Chapter 4
A new family of PQD copulas

In this chapter we introduce a new class of bivariate copulas, depending on a
univariate function, that includes some already known families. This class is charac-
terized in section 4.1, where a probabilistic interpretation is given, and its properties
(dependence, measures of association, symmetries, associativity, absolute continuity)
are studied in detail in section 4.2. Section 4.3 is devoted to the introduction of a
similar class in the set of quasi—copulas.

The contents of this chapter can be also found in [36, 42, 43].

4.1 Characterization of the new class

Let f be a mapping from [0, 1] into [0,1]. Consider the function Cy given, for
every z,y € [0,1], by
Cilx,y) == (x Ay) flzVy). (4.1)

It is obvious that every C is symmetric and the copulas II and M are of this type:
it suffices to take, respectively, f(¢t) = t and f(¢t) = 1 for all ¢ € [0,1]. Our aim
is to study under which conditions on f, Cf is a copula. Notice that, in view of
the properties (1.9) and (1.10) of a copula, it is quite natural to require that f is
increasing and continuous and, then, simple considerations of real analysis imply that
f is differentiable almost everywhere on [0, 1] and the left and right derivatives of f
exist for every x € [0, 1] and assume finite values. We aim to characterize the copulas
of type (4.1).

Lemma 4.1.1. Let f:[0,1] — [0,1] be a continuous and increasing function, differ-

entiable except at finitely many points. The following statements are equivalent:
(a) for every s, t €]0,1], with s <t, sf(s) +tf(t) —2sf(t) > 0;

(b) the function t — f(t)/t is decreasing on ]0,1].
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Proof. (a) = (b): Let s; (i = 1,2,...,n) be the points in [0,1] such that f'(s;") #
f'(s;). Set so := 0 and s,41 := 1. For every i € {0,1,...,n}, let s and ¢ be in
]8i, Si+1], 8 < t. The inequality

sf(s) +tf(t) —2sf(t) 2 0

is equivalent to

FO) o f0) = f(s)
s t—s

In the limit ¢ | s, we have f(s) > sf’(s). It follows that

(f(8)>' _sfs) = fls)

s 52 -

viz. t — f(t)/t is decreasing in each interval |s;, s;11[, (¢ =0,1,...,n). But f(¢)/t is
continuous and, therefore, it is decreasing on the whole ]0, 1].
(b) = (a): Let s,t be in ]0,1], with s < t. Then

OO
s Tt
is equivalent to
fs)  1(0) ~ £(s)
s = t—s

and, because f is increasing,

viz. condition (a). O

Theorem 4.1.1. Let f: [0,1] — [0,1] be a differentiable function (except at finitely
many points). Let Cy be the function defined by (4.1). Then Cy is a copula if, and
only if, the following statements hold:

i) f) =1
(ii) f is increasing;
(iii) the function t — f(t)/t is decreasing on |0, 1].

Proof. It is immediate that C satisfies the boundary conditions (C1) if, and only if,
f(1) = 1. We now prove that Cy is 2-increasing if, and only if, (ii) and (iii) hold. Let
x,2',y,y" be in [0,1] with < 2’ and y < y’. First, we suppose that the rectangle
[z,2'] X [y,y'] is a subset of A (see notations (1.12)). Then

Vo(lz, 2] x [y,y']) = (o —y) (f(&') = f(z)) = 0

if, and only if, f is increasing. Analogously, the 2-increasing property is equivalent

to (ii) for rectangles contained in A_. If, instead, the diagonal of [z, 2'] x [y, /] lies
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on the diagonal {(z,y) € [0, 1]2 :y = x} of the unit square, then z = y and 2/ = ¢/

and, in view of Lemma 4.1.1,
Vo(lz, 2] x [x,2]) = xf (x) + 2" f(2) — 22 f(2") > 0
if, and only if, (iii) holds. Now, the assertion follows from Proposition 1.6.1. O

A function f that satisfies the assumptions of Theorem 4.1.1 is called generator
of a copula of type (4.1). In particular, the class of generators is convex and, because
of condition (iii), it has minimal element idjy;; and maximal element the constant
function equal to 1. Note that f : [0,1] — [0, 1] satisfies condition (iii) of Theorem
4.1.1 if, and only if, f is star—shaped, i.e., f(az) > af(x) for all o € [0, 1]. Moreover,
every concave function satisfies (iii) (these results can also be found in [103, Chap.

