Chapter 4

A new family of PQD copulas

In this chapter we introduce a new class of bivariate copulas, depending on a univariate function, that includes some already known families. This class is characterized in section 4.1, where a probabilistic interpretation is given, and its properties (dependence, measures of association, symmetries, associativity, absolute continuity) are studied in detail in section 4.2. Section 4.3 is devoted to the introduction of a similar class in the set of quasi-copulas.

The contents of this chapter can be also found in [36, 42, 43].

4.1 Characterization of the new class

Let f be a mapping from [0, 1] into [0, 1]. Consider the function C_f given, for every $x, y \in [0, 1]$, by

$$C_f(x,y) := (x \wedge y) f(x \vee y). \tag{4.1}$$

It is obvious that every C_f is symmetric and the copulas Π and M are of this type: it suffices to take, respectively, f(t) = t and f(t) = 1 for all $t \in [0, 1]$. Our aim is to study under which conditions on f, C_f is a copula. Notice that, in view of the properties (1.9) and (1.10) of a copula, it is quite natural to require that f is increasing and continuous and, then, simple considerations of real analysis imply that f is differentiable almost everywhere on [0, 1] and the left and right derivatives of fexist for every $x \in [0, 1]$ and assume finite values. We aim to characterize the copulas of type (4.1).

Lemma 4.1.1. Let $f : [0,1] \rightarrow [0,1]$ be a continuous and increasing function, differentiable except at finitely many points. The following statements are equivalent:

- (a) for every $s, t \in [0, 1]$, with $s \le t$, $sf(s) + tf(t) 2sf(t) \ge 0$;
- (b) the function $t \mapsto f(t)/t$ is decreasing on [0, 1].

Proof. $(a) \Rightarrow (b)$: Let s_i (i = 1, 2, ..., n) be the points in [0, 1] such that $f'(s_i^+) \neq f'(s_i^-)$. Set $s_0 := 0$ and $s_{n+1} := 1$. For every $i \in \{0, 1, ..., n\}$, let s and t be in $[s_i, s_{i+1}], s < t$. The inequality

$$sf(s) + tf(t) - 2sf(t) \ge 0$$

is equivalent to

$$\frac{f(t)}{s} \ge \frac{f(t) - f(s)}{t - s}.$$

In the limit $t \downarrow s$, we have $f(s) \ge sf'(s)$. It follows that

$$\left(\frac{f(s)}{s}\right)' = \frac{sf'(s) - f(s)}{s^2} \le 0$$

viz. $t \mapsto f(t)/t$ is decreasing in each interval $]s_i, s_{i+1}[, (i = 0, 1, ..., n)]$. But f(t)/t is continuous and, therefore, it is decreasing on the whole]0, 1]. (b) \Rightarrow (a): Let s, t be in]0, 1], with s < t. Then

$$\frac{f(s)}{s} \ge \frac{f(t)}{t}$$

is equivalent to

$$\frac{f(s)}{s} \ge \frac{f(t) - f(s)}{t - s},$$

and, because f is increasing,

$$\frac{f(t)}{s} \ge \frac{f(t) - f(s)}{t - s},$$

viz. condition (a).

Theorem 4.1.1. Let $f : [0,1] \to [0,1]$ be a differentiable function (except at finitely many points). Let C_f be the function defined by (4.1). Then C_f is a copula if, and only if, the following statements hold:

- (i) f(1) = 1;
- (ii) f is increasing;
- (iii) the function $t \mapsto f(t)/t$ is decreasing on [0, 1].

