
Chapter 3

2–increasing aggregation

operators

The aim of this chapter is the study of the class of binary aggregation operators
(agops, for short) satisfying the 2–increasing property, specifically, by recalling for
sake of completeness the definitions already given, we are interested in the functions
A : [0, 1]2 → [0, 1] such that

• A(0, 0) = 0 and A(1, 1) = 1;

• A(x, y) ≤ A(x′, y′) for x ≤ x′ and y ≤ y′;

• VA(R) ≥ 0 for every rectangle R ⊆ [0, 1]2.

One of the main reasons to study the class A2 of 2–increasing agops is that it contains,
as a distinguished subclass, the restrictions to [0, 1]2 of all the bivariate distribution
functions F such that F (0, 0) = 0 and F (1, 1) = 1; in particular copulas are in this
class. On other hand, the 2–increasing property has a relevant connection with the
theory of fuzzy measures, where it is also known as “supermodularity” (see [30]).

Notice that, we may limit ourselves to considering only 2–increasing agops because,
if A is a 2–increasing agop, it is immediately seen that its dual Ad is 2–decreasing, and
conversely. Therefore, analogous results for the 2–decreasing ones can be obtained by
duality.

In section 3.1, we characterize some subclasses of 2–increasing agops and some
construction methods are presented in section 3.2. Instead, section 3.3 presents the
lattice structure of several subsets of A2. A method for generating a copula using
2–increasing agops is presented in section 3.4.

The results of this chapter are also contained in [38]



52 Chap. 3 2–increasing agops

3.1 Characterizations of 2–increasing agops

In this section, some subclasses of agops satistying the 2–increasing property are
characterized.

Proposition 3.1.1. Let A be a 2–increasing agop. The following statements hold:

(a) the neutral element e ∈ [0, 1] of A, if it exists, is equal to 1;

(b) the annihilator a ∈ [0, 1] of A, if it exists, is equal to 0;

(c) if A is continuous on the border of [0, 1]2, then A is continuous on [0, 1]2.

Proof. Let A be a 2–increasing agop.
If A has neutral element e ∈ [0, 1[, then

A(1, 1) +A(e, e) = 1 +A(e, e) ≥ A(e, 1) +A(1, e) = 1 + 1,

a contradiction. Therefore e = 1 (and, as a consequence, A is a copula).
If A has an annihilator a ∈ [0, 1], we assume, if possible, that a > 0. We have

A(a, a)−A(a, 0)−A(0, a) +A(0, 0) = −a ≥ 0,

a contradiction; as a consequence, a = 0.
Let A be continuous on the border of [0, 1]2 and let (x0, y0) be a point in ]0, 1[2

such that A is not continuous in (x0, y0). Suppose, without loss of generality, that
there exists a sequence {xn}n∈N in [0, 1], xn ≤ x0 for every n ∈ N, which tends to x0,
and we have

lim
n→+∞

A(xn, y0) < A(x0, y0).

Therefore, there exists ε > 0 and n0 ∈ N such that A(x0, y0)−A(xn, yn) > ε for every
n ≥ n0. But, because A is continuous on the border of the unit square, there exists
n > n0 such that A(x0, 1)−A(xn, 1) < ε. But this violates the 2–increasing property,
because, in this case,

V ([xn, x0]× [y0, 1]) < 0.

Thus the only possibility is that A is continuous on [0, 1].

Remark 3.1.1. Note that, if A : [0, 1]2 → [0, 1] is 2–increasing and has an annihilator
element (which is necessarily equal to 0), then A is increasing in each place. In fact,
because of the 2–increasing property, for every x1, x2 and y in [0, 1], x1 ≤ x2, we have

A(x2, y)−A(x1, y) ≥ A(x2, 0)−A(x1, 0) = 0.

But, in general, if A : [0, 1]2 → [0, 1] is 2–increasing, then A need not be increasing in
each place. Consider, for example, A(x, y) = (2x− 1)(2y − 1).
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Proposition 3.1.2. Let Mf be a quasi–arithmetic mean, viz. let a continuous strictly
monotone function f : [0, 1] → R exist such that

Mf (x, y) := f−1

(
f(x) + f(y)

2

)
.

Then Mf is 2–increasing if, and only if, f−1 is convex.

Proof. Let s and t be real numbers and set a := f−1(s) and b := f−1(t). If Mf is
2–increasing, we have, because Mf is also commutative,

Mf (a, a) +Mf (b, b) ≥ 2Mf (a, b),

which is equivalent to

f−1(s) + f−1(t) ≥ 2 f−1

(
s+ t

2

)
.

This shows that f−1 is Jensen–convex and hence convex.
Conversely, let f−1 be convex; we have to prove that, whenever x1 ≤ x2 and

y1 ≤ y2,
Mf (x1, y1) +Mf (x2, y2) ≥Mf (x2, y1) +Mf (x1, y2),

or, equivalently, that

f−1(s1) + f−1(s4) ≥ f−1(s2) + f−1(s3),

where

s1 :=
f(x1) + f(y1)

2
, s4 :=

f(x2) + f(y2)
2

,

s2 :=
f(x2) + f(y1)

2
, s3 :=

f(x1) + f(y2)
2

.