16]). Now, we give a probabilistic interpretation of the generators.

Proposition 4.1.1. Let U and V be r.v.’s uniformly distributed on [0, 1] with copula
Cy of type (4.1). Then

f@)=Pmax{U,V}<t|U<t).
Proof. For every t in [0, 1], we have
Clt,t)=tft) =P U <tV <t),

and
Pmax{U,V} <t|U<t)= ZW = f(t),

namely the assertion. O

In the sequel we give some sub—classes of copulas {C,} of type (4.1) generated by
a one—parameter family {f,}.

Example 4.1.1 (Fréchet copulas). Given f,(t) := at+ (1 —«a) («a € [0, 1]), we obtain
Co = oIl + (1 — o) M, which is a convex sum of IT and M and, therefore, is a member
of the Fréchet family of copulas (see Example 1.6.2) (see, also, family (B11) in [74]).
Notice that Co = M and C; = II.

Example 4.1.2 (Cuadras—-Augé copulas). Given f,(t) = t* (a € [0,1]), Cy, is
defined by

o Ty, if x <wy;
Calz,y) = (xAy)(zVy)* =

(0%

%y, ifx>y.

Then C,, describes the Cuadras—Augé family of copulas (see Example 1.6.4). Notice
that Cop = M and Cy =11.
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Example 4.1.3. Given f,(¢) := min (at,1) (o > 1), Cy, is defined by

azy, if (z,y) €[0,1/a]*;
Co(z,y) = (x Ay) min{a(z Vy),1} = Yy (z,y) €0,1/0]

T AY, otherwise;
viz. Cy, is the ordinal sum ({0, 1/, II)). Notice that Cy = II and Cs = M, where, if
g(z) =lim fo(v) as @ — +00 and z € ]0,1], Coo = Cy.

Example 4.1.4. Given the function f,(t) := cexp(t*/a), where a > 0 and ¢ =
exp(—1/a), we obtain the following family

crexp(y*/a), if z <y;
C’a(x,y) = .
cy exp(z®/a), if x > y.

Example 4.1.5. The function f,(t) := == sin (at) (a € ]0,7/2]) is increasing with

sin

fa(t)/t decreasing on )0, 1], as is easily proved. Therefore, Theorem 4.1.1 ensures that

x

Calw,y) = ¢ °
sin

sin (ay) , if x <y

sin (ax), ifx>y.
is a copula.

For a copula C; of type (4.1) the following result holds (see [100] for details).

Theorem 4.1.2. If Cy is the copula given by (4.1) and H(z,y) = Cf(Fi(x), F2(y))

for univariate d.f.’s F1 and Fy, then the following statements are equivalent:
(a) random variables X andY with joint d.f. H have a representation of the form
X = max{R, W} and Y = max{S, W}
where R, S and W are independent r.v.’s;

(b) H has the form H(z,y) = Fr(x)Fs(y)Fw(x Ay), where Fr, Fs and Fyw are
univariate d.f.’s.
4.2 Properties of the new class
In this section we give the most important properties of a copula C of type (4.1).

4.2.1 Concordance order

Proposition 4.2.1. Let Cy and Cy be two copulas of type (4.1). Then Cy < Cy if,
and only if, f(t) < g(t) for allt €0, 1].
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In particular, for every copula Cy, II < Cy < M and, therefore, every Cy is
positively quadrant dependent.

Example 4.2.1. Consider the family {f.} (o > 1), given by fo(t) :=1—(1—¢)*. It
is easily proved by differentation that every f, is increasing with f,(¢)/t decreasing
on ]0,1]. Therefore, this family generates a family of copulas C,, that is positively
ordered, with C; =1l and C, = M.

Example 4.2.2. Consider the family of copulas generated by the function f,(¢) :=
(14 a)t/(at + 1) for every o > 0. This family is positively ordered with Cy = IT and
Coo =M.

4.2.2 Dependence concepts

Theorem 4.2.1. Let (X,Y) be a continuous random pair with copula C¢. Then
(a) Y is left tail decreasing in X ;
(b) Y is stochastically increasing in X if, and only if, f' is decreasing a.e. on [0, 1];
(¢) X and Y are left corner set decreasing.