Proof. It is immediate that C_f satisfies the boundary conditions (C1) if, and only if, f(1) = 1. We now prove that C_f is 2-increasing if, and only if, (ii) and (iii) hold. Let x, x', y, y' be in [0, 1] with $x \leq x'$ and $y \leq y'$. First, we suppose that the rectangle $[x, x'] \times [y, y']$ is a subset of Δ_+ (see notations (1.12)). Then

$$V_C([x, x'] \times [y, y']) = (y' - y) (f(x') - f(x)) \ge 0$$

if, and only if, f is increasing. Analogously, the 2-increasing property is equivalent to (ii) for rectangles contained in Δ_- . If, instead, the diagonal of $[x, x'] \times [y, y']$ lies

on the diagonal $\{(x, y) \in [0, 1]^2 : y = x\}$ of the unit square, then x = y and x' = y' and, in view of Lemma 4.1.1,

$$V_C([x, x'] \times [x, x']) = xf(x) + x'f(x') - 2xf(x') \ge 0$$

if, and only if, (iii) holds. Now, the assertion follows from Proposition 1.6.1. \Box

A function f that satisfies the assumptions of Theorem 4.1.1 is called generator of a copula of type (4.1). In particular, the class of generators is convex and, because of condition (iii), it has minimal element $id_{[0,1]}$ and maximal element the constant function equal to 1. Note that $f : [0,1] \rightarrow [0,1]$ satisfies condition (iii) of Theorem 4.1.1 if, and only if, f is star-shaped, i.e., $f(\alpha x) \ge \alpha f(x)$ for all $\alpha \in [0,1]$. Moreover, every concave function satisfies (iii) (these results can also be found in [103, Chap. 16]). Now, we give a probabilistic interpretation of the generators.

Proposition 4.1.1. Let U and V be r.v.'s uniformly distributed on [0,1] with copula C_f of type (4.1). Then

$$f(t) = P\left(\max\{U, V\} \le t \mid U \le t\right).$$

Proof. For every t in [0, 1], we have

$$C(t,t) = tf(t) = P\left(U \le t, V \le t\right),$$

and

$$P(\max\{U, V\} \le t \mid U \le t) = \frac{P(U \le t, V \le t)}{P(U \le t)} = f(t),$$

namely the assertion.

In the sequel we give some sub-classes of copulas $\{C_{\alpha}\}$ of type (4.1) generated by a one-parameter family $\{f_{\alpha}\}$.

Example 4.1.1 (Fréchet copulas). Given $f_{\alpha}(t) := \alpha t + (1 - \alpha)$ ($\alpha \in [0, 1]$), we obtain $C_{\alpha} = \alpha \Pi + (1 - \alpha)M$, which is a convex sum of Π and M and, therefore, is a member of the Fréchet family of copulas (see Example 1.6.2) (see, also, family (B11) in [74]). Notice that $C_0 = M$ and $C_1 = \Pi$.

Example 4.1.2 (Cuadras–Augé copulas). Given $f_{\alpha}(t) := t^{\alpha}$ ($\alpha \in [0,1]$), C_{α} is defined by

$$C_{\alpha}(x,y) = (x \wedge y)(x \vee y)^{\alpha} = \begin{cases} xy^{\alpha}, & \text{if } x \leq y; \\ x^{\alpha}y, & \text{if } x > y. \end{cases}$$

Then C_{α} describes the Cuadras–Augé family of copulas (see Example 1.6.4). Notice that $C_0 = M$ and $C_1 = \Pi$.

Example 4.1.3. Given $f_{\alpha}(t) := \min(\alpha t, 1)$ $(\alpha \ge 1), C_{\alpha}$ is defined by

$$C_{\alpha}(x,y) = (x \wedge y) \min\{\alpha(x \vee y), 1\} = \begin{cases} \alpha xy, & \text{if } (x,y) \in [0, 1/\alpha]^2; \\ x \wedge y, & \text{otherwise;} \end{cases}$$

viz. C_{α} is the ordinal sum $(\langle 0, 1/\alpha, \Pi \rangle)$. Notice that $C_1 = \Pi$ and $C_{\infty} = M$, where, if $g(x) = \lim f_{\alpha}(x)$ as $\alpha \to +\infty$ and $x \in [0, 1]$, $C_{\infty} := C_g$.