Assume now that f is (strictly) increasing; setting

α :=
s4 − s2
s4 − s1

,

we obtain α ∈ [0, 1] and

s2 = α s1 + (1− α) s4, s3 = (1− α) s1 + α s4.

Because f−1 is convex, we have

f−1(s2) + f−1(s3) ≤ f−1(s1) + f−1(s4),

namely the assertion.
If, on the other hand, f is (strictly) decreasing, then we set

α :=
s1 − s2
s1 − s4

in order to reach the same conclusion.
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Corollary 3.1.1. If Mf is a 2–increasing quasi–arithmetic mean generated by f ,
then

Mf (x, y) ≤
x+ y

2
for every (x, y) ∈ [0, 1]2.

Proof. In view of Proposition 3.1.2, Mf is 2–increasing if, and only if, f−1 is convex.
But, if f is increasing, so is f−1, and Mf (x, y) ≤ x+y

2 is equivalent to the fact that
f is Jensen–concave and, thus, f−1 convex. Instead, if f is decreasing, so is f−1,
and Mf (x, y) ≤ x+y

2 is equivalent to the fact that f is Jensen–convex and, thus, f−1

convex.

Proposition 3.1.3. The Choquet integral–based agop, defined for a and b in [0, 1] by

ACh(x, y) =

(1− b)x+ by, if x ≤ y,

ax+ (1− a)y, if x > y,

is 2–increasing if, and only if, a+ b ≤ 1.

Proof. It is easily proved that ACh is 2–increasing on every rectangle contained either
in ∆+ or in ∆−. Now, let R := [s, t]2. Then, for all s and t such that 0 ≤ s < t ≤ 1,

VACh
([s, t]2) = s+ t− [(1− b)s+ bt]− [at+ (1− a)s] ≥ 0

if, and only if, a+b ≤ 1. Now, the assertion follows directly from Proposition 1.6.1.

Notice that, if a+b = 1, ACh is the weighted arithmetic mean; and, if a = b ≤ 1/2,
we have an OWA operator, ACh(x, y) = (1− a) min{x, y}+ amax{x, y} (see [159]).

Remark 3.1.2. The above proposition can be also proved by using some known
results on fuzzy measures. In fact, following [30], it is known that a Choquet integral
operator based on a fuzzy measurem is supermodular if, and only if, the fuzzy measure
m is supermodular. But, in the case of 2 inputs, say X2 := {1, 2}, we can define a
fuzzy measure m on 2X2 by giving the values m({1}) = a and m({2}) = b, where a
and b are in [0, 1]. Moreover, it is also known that m is supermodular if, and only if,
a+ b ≤ 1.

A special subclass of 2–increasing agops is that formed by modular agops, i.e.
those A for which VA(R) = 0 for every rectangle R ⊆ [0, 1]2. For these operators the
following characterization holds.

Proposition 3.1.4. For an agop A the following statements are equivalent:

(a) A is modular;

(b) increasing functions f and g from [0, 1] into [0, 1] exist such that f(0) = g(0) =
0, f(1) + g(1) = 1, and

A(x, y) = f(x) + g(y). (3.1)
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Proof. If A is modular, set f(x) := A(x, 0) and g(y) := A(0, y). From the modularity
of A

0 = VA ([0, x]× [0, y]) = A(x, y)− f(x)− g(y) +A(0, 0),

which implies (b). Viceversa, it is clear that every function of type (3.1) is modular.

3.2 Construction of 2–increasing agops

In the literature, there are a variety of construction methods for agops (see [10]
and the references therein). In this section, some of these methods are used to obtain
an agop satisfying the 2–increasing property.

Proposition 3.2.1. Let f and g be increasing functions from [0, 1] into [0, 1] such
that f(0) = g(0) = 0 and f(1) = g(1) = 1. Let A be a 2–increasing agop. Then, the
function defined by

Af,g(x, y) := A(f(x), g(y)) (3.2)

is a 2–increasing agop.

Proof. It is obvious that Af,g(0, 0) = 0, Af,g(1, 1) = 1 and Af,g is increasing in each
place, since it is the composition of increasing functions. Moreover, given a rectangle
R = [x1, x2]× [y1, y2], we obtain

VAf,g
(R) = VA ([f(x1), f(x2)]× [g(y1), g(y2)]) ≥ 0,

which is the desired assertion.

Example 3.2.1. Let f and g be increasing functions from [0, 1] into [0, 1] with f(0) =
g(0) = 0 and f(1) = g(1) = 1. Then

Af,g(x, y) := f(x) ∧ g(y), Bf,g(x, y) := f(x) · g(y),

Cf,g(x, y) := max{f(x) + g(y)− 1, 0}.

are 2–increasing agops as a consequence of the previous proposition by taking, respec-
tively, A = M , B = Π and C = W .