Proof. In order to prove LTD(Y|X), according to Proposition 1.7.2 it suffices to
notice that, for every (z,y) € [0,1]°

Cylz,y) _ ) TW), if z <y;
z yf(x)7 if x > y;
x

is decreasing in x.

Property SI(Y|X) follows from Proposition 1.7.3, observing that 9,C is decreas-
ing in the first place if, and only if, f is decreasing a.e. on [0, 1].

In order to prove (c¢), because of Proposition 1.7.4, it suffices to prove that, for all
z, 2’ y,y" in [0,1], with z < 2’ and y < ¢/,

Cy(x,9)Cs (2, y") > Cf(2,y")Cr(2',y) > 0. (4.2)

Because f(t)/t is decreasing and C is symmetric, inequality (4.2) follows easily from
simple calculations on rectangles [z, 2] X [y, y'] that have 4, 3 or 2 vertices in the set
A . For instance, if [z, 2'] X [y,y'] has only two vertices, say (z,y) and (2',y) in A4,
then (4.2) holds if, and only if, 2’ f(x) > x f(z'), viz. f(t)/t is decreasing. O

The following result for the tail dependence holds.

Proposition 4.2.2. Let C be a copula of type (4.1). Then, the lower tail dependence
of Cy is f(0T) and the upper tail dependence of Cy is 1 — f/(17).
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Proof. The diagonal section of Cy is dc,(t) = tf(t). Therefore, from Proposition
1.7.5, we have A\, = 6 (01) = f(0T) and Ay =2 —6(17) =1— f'(17). O

Remark 4.2.1. As noted, a copula of type (4.1) is PQD and, therefore, it is suitable
to describe positive dependence of a random vector (X,Y"). However, it is very simple
to introduce a copula to describing, for example, the (negative) dependence of the

random vector (X, —Y"). It suffices to consider the copula C({l given by

z(1—f(1—y)), ifex+y<1;

Cialz,y) =z —Cla,1—y) =
ot z—(1—y)f(x), otherwise.

4.2.3 Measures of association

Theorem 4.2.2. The values of several measures of association of C'y are, respectively,

given by

1 1
TC:4/ zf?(z)de — 1, pC:12/ 22 f(z)dx — 3,
0 0

1/2 1
’Yc—4</0 2 [f(@) + F(1— )] do + f(w)dﬂf>2,

1/2
1
fo =21/ =1, o =6 [ af)ds -2
0
Proof. In view of Theorem 1.8.1, the Kendall’s tau of C; is given by

1ol
Tc=1- 4/ / 0,C(z,y)0,C(z,y) dr dy.
o Jo

Now, we have

1 .1
//@C(m,y)ay(?(sc,y)dxdy

0 JO

— /01 dy/oyxf(y)f'(y) dx+/01 d:c/omyf(fﬂ)f’(fc) dy
= /1 ? f(x)f (z) do = % - /Olmfz(:c) dr,

0
where the last equality is obtained through integration by parts. Then

1
TC:4/ zf*(x)dr — 1.
0

From Theorem 1.8.2, Spearman’s rho is given by:

11
pc = 12/ / C(z,y)dzdy —3
o Jo

12/01dy/0ya:f(y)dx+/01da:Axyf(a:)dy -3
1

12/ 22 f(x)dr — 3.

0
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Following Theorem 1.8.3, we have

1 1
Yo = 4(/0 C(x,l—x)dx—/o (x—C(x,a:))dm)
1/2 1/2
= 4</O zf(lfx)dx—/o [x — xf(x)] dz)
1 1
v amorw = [ )
1/2 1 1
_ 4(/0 2@+ S0 et [ g —2>
1/2 1
- 4(/0 2 [f(@) + f(1— )] do + 1/2f(a:)dx> 9,
The expressions of S¢ and p¢ follow easily from Theorems 1.8.4 and 1.8.5. U

As an application of Theorem 4.2.2, the measures of association for the copulas in
Examples 1.6.2 and 1.6.4 can be easily given:

— If C is a copula of the Fréchet family, then

oa—1)(aa—3
02%7 pc=1—a=v=vc.

— If C is a Cuadras—Augé copula, then

_1—a 3 —3a 2 -2«
T 1l4a’ N '

TC

4.2.4 Symmetry properties
Theorem 4.2.3. Let (X,Y) be continuous r.v.’s with copula Cy.
(a) If X and Y are identically distributed, then X andY are exchangeable.