Example 4.1.4. Given the function $f_{\alpha}(t) := c \exp(t^{\alpha}/\alpha)$, where $\alpha > 0$ and $c = \exp(-1/\alpha)$, we obtain the following family

$$C_{\alpha}(x,y) = \begin{cases} cx \exp(y^{\alpha}/\alpha), & \text{if } x \le y; \\ cy \exp(x^{\alpha}/\alpha), & \text{if } x > y. \end{cases}$$

Example 4.1.5. The function $f_{\alpha}(t) := \frac{1}{\sin \alpha} \sin(\alpha t)$ ($\alpha \in [0, \pi/2]$) is increasing with $f_{\alpha}(t)/t$ decreasing on [0, 1], as is easily proved. Therefore, Theorem 4.1.1 ensures that

$$C_{\alpha}(x,y) = \begin{cases} \frac{x}{\sin \alpha} \sin(\alpha y), & \text{if } x \le y; \\ \frac{y}{\sin \alpha} \sin(\alpha x), & \text{if } x > y. \end{cases}$$

is a copula.

For a copula C_f of type (4.1) the following result holds (see [100] for details).

Theorem 4.1.2. If C_f is the copula given by (4.1) and $H(x, y) = C_f(F_1(x), F_2(y))$ for univariate d.f.'s F_1 and F_2 , then the following statements are equivalent:

(a) random variables X and Y with joint d.f. H have a representation of the form

 $X = \max\{R, W\} \qquad and \qquad Y = \max\{S, W\}$

where R, S and W are independent r.v.'s;

(b) *H* has the form $H(x, y) = F_R(x)F_S(y)F_W(x \wedge y)$, where F_R , F_S and F_W are univariate d.f.'s.

4.2 Properties of the new class

In this section we give the most important properties of a copula C_f of type (4.1).

4.2.1 Concordance order

Proposition 4.2.1. Let C_f and C_g be two copulas of type (4.1). Then $C_f \leq C_g$ if, and only if, $f(t) \leq g(t)$ for all $t \in [0, 1]$.

In particular, for every copula C_f , $\Pi \leq C_f \leq M$ and, therefore, every C_f is positively quadrant dependent.

Example 4.2.1. Consider the family $\{f_{\alpha}\}$ $(\alpha \geq 1)$, given by $f_{\alpha}(t) := 1 - (1-t)^{\alpha}$. It is easily proved by differentiation that every f_{α} is increasing with $f_{\alpha}(t)/t$ decreasing on]0, 1]. Therefore, this family generates a family of copulas C_{α} , that is positively ordered, with $C_1 = \Pi$ and $C_{\infty} = M$.

Example 4.2.2. Consider the family of copulas generated by the function $f_{\alpha}(t) := (1+\alpha)t/(\alpha t+1)$ for every $\alpha \ge 0$. This family is positively ordered with $C_0 = \Pi$ and $C_{\infty} = M$.

4.2.2 Dependence concepts

Theorem 4.2.1. Let (X, Y) be a continuous random pair with copula C_f . Then

- (a) Y is left tail decreasing in X;
- (b) Y is stochastically increasing in X if, and only if, f' is decreasing a.e. on [0, 1];
- (c) X and Y are left corner set decreasing.

Proof. In order to prove LTD(Y|X), according to Proposition 1.7.2 it suffices to notice that, for every $(x, y) \in [0, 1]^2$

$$\frac{C_f(x,y)}{x} = \begin{cases} f(y), & \text{if } x \le y; \\ \frac{yf(x)}{x}, & \text{if } x > y; \end{cases}$$

is decreasing in x.

Property SI(Y|X) follows from Proposition 1.7.3, observing that $\partial_x C_f$ is decreasing in the first place if, and only if, f' is decreasing a.e. on [0, 1].

In order to prove (c), because of Proposition 1.7.4, it suffices to prove that, for all x, x', y, y' in [0, 1], with $x \leq x'$ and $y \leq y'$,

$$C_f(x,y)C_f(x',y') \ge C_f(x,y')C_f(x',y) \ge 0.$$
(4.2)

Because f(t)/t is decreasing and C_f is symmetric, inequality (4.2) follows easily from simple calculations on rectangles $[x, x'] \times [y, y']$ that have 4, 3 or 2 vertices in the set Δ_+ . For instance, if $[x, x'] \times [y, y']$ has only two vertices, say (x, y) and (x', y) in Δ_+ , then (4.2) holds if, and only if, $x'f(x) \ge xf(x')$, viz. f(t)/t is decreasing.