Corollary 3.2.1. The following statements are equivalent:

(a) H is the restriction to the unit square [0, 1]2 of a bivariate d.f. on [0, 1]2 with
H(0, 0) = 0 and H(1, 1) = 1;

(b) there exist a copula C and increasing and left continuous functions f and g from
[0, 1] into [0, 1], f(0) = g(0) = 0 and f(1) = g(1) = 1, such that H(x, y) :=
C(f(x), g(y)).
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Proof. It is a direct consequence of Sklar’s Theorem 1.6.1.

Corollary 3.2.2. If A is a 2–increasing and continuous agop with annihilator element
0, then there exist two increasing functions f and g from [0, 1] into [0, 1], f(0) =
g(0) = 0 and f(1) = g(1) = 1, such that Af,g defined by (3.2) is a copula.

Proof. Let f and g be the functions given by

f(x) := sup{t ∈ [0, 1] : A(t, 1) = x},

g(y) := sup{t ∈ [0, 1] : A(1, t) = y}.

Then f and g satisfy the assumptions of Proposition 3.2.1 and, hence, Af,g is 2–
increasing. Moreover, it is easily proved that 1 is the neutral element of Af,g and,
thus, Af,g is a copula.

Example 3.2.2. Let B and C be copulas and consider the function A(x, y) = B(x, y)·
C(x, y). As we will show in the sequel (see chapter 8), A is a continuous 2–increasing
agop with annihilator 0. Moreover, we have

f(x) = g(x) = sup{t ∈ [0, 1] : A(t, 1) = x} =
√
x.

Therefore, in view of Corollary 3.2.2 the function

Af,g(x, y) = A(f(x), g(y)) = B(
√
x,
√
y) · C(

√
x,
√
y)

is a copula.

Proposition 3.2.2. Let f be an increasing and convex function from [0, 2] into [0, 1]
such that f(0) = 0 and f(2) = 1. Then the function

Af (x, y) := f(x+ y) (3.3)

is a 2–increasing agop.

Proof. It is obvious that Af (0, 0) = 0, Af (1, 1) = 1 and Af is increasing in each place.
Moreover, given a rectangle R = [x1, x2]× [y1, y2], we obtain

VAf
(R) = f(x2 + y2) + f(x1 + y1)− f(x2 + y1)− f(x1 + y2).

By using an argument similar to the proof of Proposition 3.1.2, the convexity of f
implies that VAf

(R) ≥ 0.

Notice that the agop Af given in (3.3) is Schur–constant.

Example 3.2.3. Consider the function f : [0, 2] → [0, 1], given for every t ∈ [0, 2] by
f(t) := max{t− 1, 0}. Then the function Af defined by (3.3) is W .
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Sometimes, it is useful to construct an agop with specified values on its diagonal,
horizontal or vertical section (see, for example, [91, 81]). Specifically, given a suit-
able function f , the problem is whether there is a 2–increasing agop with (diagonal,
horizontal or vertical) section equal to f .

Proposition 3.2.3. Let h, v and δ be increasing functions from [0, 1] into [0, 1],
δ(0) = 0 and δ(1) = 1. The following statements hold:

• Aδ(x, y) = δ(x) is a 2–increasing agop with diagonal section is δ;

• a 2–increasing agop with horizontal section at b ∈ ]0, 1[ equal to h is given by

Ah(x, y) =


1, if y = 1;

0, if y = 0;

h(x), otherwise;

• a 2–increasing agop with vertical section at a ∈ ]0, 1[ equal to v is given by

Av(x, y) =


1, if x = 1;

0, if x = 0;

v(y), otherwise.

Proof. The proof is a consequence of Proposition 3.1.4 because Aδ, Ah and Av are all
modular agops.

In [107] (see also [10]), an ordinal sum construction for agops is given. Here, we
modify that method in order to ensure that an ordinal sum of 2–increasing agops is
again 2–increasing.

Consider a partition of the unit interval [0, 1] by the points 0 = a0 < a1 < · · · <
an = 1 and let A1, A2,. . . ,An be 2–increasing agops. For every i ∈ {1, 2, . . . , n},
consider the function Ãi defined on the square [ai, ai+1]

2 by

Ãi(x, y) = ai + (ai+1 − ai)Ai

(
x− ai

ai+1 − ai
,
y − ai

ai+1 − ai

)
.

Then we can easily prove that Ãi is 2–increasing on [ai, ai+1]
2. Now, define, for every

point (x, y) such that ai ≤ min{x, y} < ai+1,

A1,n(x, y) := Ãi (min{x, ai+1},min{y, ai+1}) (3.4)

(and A1,n(1, 1) = 1 by definition). Therefore, it is not difficult to prove that A1,n is
also a 2–increasing agop, called the ordinal sum of the agops {Ai}i=1,2,...,n; we write

A1,n = (〈ai, Ai〉)i=1,2,...,n .