(b) If X andY are symmetric about a and b, respectively (a,b € R), then (X,Y) is
radially symmetric about (a,b) if, and only if, Cy = oIl + (1 — a)M for some
a € [0,1].

(¢) If X andY are symmetric about a and b, respectively (a,b € R), then (X,Y) is
jointly symmetric about (a,b) if, and only if, Cy =IL

Proof. Statement (a) is a consequence of the symmetry of C'y. From Proposition 1.6.3,

statement (b) holds if, and only if, C'; satisfies the following functional equation:
Y,y € [0,1] Ci(z,y)=c4+y—1+C;(1—2z,1—y). (4.3)
But, equality (4.3) is equivalent to

Ay flzvy)=z+y—1+[1—(Vylf[l-(zAY)];
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in particular, for all y € [z, 1], we have

rf(y) =z+y—-1+1-y)f(1-2)

—c(1-fy)+A-y)fl-z)=1-y
:>33~1_7f(y)+f(1—x):1:>f(1—x):1—

fly) -1

y—1
In the limit y T 1, we can derive
1—f(y)
L-y

where f'(17) is a real number in [0, 1]. Thus f(1—z) = 1—cx, i.e. f(x) =cx+(1—c),
which corresponds to the family Cy = cIll 4+ (1 — ¢) M.

From Proposition 1.6.3, (X,Y) is jointly symmetric about (a, b) if, and only if, for
all (z,y) € [0,1]?

— f/(17),

Crlz,y) =2 —C(z,1-y)  and  Cy(z,y) =y —Cp(l —2,y). (4.4)
In particular, for 2 =y, we obtain
vrel0,1] af()=z—[zA(l—2)]flzV(1-2),
which implies
Ve e [1/2,1] xf(z) =2 — (1 —x)f(x),
Vze[0,1/2]  zf(z)=z—xf(1—1),

viz. f(z) =« on [0,1], which corresponds to Cy = II. O

4.2.5 Associativity

Lemma 4.2.1. Let C; be a copula of type (4.1). Then Cy is Archimedean if, and
only if, Cy =1L

Proof. If Cy is an Archimedean copula, then, there exists a convex function ¢ :
[0,1] — [0,+00], which is continuous and strictly increasing, ©(1) = 0, such that
C(x,y) = o= (p(2) + ¢(y)). In view of Theorem 1.6.8,

_ 2
99 =¢'(y) B a.e. on [0,1]".

¢ (x)
In particular, if x = y, we obtain ¢'(x) -z f'(x) = ¢'(x) - f(x), which leads to z f'(z) =
f(x). In the class of the generators of a copula of type (4.1), this differential equation

has as unique solution the function f(z) =z, viz. Cy =1L O

Theorem 4.2.4. Let C; be a copula of type (4.1). Then Cy is associative if, and
only if, Cy is an ordinal sum of type ((0,a,II)) with a € [0,1].
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Proof. First, notice that every ordinal sum of type ((0,a,II)) is associative and it is
generated by the function f(t) = min{t/a,1}.

Conversely, let Cy be an associative copula. As asserted in Theorem 1.6.9, the
representation of Cy depends on the set Ip of idempotent elements of C, given by
Ip := {0} U [a,1], where o := inf{t € [0,1] : f(t) = 1}. If Ip = {0,1}, then C}
is Archimedean and, therefore, Lemma 4.2.1 ensures that Cy = IT = ((0,1,1II)). If
Ip = [0,1], then Cy = M = ((0,0,1II)). Otherwise, C is an ordinal sum of type
({(0,a, D)) for a suitable Archimedean copula D. Therefore, if ¢ is a generator of D,
for all z,y in [0, al,

Cp(wy) =ae ™ (¢ (2) +0(Y)).
a a
Hence, applying the chain rule to ¢(C¢(z,y)/a) = ¢(z/a) + ¢(y/a), we obtain

Lpl(Cf(x,y)) 0Cy(x,y) ::¢/(m), w/(CU(wvy)) 0Cy(z,y) :(p,(y).

a oz a dy a

a

Therefore, a.c. on [0, 1], we have

o (5) o (1) e

An argument similar to the proof of Lemma 4.2.1 gives D = II, as asserted. O

4.2.6 Absolute continuity
Proposition 4.2.3. The only absolutely continuous copula of type (4.1) is II.
Proof. Let Cy be a copula of type (4.1). If C; is absolutely continuous, then