The following result for the tail dependence holds.

Proposition 4.2.2. Let C_f be a copula of type (4.1). Then, the lower tail dependence of C_f is $f(0^+)$ and the upper tail dependence of C_f is $1 - f'(1^-)$.

Proof. The diagonal section of C_f is $\delta_{C_f}(t) = tf(t)$. Therefore, from Proposition 1.7.5, we have $\lambda_L = \delta'_C(0^+) = f(0^+)$ and $\lambda_U = 2 - \delta'_C(1^-) = 1 - f'(1^-)$.

Remark 4.2.1. As noted, a copula of type (4.1) is PQD and, therefore, it is suitable to describe positive dependence of a random vector (X, Y). However, it is very simple to introduce a copula to describing, for example, the (negative) dependence of the random vector (X, -Y). It suffices to consider the copula $C_{0,1}^f$ given by

$$C_{0,1}^f(x,y) := x - C(x,1-y) = \begin{cases} x(1-f(1-y)), & \text{if } x+y \le 1; \\ x - (1-y)f(x), & \text{otherwise.} \end{cases}$$

4.2.3 Measures of association

Theorem 4.2.2. The values of several measures of association of C_f are, respectively, given by

$$\tau_C = 4 \int_0^1 x f^2(x) \, dx - 1, \qquad \rho_C = 12 \int_0^1 x^2 f(x) \, dx - 3,$$

$$\gamma_C = 4 \left(\int_0^{1/2} x \left[f(x) + f(1-x) \right] \, dx + \int_{1/2}^1 f(x) \, dx \right) - 2,$$

$$\beta_C = 2f(1/2) - 1, \qquad \varphi_C = 6 \int_0^1 x f(x) \, dx - 2.$$

Proof. In view of Theorem 1.8.1, the Kendall's tau of C_f is given by

$$\tau_C = 1 - 4 \int_0^1 \int_0^1 \partial_x C(x, y) \partial_y C(x, y) \, dx \, dy.$$

Now, we have

$$\int_{0}^{1} \int_{0}^{1} \partial_{x} C(x, y) \partial_{y} C(x, y) \, dx \, dy$$

=
$$\int_{0}^{1} dy \int_{0}^{y} xf(y) f'(y) \, dx + \int_{0}^{1} dx \int_{0}^{x} yf(x) f'(x) \, dy$$

=
$$\int_{0}^{1} x^{2} f(x) f'(x) \, dx = \frac{1}{2} - \int_{0}^{1} xf^{2}(x) \, dx,$$

where the last equality is obtained through integration by parts. Then

$$\tau_C = 4 \int_0^1 x f^2(x) \, dx \, -1.$$

From Theorem 1.8.2, Spearman's rho is given by:

$$\rho_C = 12 \int_0^1 \int_0^1 C(x, y) \, dx \, dy - 3$$

= $12 \int_0^1 dy \int_0^y xf(y) \, dx + \int_0^1 dx \int_0^x yf(x) \, dy - 3$
= $12 \int_0^1 x^2 f(x) \, dx - 3.$

Following Theorem 1.8.3, we have

$$\begin{split} \gamma_C &= 4 \left(\int_0^1 C(x, 1-x) \, dx - \int_0^1 \left(x - C(x, x) \right) \, dx \right) \\ &= 4 \left(\int_0^{1/2} x f(1-x) \, dx - \int_0^{1/2} \left[x - x f(x) \right] \, dx \right) \\ &+ \int_{1/2}^1 (1-x) f(x) - \int_{1/2}^1 \left[x - x f(x) \right] \, dx \\ &= 4 \left(\int_0^{1/2} x \left[f(x) + f(1-x) \right] \, dx + \int_{1/2}^1 f(x) \, dx - \frac{1}{2} \right) \\ &= 4 \left(\int_0^{1/2} x \left[f(x) + f(1-x) \right] \, dx + \int_{1/2}^1 f(x) \, dx \right) - 2. \end{split}$$

The expressions of β_C and φ_C follow easily from Theorems 1.8.4 and 1.8.5.