58 Chap. 3 2–increasing agops

Example 3.2.4. Consider a partition of [0, 1] by means of the points 0 = a0 < a1 <

· · · < an = 1. Let A1, A2, . . . , An be 2–increasing agops such that, for every index i,
Ai = AS , the smallest agop. Let A1,n be the ordinal sum (〈ai, ai+1, Ai〉)i=1,2,...,n. For
every point (x, y) such that ai ≤ min{x, y} < ai+1, A1,n(x, y) = ai. Note that A1,n is
the smallest agop with idempotent elements a0, a1, . . . , an.

3.3 Bounds on sets of 2–increasing agops

Given a (2–increasing) agop A, it is obvious that

AS(x, y) ≤ A(x, y) for every (x, y) in [0, 1],

where AS is the smallest agop defined in section 1.11. Because AS is 2–increasing, it
is also the best–possible lower bound in the set A2, because it is 2–increasing.

The best–possible upper bound in A2 is the greatest agop AG. Notice that AG is
not 2–increasing, e.g. VAG

([0, 1]2) = −1, but it is the pointwise limit of the sequence
{An}n∈N of 2–increasing agops, defined by

An(x, y) =

1, if (x, y) ∈ [1/n, 1]2;

0, otherwise.

In particular, (A,≤) is not a complete lattice. But, the following result holds.

Proposition 3.3.1. Every agop is the supremum of a suitable subset of A2.

Proof. Let A be an agop; we may (and, in fact do) suppose that A 6= AG, since
this case has already been considered, and that A is not 2–increasing, this case being
trivial. For every (x0, y0) in [0, 1], let z0 = A(x0, y0) and consider the following
2–increasing agop

Âx0,y0 :=


1, if (x, y) = (1, 1);

z0, if (x, y) ∈ [x0, 1]× [y0, 1] \ {(1, 1)};

0, otherwise.

Then we have

A(x, y) = sup{Âx0,y0 : (x0, y0) ∈ [0, 1]2}.

The lattice structure of the class of copulas was considered in [123]. Here, other
cases will be considered. The following result, for instance, gives the bounds on the
subsets of 2–increasing agops with the same margins.
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Proposition 3.3.2. Let A be a 2–increasing agop with margins h0, h1, v0 and v1.
Let

A∗(x, y) := max{h0(x) + v0(y), h1(x) + v1(y)− 1} (3.5)

and
A∗(x, y) := min{h1(x) + v0(y)−A(0, 1), h0(x) + v1(y)−A(1, 0)}. (3.6)

Then, for every (x, y) in [0, 1],

A∗(x, y) ≤ A(x, y) ≤ A∗(x, y). (3.7)

Proof. Let A be a 2–increasing agop. Let (x, y) be a point in ]0, 1[2. In view of the
2–increasing property, we have

A(x, y) ≥ A(x, 0) +A(0, y) = h0(x) + v0(y),

A(x, y) ≥ A(x, 1) +A(1, y)− 1 = h1(x) + v1(y)− 1,

which together yield the first of the inequalities (3.7). Analogously,

A(x, y) ≤ A(0, y) +A(x, 1)−A(0, 1) = h1(x) + v0(y)−A(0, 1),

A(x, y) ≤ A(x, 0) +A(1, y)−A(1, 0) = h0(x) + v1(y)−A(1, 0),

namely the second of the inequalities (3.7).

It should be noticed that, in the special case of copulas, the bounds of (3.7)
coincide with the usual Fréchet–Hoeffding bounds (1.13).

The subclasses of 2–increasing agops with prescribed margins have the smallest
and the greatest element (in the pointwise ordering), as stated here.

Theorem 3.3.1. For every 2–increasing agop A, the bounds A∗ and A∗ defined by
(3.5) and (3.6) are 2–increasing agops.

Proof. The functions A∗ and A∗ defined by (3.5) and (3.6), respectively, are obviously
agops. Below we shall prove that they are also 2–increasing. To this end, let R =
[x, x′]× [y, y′] be any rectangle contained in the unit square.

Consider, first, the case of A∗. Then

A∗(x′, y′) := min{h1(x′) + v0(y′)−A(0, 1), h0(x′) + v1(y′)−A(1, 0)},

A∗(x, y) := min{h1(x) + v0(y)−A(0, 1), h0(x) + v1(y)−A(1, 0)},

A∗(x′, y) := min{h1(x′) + v0(y)−A(0, 1), h0(x′) + v1(y)−A(1, 0)},

A∗(x, y′) := min{h1(x) + v0(y′)−A(0, 1), h0(x) + v1(y′)−A(1, 0)}.