1l 520 Lot
1=Cf(1,1 :/ dxdy:/ / f(xVy)dzdy.
£(1,1) L), azay o, (zVy)

It follows that ) )
1 / ds/ f(s)dt = / sf'(s)ds;
2 Jo 0 0

integrating by parts, we have
1
1
/ fl@)de = =.
0 2

The function f(z) = z is a solution of the above equation and, because all functions

generating a copula of type (4.1) are greater than idj y), it follows that idg ;) is the
only solution in this class. O

Remark 4.2.2. Let C be a copula of type (4.1), C # II. Consider the first derivative
of Cf

fy), if v <y;

01C¢(z,y) =
! y- f(x), otherwise.
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For a fixed o, the mapping t — 01C(t, yo) has a jump discontinuity in yo, and, thus,
Cy has a singular component along the main diagonal of the unit square. By using

[74, Theorem 1.1], the mass of this singular component is given by

m:/ol(f(x)—xf'(x)) dxz?-/olf(x)dx —1.

This m has a graphical interpretation if f admits an inverse: in fact, m is the area of
the region of the unit square between the graph of f and the graph of f~!.

4.3 A similar new class of quasi—copulas

Given a function f : [0,1] — [0, 1], we are also interested in studying under which

conditions on f, the following function

Qf(z,y) :==(xAy) f(zVy), forall (z,y) €0, 1]2, (4.5)
is a quasi—copula. The following result provides a characterization.

Theorem 4.3.1. Let f : [0,1] — [0,1] be a continuous function and let Q be defined
by (4.5). Then Qg is a quasi—copula if, and only if, the three following statements
hold:

i f) =1

(ii) f is increasing;

flz2) = flz1)
To — X1

Proof. First, observe that @y satisfies (Q1) if, and only if, f(1) = 1 and Qy satisfies

(Q2) if, and only if, (ii) holds. In order to prove that Qs satisfies (Q3), let z1, 22 and

y be three points in [0, 1] with 1 < xo. We distinguish three cases. If 21 < x5 < y,
then

(iii) =y - <1 for every x1,z2 € [0,1], with x1 < z2.

Qf(22,y) — Qp(z1,y) = 22f(y) —21f(y) <22 — 71
because f < 1. If y < 21 < 22, then

Y
31‘1(

Qf(w2,y) — Qf(r1,y) =y (f(x2) — f(21)) <

o —x1) < o — 11

if, and only if, (iii) holds. Finally, if 1 <y < x4, in view of the two above cases we

obtain

Qr(r2,y) — Q(w1,y) = (Qf(x2,y) — Qs (y,y) + (Qr(y,y) — Q(x1,¥))

< (x2 —x1)

if, and only if, (iii) holds. In every case, (iii) is a necessary and sufficient condition
that ensures that Qs satisfies (1.10). O



Chap. 4 A new family of PQD copulas 79

Corollary 4.3.1. Let f : [0,1] — [0,1] be a differentiable function and let Qy be
defined by (4.5). Then Qy is a quasi—copula if, and only if, the three following state-
ments hold:

i) f) =1
(ii) f is increasing;
(iii) xf'(x) <1 for every z € [0,1].
Notice that if Q; is a copula, then ¢ s f(£)/¢ is decreasing and
flzz) = flan) _ flz1)

T2 — X1 T

for every x1,x2 € [0,1], with 21 < x2, from which the condition (iii) of Theorem 4.3.1
follows, viz. Q¢ is a quasi—copula. The converse implication need not be true, as the
following example shows.

Example 4.3.1. Consider the function f(t) := ¢+ 2 — 3 on [0,1]. So, f satisfies
the assumptions of Theorem 4.3.1, viz. f/'(t) < 1/t on [0,1], but f(¢)/t is increasing
on [0,1/2]. So Qy is a proper quasi-copula. Another (not everywhere) differentiable
function g, which leads to a proper quasi—copula, is given by

z, if z €[0,1/4];
g(x) = { 20 —1/4, if 7 €1/4,1/2[;
(x+1)/2, if x € [1/2,1].

We have ¢'(z) < 1/z and thus @, is a quasi-copula; however, h(z) := g(z)/x is not
decreasing (e.g. h(1/4) =1 but h(1/2) = 3/2).