As an application of Theorem 4.2.2, the measures of association for the copulas in Examples 1.6.2 and 1.6.4 can be easily given:

- If C is a copula of the Fréchet family, then

$$\tau_C = \frac{(\alpha - 1)(\alpha - 3)}{3}, \qquad \rho_C = 1 - \alpha = \gamma_C = \varphi_C.$$

- If C is a Cuadras–Augé copula, then

$$\tau_C = \frac{1-\alpha}{1+\alpha}, \qquad \rho_C = \frac{3-3\alpha}{3+\alpha}, \qquad \varphi_C = \frac{2-2\alpha}{2+\alpha}.$$

4.2.4 Symmetry properties

Theorem 4.2.3. Let (X, Y) be continuous r.v.'s with copula C_f .

- (a) If X and Y are identically distributed, then X and Y are exchangeable.
- (b) If X and Y are symmetric about a and b, respectively (a, b ∈ ℝ), then (X, Y) is radially symmetric about (a, b) if, and only if, C_f = αΠ + (1 − α)M for some α ∈ [0, 1].
- (c) If X and Y are symmetric about a and b, respectively $(a, b \in \mathbb{R})$, then (X, Y) is jointly symmetric about (a, b) if, and only if, $C_f = \Pi$.

Proof. Statement (a) is a consequence of the symmetry of C_f . From Proposition 1.6.3, statement (b) holds if, and only if, C_f satisfies the following functional equation:

$$\forall x, y \in [0, 1] \qquad C_f(x, y) = x + y - 1 + C_f(1 - x, 1 - y).$$
(4.3)

But, equality (4.3) is equivalent to

$$(x \land y)f(x \lor y) = x + y - 1 + [1 - (x \lor y)]f[1 - (x \land y)];$$

in particular, for all $y \in [x, 1]$, we have

$$\begin{aligned} xf(y) &= x + y - 1 + (1 - y)f(1 - x) \\ &\implies x (1 - f(y)) + (1 - y)f(1 - x) = 1 - y \\ &\implies x \cdot \frac{1 - f(y)}{1 - y} + f(1 - x) = 1 \Longrightarrow f(1 - x) = 1 - x \cdot \frac{f(y) - 1}{y - 1} \end{aligned}$$

In the limit $y \uparrow 1$, we can derive

$$\frac{1-f(y)}{1-y} \longrightarrow f'(1^-),$$

where $f'(1^-)$ is a real number in [0, 1]. Thus f(1-x) = 1-cx, i.e. f(x) = cx + (1-c), which corresponds to the family $C_f = c\Pi + (1-c)M$.

From Proposition 1.6.3, (X, Y) is jointly symmetric about (a, b) if, and only if, for all $(x, y) \in [0, 1]^2$

$$C_f(x,y) = x - C_f(x,1-y)$$
 and $C_f(x,y) = y - C_f(1-x,y).$ (4.4)

In particular, for x = y, we obtain

$$\forall x \in [0,1] \qquad xf(x) = x - [x \wedge (1-x)] f [x \vee (1-x)],$$

which implies

$$\begin{aligned} \forall x \in [1/2, 1] & xf(x) = x - (1 - x)f(x), \\ \forall x \in [0, 1/2] & xf(x) = x - xf(1 - x), \end{aligned}$$

viz. f(x) = x on [0, 1], which corresponds to $C_f = \Pi$.

4.2.5 Associativity

Lemma 4.2.1. Let C_f be a copula of type (4.1). Then C_f is Archimedean if, and only if, $C_f = \Pi$.

Proof. If C_f is an Archimedean copula, then, there exists a convex function φ : [0,1] \rightarrow [0,+ ∞], which is continuous and strictly increasing, $\varphi(1) = 0$, such that $C_f(x,y) = \varphi^{[-1]}(\varphi(x) + \varphi(y))$. In view of Theorem 1.6.8,

$$\varphi'(x) \ \frac{\partial C_f(x,y)}{\partial y} = \varphi'(y) \ \frac{\partial C_f(x,y)}{\partial x}$$
 a.e. on $[0,1]^2$.