There are four cases to be considered.
Case 1. If

A∗(x′, y′) = h1(x′) + v0(y′)−A(0, 1), A∗(x, y) = h1(x) + v0(y)−A(0, 1),



60 Chap. 3 2–increasing agops

then

A∗(x′, y′) +A∗(x, y) = h1(x′) + v0(y)−A(0, 1)

+ h1(x) + v0(y′)−A(0, 1) ≥ A∗(x′, y) +A∗(x, y′).

Case 2. If

A∗(x′, y′) = h0(x′) + v1(y′)−A(1, 0), A∗(x, y) = h0(x) + v1(y)−A(1, 0),

then

A∗(x′, y′) +A∗(x′, y′) = h0(x′) + v1(y)−A(1, 0)

+ h0(x) + v1(y′)−A(1, 0) ≥ A∗(x′, y) +A∗(x, y′).

Case 3. If

A∗(x′, y′) = h1(x′) + v0(y′)−A(0, 1), A∗(x, y) = h0(x) + v1(y)−A(1, 0),

then, since A is 2–increasing, we have h1(x′) + h0(x) ≥ h1(x) + h0(x′), so that

A∗(x′, y′) +A∗(x′, y′)

= h1(x′) + h0(x)−A(0, 1) + v0(y′) + v1(y)−A(1, 0)

≥ h1(x) + v0(y′)−A(0, 1) + h0(x′) + v1(y)−A(0, 1)

≥ A∗(x′, y) +A∗(x, y′).

Case 4. If

A∗(x′, y′) = h0(x′) + v1(y′)−A(1, 0), A∗(x, y) = h1(x) + v0(y)−A(0, 1),

then, since A is 2–increasing, we have v1(y′) + v0(y) ≥ v1(y) + v0(y′), so that

A∗(x′, y′) +A∗(x′, y′)

= h0(x′) + v1(y′)−A(1, 0) + h1(x) + v0(y)−A(0, 1)

≥ h0(x′) + v1(y)−A(1, 0) + h1(x) + v0(y′)−A(0, 1)

≥ A∗(x′, y) +A∗(x, y′).

This proves that A∗ is 2–increasing.
A similar proof holds for A∗. Given a rectangle R = [x, x′] × [y, y′] in the unit

square, we have

A∗(x′, y′) := max{h0(x′) + v0(y′), h1(x′) + v1(y′)− 1},

A∗(x, y) := max{h0(x) + v0(y), h1(x) + v1(y)− 1},

A∗(x′, y) := max{h0(x′) + v0(y), h1(x′) + v1(y)− 1},

A∗(x, y′) := max{h0(x) + v0(y′), h1(x) + v1(y′)− 1}.
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Here, again, four cases will be considered.
Case 1. If

A∗(x′, y) = h0(x′) + v0(y), A∗(x, y′) = h0(x) + v0(y′),

then

A∗(x′, y) +A∗(x, y′) = h0(x) + v0(y) + h0(x′) + v0(y′)

≤ A∗(x′, y′) +A∗(x, y).

Case 2. If

A∗(x′, y) = h0(x′) + v0(y), A∗(x, y′) = h1(x) + v1(y′)− 1,

then, since A is 2–increasing, we have h0(x′) + h1(x) ≤ h1(x′) + h0(x) so that

A∗(x′, y) +A∗(x, y′) = h0(x′) + v0(y) + h1(x) + v1(y′)− 1

≤ h1(x′) + v1(y′)− 1 + h0(x) + v0(y)

≤ A∗(x′, y′) +A∗(x, y).

Case 3. If

A∗(x′, y) = h1(x′) + v1(y)− 1, A∗(x, y′) = h0(x) + v0(y′),

then, since A is 2–increasing, we have v1(y) + v0(y′) ≤ v1(y′) + v0(y), so that

A∗(x′, y) +A∗(x, y′) = h1(x′) + v1(y)− 1 + h0(x) + v0(y′)

≤ h1(x′) + v1(y′)− 1 + h0(x) + v0(y)

≤ A∗(x′, y′) +A∗(x, y).

Case 4. If

A∗(x′, y) = h1(x′) + v1(y)− 1, A∗(x, y′) = h1(x) + v1(y′)− 1,

then

A∗(x′, y) +A∗(x, y′) = h1(x′) + v1(y′)− 1 + h1(x) + v1(y)− 1

≤ A∗(x′, y′) +A∗(x, y).

The following result gives a necessary and sufficient condition that ensuresA∗ = A∗

in the case of a symmetric agop A.

Proposition 3.3.3. For a symmetric and 2–increasing agop A, the following state-
ments are equivalent:

(a) A∗ = A∗;
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(b) there exists an interval I ⊆ [0, 1], 0 ∈ I, and a ∈ [0, 1] such that

h1(t) =

h0(t) + a, if t ∈ I,

h0(t) + (1− a), if t ∈ [0, 1] \ I.
(3.8)

Proof. If A is a symmetric agop, then h0 = v0 and h1 = v1. Set a := A(0, 1) = A(1, 0),
a ≤ 1/2. Therefore

A∗(x, y) := max{h0(x) + h0(y), h1(x) + h1(y)− 1}

and
A∗(x, y) := min{h1(x) + h0(y)− a, h0(x) + h1(y)− a}.

