1(x) + (1− λ)F2(x)] [λG1(y) + (1− λ)G2(y)]

= Π(H(F1(x), F2(x)),H(G1(y), G2(y))).

We conclude this section with a remark on the convergence in ∆2. Assume that
{An} and {Bn} are two sequences of d.f.’s in ∆2 that converge weakly to the d.f.’s
A and B, respectively; in other words, if C(A) and C(B) are the dense subsets of R2

formed by the points of continuity of A and B, respectively, then

∀(x, y) ∈ C(A) lim
n→+∞

An(x, y) = A(x, y),

and

∀(x, y) ∈ C(B) lim
n→+∞

Bn(x, y) = B(x, y).

The question naturally arises of whether, for H ∈ P that induces the operation η on
∆2, the sequence of bivariate d.f.’s {η(An, Bn)} converges weakly to η(A,B). While
we do not know a general answer to this question, the following result provides a
useful sufficient condition.

Theorem 7.3.1. Under the conditions just specified, if H is continuous in each place,
then the sequence {η(An, Bn)}n∈N converges weakly to η(A,B).

Proof. The set C(A) ∩ C(B) is dense in R2
. For every point (x, y) in C(A) ∩ C(B)

An(x, y) −−−−−→
n→+∞

A(x, y) and Bn(x, y) −−−−−→
n→+∞

B(x, y).

In view of Lemma (7.2.1), we have

|η(An, Bn)(x, y) − η(A,B)(x, y)|

= |H (An(x, y), Bn(x, y))−H (A(x, y), B(x, y))|

≤ |H (An(x, y), 1)−H (A(x, y), 1)|+ |H (1, Bn(x, y))−H (1, B(x, y))| .

The assertion now follows directly from the continuity of H.

7.4 Remarks on the composition of copulas

Since every copula is also the restriction of a bivariate d.f. to the unit square, it
is natural to study also induced pointwise binary operations on C. Note that the
function H(x, y) = λx+ (1− λ)y induces pointwise a binary operation on C, which is
a convex set.
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Proposition 7.4.1. If H : [0, 1]2 → [0, 1] induces pointwise a binary operation ρ on
C, then H is idempotent.

Proof. Suppose that there exists a binary aggregation operator H that induces point-
wise a binary operation ρ on C, namely, for all A and B in C,

ρ(A,B)(x, y) = H(A(x, y), B(x, y))

is a copula. It can be easily proved that ρ(A,B) satisfies the boundary conditions
(C1) if, and only if, H(x, x) = x for all x in [0, 1].

In particular, no copula induces pointwise a binary operation on C: in fact, M is
the only idempotent copula but the minimum of two copulas need not be a copula
(see Example 2.3.2).

Because the P–increasing property preserves the 2–increasing property, we have
that, if H is a P–increasing and idempotent agop, then H induces pointwise a binary
operation on copulas. However, this procedure is not useful in view of the following
result.

Proposition 7.4.2. Let A be a binary aggregation operator such that A(x, x) ≥ x for
every x ∈ [0, 1]. Then A is P–increasing if, and only if, there exists a ∈ [0, 1] such
that A(x, y) = ax+ (1− a)y.

Proof. Let A be a P–increasing agop such that A(x, x) ≥ x for every x ∈ [0, 1].
In particular, on account of Theorem 7.1.2, A is 2–increasing and its horizontal and
vertical sections are convex. Set a := A(1, 0) and b := A(0, 1) and notice that a+b ≤ 1.

In view of the 2–increasing property, for every y ∈ [0, 1] we have

A(0, y) +A(y, 1) ≥ A(y, y) +A(0, 1) ≥ y + b, (7.7)

and, from the convexity of y 7→ A(0, y),

A(0, y) ≤ yA(0, 1) + (1− y)A(0, 0) = by.

Therefore, connecting the two inequalities above, we obtain A(y, 1) ≥ y + (1 − y)b.
On the other hand, from the convexity of y 7→ A(y, 1),

A(y, 1) ≤ yA(1, 1) + (1− y)A(0, 1) = y + (1− y)b,

viz. A(y, 1) = y + (1− y)b. Analogously A(1, y) = (1− a)y + a.
From (7.7), it follows also that

A(0, y) ≥ y + b− (1− b)y − b = by

and, because A(0, y) ≤ yA(0, 1) = by, we have A(0, y) = by. In the same manner,
A(x, 0) = ax.
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Now, because A is 2–increasing, for every y ≥ x, we have

A(x, y) ≥ A(x, 1) +A(y, y)−A(y, 1) ≥ (1− b)x+ by

and
A(x, y) ≤ A(x, 1) +A(0, y)− b = (1− b)x+ by,

viz. A(x, y) = (1 − b)x + by. In the same manner, for every x ≥ y, we obtain
A(x, y) = ax+ (1− a)y.

Finally, notice that

A(x, 1/2) =

(1− b)x+ b/2, if x ≤ 1/2;

ax+ (1− a)/2, if x > 1/2;

and, from the convexity of x 7→ A(x, 1/2), we have

A

(
1
2
,
1
2

)
≤ 1

2
A

(
0,

1
2

)
+

1
2
A

(
1,

1
2

)
,

which is equivalent to a + b ≥ 1. Therefore a + b = 1 and, for every (x, y) ∈ [0, 1]2,
A(x, y) = ax+ (1− a)y.

Corollary 7.4.1. Let A be a P–increasing agop. The following statements are equiv-
alent:

(a) A is idempotent;

(b) there exists a ∈ [0, 1] such that A(x, y) = ax+ (1− a)y.

Thus, in the class of copulas, the characterization of induced pointwise operation
is still an open problem.