In particular, if x = y, we obtain $\varphi'(x) \cdot xf'(x) = \varphi'(x) \cdot f(x)$, which leads to xf'(x) = f(x). In the class of the generators of a copula of type (4.1), this differential equation has as unique solution the function f(x) = x, viz. $C_f = \Pi$.

Theorem 4.2.4. Let C_f be a copula of type (4.1). Then C_f is associative if, and only if, C_f is an ordinal sum of type $(\langle 0, a, \Pi \rangle)$ with $a \in [0, 1]$.

Proof. First, notice that every ordinal sum of type $(\langle 0, a, \Pi \rangle)$ is associative and it is generated by the function $f(t) = \min\{t/a, 1\}$.

Conversely, let C_f be an associative copula. As asserted in Theorem 1.6.9, the representation of C_f depends on the set I_D of idempotent elements of C_f , given by $I_D := \{0\} \cup [a, 1]$, where $a := \inf\{t \in [0, 1] : f(t) = 1\}$. If $I_D = \{0, 1\}$, then C_f is Archimedean and, therefore, Lemma 4.2.1 ensures that $C_f = \Pi = (\langle 0, 1, \Pi \rangle)$. If $I_D = [0, 1]$, then $C_f = M = (\langle 0, 0, \Pi \rangle)$. Otherwise, C_f is an ordinal sum of type $(\langle 0, a, D \rangle)$ for a suitable Archimedean copula D. Therefore, if φ is a generator of D, for all x, y in [0, a],

$$C_f(x,y) = a \varphi^{[-1]} \left(\varphi\left(\frac{x}{a}\right) + \varphi\left(\frac{y}{a}\right) \right).$$

Hence, applying the chain rule to $\varphi(C_f(x,y)/a) = \varphi(x/a) + \varphi(y/a)$, we obtain

$$\varphi'\left(\frac{C_f(x,y)}{a}\right)\frac{\partial C_f(x,y)}{\partial x} = \varphi'\left(\frac{x}{a}\right), \quad \varphi'\left(\frac{C_f(x,y)}{a}\right)\frac{\partial C_f(x,y)}{\partial y} = \varphi'\left(\frac{y}{a}\right).$$

Therefore, a.e. on $[0,1]^2$, we have

$$\varphi'\left(\frac{x}{a}\right) \ \frac{\partial C_f(x,y)}{\partial y} = \varphi'\left(\frac{y}{a}\right) \ \frac{\partial C_f(x,y)}{\partial x}.$$

An argument similar to the proof of Lemma 4.2.1 gives $D = \Pi$, as asserted.

4.2.6 Absolute continuity

Proposition 4.2.3. The only absolutely continuous copula of type (4.1) is Π .

Proof. Let C_f be a copula of type (4.1). If C_f is absolutely continuous, then

$$1 = C_f(1,1) = \int_0^1 \int_0^1 \frac{\partial^2 C}{\partial x \partial y} \, dx \, dy = \int_0^1 \int_0^1 f'(x \lor y) \, dx \, dy$$

It follows that

$$\frac{1}{2} = \int_0^1 ds \int_0^s f'(s) \, dt = \int_0^1 s f'(s) \, ds;$$

integrating by parts, we have

$$\int_0^1 f(x) \, dx = \frac{1}{2}.$$

The function f(x) = x is a solution of the above equation and, because all functions generating a copula of type (4.1) are greater than $id_{[0,1]}$, it follows that $id_{[0,1]}$ is the only solution in this class.

Remark 4.2.2. Let C_f be a copula of type (4.1), $C \neq \Pi$. Consider the first derivative of C_f

$$\partial_1 C_f(x, y) = \begin{cases} f(y), & \text{if } x < y; \\ y \cdot f'(x), & \text{otherwise.} \end{cases}$$

For a fixed y_0 , the mapping $t \mapsto \partial_1 C_f(t, y_0)$ has a jump discontinuity in y_0 , and, thus, C_f has a singular component along the main diagonal of the unit square. By using [74, Theorem 1.1], the mass of this singular component is given by

$$m = \int_0^1 \left(f(x) - x f'(x) \right) \, dx = 2 \cdot \int_0^1 f(x) \, dx \, -1.$$

This m has a graphical interpretation if f admits an inverse: in fact, m is the area of the region of the unit square between the graph of f and the graph of f^{-1} .