If A = A∗, then A(x, x) = h1(x) + h0(x) − a. Now, from A = A∗, we obtain that
either A(x, x) = 2h0(x) or A(x, x) = 2h1(x)− 1. Therefore, either

h1(x)− h0(x) = a, (3.9)

or
h1(x)− h0(x) = 1− a. (3.10)

If a = 1/2, then h1(x) = h0(x) + a on [0, 1]. Otherwise, note that (3.9) holds at the
point x = 0 and (3.10) holds at the point x = 1. Moreover, if (3.9) does not hold at a
point x1, then (3.9) does not hold also for every x2 > x1. In fact, for the 2–increasing
property, we obtain

h1(x2)− h0(x2) ≥ h1(x1)− h0(x1) = 1− a > 1/2.

Thus h1 has the form (3.8), where I is an interval. The converse is just a matter of
straightforward verification.

Note that if A = A∗ = A∗, then A = 2aB + (1 − 2a)C, where B is a symmetric
and modular agop, and C = 1I2 is the indicator function of the set I2.

Example 3.3.1. Consider the arithmetic mean A(x, y) := (x+ y)/2, which is obvi-
ously 2–increasing. Then, we easily evaluate A∗ = A∗ = A.

Consider the 2–increasing agop given by the geometric mean G(x, y) :=
√
xy. We

have

G∗(x, y) = max{0,
√
x+

√
y − 1} and G∗(x, y) = min{

√
x,
√
y},

both of which are 2–increasing.

Remark 3.3.1. In the general case of a 2–increasing agop A such that A = A∗ = A∗,
as above it can be proved that one among the following four equalities holds:

• h1(x)− h0(x) = A(0, 1);
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• h1(x)− h0(x) = 1−A(1, 0);

• v1(y)− v0(y) = 1−A(0, 1);

• v1(y)− v0(y) = A(1, 0).

However, one need not have explicit conditions as in the symmetric case for h1(x)−
h0(x) and v1(y)− v0(y).

Let h, v and δ be increasing functions from [0, 1] into [0, 1], δ(0) = 0 and δ(1) = 1.
Denote by Ah, Av and Aδ, respectively, the subclasses of 2–increasing agops with
horizontal section at b ∈ ]0, 1[ equal to h, vertical section at a ∈ ]0, 1[ equal to v,
diagonal section equal δ, respectively. Notice that the sets Ah, Av and Aδ are not
empty, in view of Proposition 3.2.3. The following results give the best–possible
bounds in these subclasses.

Proposition 3.3.4. Let h : [0, 1] → [0, 1] be an increasing function. For every A in
Ah we obtain

(Ah)∗ ≤ A(x, y) ≤ (Ah)∗, (3.11)

where

(Ah)∗(x, y) :=


1, if (x, y) = (1, 1);

0, if 0 ≤ y < b;

h(x), otherwise;

(Ah)∗(x, y) :=


0, if (x, y) = (0, 0);

1, if b < y ≤ 1;

h(x), otherwise.

Moreover,

(Ah)∗(x, y) =
∧

A∈Ah

A(x, y) and (Ah)∗(x, y) =
∨

A∈Ah

A(x, y),

where (Ah)∗ is a 2–increasing agop and (Ah)∗, while it is still an agop, is not neces-
sarily 2–increasing.

Proof. For all (x, y) ∈ [0, 1]2 and A ∈ Ah, A(x, y) ≥ 0 for every y ∈ [0, b[ and
A(x, y) ≥ h(x) for every y ∈ [b, 1], viz. A(x, y) ≥ (Ah)∗(x, y) on [0, 1]2. Analogously,
A(x, y) ≤ h(x) for every y ∈ [0, b] and A(x, y) ≤ 1 for every y ∈ ]b, 1], viz. A(x, y) ≤
(Ah)∗(x, y) on [0, 1]2. Both (Ah)∗ and (Ah)∗ are agops, as is immediately seen; it
is also immediate to check that (Ah)∗ is 2–increasing and, therefore, that (Ah)∗ =∧
A∈Ah

A. Now, suppose that B is any agop greater than, or at least equal to,
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∨
A∈Ah

A. Then B(x, y) ≥ A1(x, y), where A1 is the 2–increasing agop given by

A1(x, y) :=


0, if y = 0;

h(x), if 0 < y ≤ b;

1, if b < y ≤ 1;

and B(x, y) ≥ A2(x, y), where A2 is the 2–increasing agop given by

A2(x, y) :=


0, if x = 0;

h(x), if x 6= 0 and 0 < y ≤ b;

1, if x 6= 0 and b < y ≤ 1;

therefore B(x, y) ≥ max{A1(x, y), A2(x, y)} = (Ah)∗(x, y) on [0, 1]2 and we obtain
(Ah)∗ =

∨
A∈Ah

A. However (Ah)∗ need not be 2–increasing; in fact,

V(Ah)∗ ([0, 1]× [b, 1]) = h(0)− h(1),

and thus (Ah)∗ is 2–increasing if, and only if, h = 0.

Analogously, we prove the following result for the class Av.

Proposition 3.3.5. Let v : [0, 1] → [0, 1] be an increasing function. For every A in
Av we obtain

(Av)∗ ≤ A(x, y) ≤ (Av)∗, (3.12)

where

(Av)∗(x, y) :=


1, if (x, y) = (1, 1);

0, if 0 ≤ x < a;

v(y), otherwise;

(Av)∗(x, y) :=


0, if (x, y) = (0, 0);

1, if a < x ≤ 1;

v(y), otherwise.

Moreover,

(Av)∗(x, y) =
∧

A∈Av

A(x, y) and (Av)∗(x, y) =
∨

A∈Av

A(x, y),

where (Av)∗ is a 2–increasing agop and (Av)∗, while it is still an agop, is not neces-
sarily 2–increasing.

Proposition 3.3.6. Let δ be an increasing function with δ(0) = 0 and δ(1) = 1. For
every A in Aδ, we obtain

(Aδ)∗ := min{δ(x), δ(y)} ≤ A(x, y) ≤ (Aδ)∗ := max{δ(x), δ(y)}. (3.13)
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Moreover, (Aδ)∗ and (Aδ)∗ are the best–possible bounds, in the sense that

(Aδ)∗(x, y) =
∧

A∈Aδ

A(x, y) and (Aδ)∗(x, y) =
∨

A∈Aδ

A(x, y),

where (Aδ)∗ is a 2–increasing agop and (Aδ)∗, while it is still an agop, is never 2–
increasing.

Proof. For all (x, y) ∈ [0, 1]2 and A ∈ Aδ,

A(x, y) ≥ A(x ∧ y, x ∧ y) = min{δ(x), δ(y)}

and
A(x, y) ≤ A(x ∨ y, x ∨ y) = max{δ(x), δ(y)}.

This proves (3.13). Both (Aδ)∗ and (Aδ)∗ are agops, as is immediately seen; it is
also immediate to check that (Aδ)∗ is 2–increasing (because of Proposition 3.2.1)
and, therefore, that (Aδ)∗ =

∧
A∈Aδ

A. Now, suppose that B is any agop greater
than, or at least equal to,

∨
A∈Aδ

A. Then B(x, y) ≥ A1(x, y) := δ(x) and B(x, y) ≥
A2(x, y) := δ(y), where A1 and A2 are 2–increasing agops. Thus, B(x, y) ≥ (Aδ)∗ so
that (Aδ)∗ =

∨
A∈Aδ

A. This proves that (Aδ)∗ is the best possible upper bound for
the set Aδ. However (Aδ)∗ is never 2–increasing, in fact

V(Aδ)∗

(
[0, 1]2

)
= δ(0)− δ(1) = −1 < 0.

Corollary 3.3.1. Let δ be an increasing function with δ(0) = 0 and δ(1) = 1. For
every symmetric agop A in Aδ, we obtain

(Aδ)∗ := min{δ(x), δ(y)} ≤ A(x, y) ≤ δ(x) + δ(y)
2

,

where (δ(x) + δ(y)) /2 is the maximal element in the subclass of the symmetric agops
in A2.

Proof. If A is symmetric and 2–increasing, we have, for every x, y in [0, 1],

δ(x) + δ(y) = A(x, x) +A(y, y) ≥ 2 A(x, y).

3.4 A construction method for copulas

The main result of this section is to give a simple method of constructing a copula
from a 2–increasing and 1–Lipschitz agop.

Theorem 3.4.1. For every 2–increasing and 1–Lipschitz agop A, the function

C(x, y) := min{x, y,A(x, y)}

is a copula.
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Proof. First, in order to prove that C is a copula, we note that C has neutral element
1 and annihilator 0; in fact, for every x ∈ [0, 1], we have

|A(1, 1)−A(x, 1)| ≤ 1− x

and thus A(x, 1) ≥ x. Consequently, we have

C(x, 1) = min{A(x, 1), x} = x, C(x, 0) = min{A(x, 0), 0} = 0,

and, similarly, C(1, x) = x and C(0, x) = 0. Then, we prove that C is 2–increasing
by using Proposition 1.6.1.

For every rectangle R := [s, t]× [s, t] on [0, 1]2, set

VC(R) = min{A(s, s), s}+ min{A(t, t), t} −min{A(s, t), s} −min{A(t, s), s}.

We have to prove that VC(R) ≥ 0 and several cases are considered.
If A(s, s) ≥ s, then also A(s, t), A(t, s) and A(t, t) are greater than s, because A

is increasing in each variable, and thus

VC(R) = min{A(t, t), t} − s ≥ 0.