4.3 A similar new class of quasi–copulas

Given a function $f:[0,1] \to [0,1]$, we are also interested in studying under which conditions on f, the following function

$$Q_f(x,y) := (x \land y) f(x \lor y), \text{ for all } (x,y) \in [0,1]^2,$$
(4.5)

is a quasi-copula. The following result provides a characterization.

Theorem 4.3.1. Let $f : [0,1] \to [0,1]$ be a continuous function and let Q_f be defined by (4.5). Then Q_f is a quasi-copula if, and only if, the three following statements hold:

(i)
$$f(1) = 1;$$

(ii) f is increasing;

(iii)
$$x_1 \cdot \frac{f(x_2) - f(x_1)}{x_2 - x_1} \le 1$$
 for every $x_1, x_2 \in [0, 1]$, with $x_1 < x_2$.

Proof. First, observe that Q_f satisfies (Q1) if, and only if, f(1) = 1 and Q_f satisfies (Q2) if, and only if, (ii) holds. In order to prove that Q_f satisfies (Q3), let x_1, x_2 and y be three points in [0, 1] with $x_1 < x_2$. We distinguish three cases. If $x_1 < x_2 \leq y$, then

$$Q_f(x_2, y) - Q_f(x_1, y) = x_2 f(y) - x_1 f(y) \le x_2 - x_1$$

because $f \leq 1$. If $y \leq x_1 < x_2$, then

$$Q_f(x_2, y) - Q_f(x_1, y) = y \cdot (f(x_2) - f(x_1)) \le \frac{y}{x_1} \cdot (x_2 - x_1) \le x_2 - x_1$$

if, and only if, (iii) holds. Finally, if $x_1 \leq y \leq x_2$, in view of the two above cases we obtain

$$Q_f(x_2, y) - Q_f(x_1, y) = (Q_f(x_2, y) - Q_f(y, y)) + (Q_f(y, y) - Q_f(x_1, y))$$

$$\leq (x_2 - x_1)$$

if, and only if, (iii) holds. In every case, (iii) is a necessary and sufficient condition that ensures that Q_f satisfies (1.10).

Corollary 4.3.1. Let $f : [0,1] \rightarrow [0,1]$ be a differentiable function and let Q_f be defined by (4.5). Then Q_f is a quasi-copula if, and only if, the three following statements hold:

- (i) f(1) = 1;
- (ii) f is increasing;
- (iii) $xf'(x) \leq 1$ for every $x \in [0, 1]$.

Notice that if Q_f is a copula, then $t \mapsto f(t)/t$ is decreasing and

$$\frac{f(x_2) - f(x_1)}{x_2 - x_1} \le \frac{f(x_1)}{x_1}$$

for every $x_1, x_2 \in [0, 1]$, with $x_1 < x_2$, from which the condition (iii) of Theorem 4.3.1 follows, viz. Q_f is a quasi-copula. The converse implication need not be true, as the following example shows.

Example 4.3.1. Consider the function $f(t) := t + t^2 - t^3$ on [0, 1]. So, f satisfies the assumptions of Theorem 4.3.1, viz. $f'(t) \leq 1/t$ on [0, 1], but f(t)/t is increasing on [0, 1/2]. So Q_f is a proper quasi-copula. Another (not everywhere) differentiable function g, which leads to a proper quasi-copula, is given by

$$g(x) = \begin{cases} x, & \text{if } x \in [0, 1/4]; \\ 2x - 1/4, & \text{if } x \in]1/4, 1/2[; \\ (x+1)/2, & \text{if } x \in [1/2, 1]. \end{cases}$$

We have $g'(x) \leq 1/x$ and thus Q_g is a quasi-copula; however, h(x) := g(x)/x is not decreasing (e.g. h(1/4) = 1 but h(1/2) = 3/2).