If A(s, s) < s, then we distinguish:

• if A(t, t) < t, since A is 2–increasing, we have

A(s, s) +A(t, t) ≥ A(s, t) +A(t, s) ≥ min{A(s, t), s}+ min{A(t, s), s},

viz. VC(R) ≥ 0;

• if A(t, t) ≥ t, since A is 1–Lipschitz, we have

min{A(t, s), s} −min{A(s, s), s} ≤ t− s ≤ t−min{A(t, s), s},

and thus VC(R) ≥ 0.

Now, let R = [x1, x2] × [y1, y2] be a rectangle contained in ∆+. Then VC(R) is
given by

VC(R) =min{A(x1, y1), y1}+ min{A(x2, y2), y2}

−min{A(x2, y1), y1} −min{A(x1, y2), y2}.

If A(x1, y1) ≥ y1, then also A(x2, y1), A(x1, y2) and A(x2, y2) are greater than y1,
because A is increasing in each variable, and thus

VC(R) = min{A(x2, y2), y2} − y1 ≥ 0.

If A(x1, y1) < y1, then we distinguish:
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• if A(x2, y2) < y2, since A is 2–increasing, we have

A(x2, y2) +A(x1, y1) ≥ A(x2, y1) +A(x1, y2)

≥ min{A(x2, y1), y1}+ min{A(x1, y2), y2},

viz. VC(R) ≥ 0;

• if A(x2, y2) ≥ y2, we have

VC(R) = A(x1, y1) + y2 −A(x1, y2)−min{A(x2, y1), y1},

and, since A is 1–Lipschitz,

A(x1, y2) ≤ y2 − y1 +A(x1, y1) ≤ y2,

moreover, from the fact that

A(x1, y2)−A(x1, y1) ≤ y2 − y1 ≤ y2 −min{A(x2, y1), y1},

it follows that VC(R) ≥ 0.

Finally, let R = [x1, x2]× [y1, y2] be a rectangle contained in ∆−. Then VC(R) is
given by

VC(R) =min{A(x1, y1), x1}+ min{A(x2, y2), x2}

−min{A(x2, y1), x2} −min{A(x1, y2), x1}.

If A(x1, y1) ≥ x1, then, because A is increasing in each variable,

VC(R) = min{A(x2, y2), x2} − x1 ≥ 0.

If A(x1, y1) < x1, then we distinguish:

• if A(x2, y2) < x2, since A is 2–increasing, we have

A(x2, y2) +A(x1, y1) ≥ A(x2, y1) +A(x1, y2)

≥ min{A(x2, y1), x1}+ min{A(x1, y2), x2},

viz. VC(R) ≥ 0;

• if A(x2, y2) ≥ x2, we have

VC(R) = A(x1, y1) + x2 −min{A(x1, y2), x1} −A(x2, y1),

and, since A is 1–Lipschitz

A(x2, y1) ≤ x2 − x1 +A(x1, y1) ≤ x2;

moreover, from the inequality

A(x2, y1)−A(x1, y1) ≤ x2 − x1 ≤ x2 −min{A(x1, y2), x1},

it follows that VC(R) ≥ 0.
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Notice that agops satisfying the assumptions of Theorem 3.4.1 are stable under
convex combinations. Thus, many examples can be provided by using, for examples,
copulas, quasi–arithmetic means bounded from above by the arithmetic mean, and
their convex combinations.

Example 3.4.1. Let A be the modular agop A(x, y) = (δ(x) + δ(y))/2, where δ :
[0, 1] → [0, 1] is an increasing and 2–Lipschitz function with δ(0) = 0 and δ(1) = 1.
Then A satisfies the assumptions of Theorem 3.4.1 and it generates the following
copula

Cδ(x, y) = min
{
x, y,

δ(x) + δ(y)
2

}
.

Copulas of this type were introduced in [56] and are called diagonal copulas.

Example 3.4.2. Let consider the following 2–increasing and 1–Lipschitz agop

A(x, y) = λB(x, y) + (1− λ)
x+ y

2
,

defined for every λ ∈ [0, 1] and for every copula B. This A satisfies the assumptions
of Theorem 3.4.1 and, therefore, the following class of copulas is obtained

Cλ(x, y) := min
{
x, y, λB(x, y) + (1− λ)

x+ y

2

}
.

Example 3.4.3. Let A be a 2–increasing agop of the form A(x, y) = f(x) · g(y). If
A is 1–Lipschitz, then A satisfies the assumptions of Theorem 3.4.1. Consider, for
instance, either f(x) = x and g(y) = (y + 1)/2, or f(x) = (x + 1)/2 and g(y) = y,
which yield, respectively, the following copulas

C1(x, y) = min
{
y,
x(y + 1)

2

}
, C2(x, y) = min

{
x,
y(x+ 1)

2

}
.


