Chapter 3

2-increasing aggregation operators

The aim of this chapter is the study of the class of binary aggregation operators (agops, for short) satisfying the 2 -increasing property, specifically, by recalling for sake of completeness the definitions already given, we are interested in the functions $A:[0,1]^{2} \rightarrow[0,1]$ such that

- $A(0,0)=0$ and $A(1,1)=1$;
- $A(x, y) \leq A\left(x^{\prime}, y^{\prime}\right)$ for $x \leq x^{\prime}$ and $y \leq y^{\prime}$;
- $V_{A}(R) \geq 0$ for every rectangle $R \subseteq[0,1]^{2}$.

One of the main reasons to study the class \mathcal{A}_{2} of 2 -increasing agops is that it contains, as a distinguished subclass, the restrictions to $[0,1]^{2}$ of all the bivariate distribution functions F such that $F(0,0)=0$ and $F(1,1)=1$; in particular copulas are in this class. On other hand, the 2 -increasing property has a relevant connection with the theory of fuzzy measures, where it is also known as "supermodularity" (see [30]).

Notice that, we may limit ourselves to considering only 2-increasing agops because, if A is a 2 -increasing agop, it is immediately seen that its dual A^{d} is 2-decreasing, and conversely. Therefore, analogous results for the 2 -decreasing ones can be obtained by duality.

In section 3.1, we characterize some subclasses of 2 -increasing agops and some construction methods are presented in section 3.2. Instead, section 3.3 presents the lattice structure of several subsets of \mathcal{A}_{2}. A method for generating a copula using 2 -increasing agops is presented in section 3.4.

The results of this chapter are also contained in [38]

3.1 Characterizations of 2-increasing agops

In this section, some subclasses of agops satistying the 2-increasing property are characterized.

Proposition 3.1.1. Let A be a 2-increasing agop. The following statements hold:
(a) the neutral element $e \in[0,1]$ of A, if it exists, is equal to 1 ;
(b) the annihilator $a \in[0,1]$ of A, if it exists, is equal to 0 ;
(c) if A is continuous on the border of $[0,1]^{2}$, then A is continuous on $[0,1]^{2}$.

Proof. Let A be a 2 -increasing agop.
If A has neutral element $e \in[0,1[$, then

$$
A(1,1)+A(e, e)=1+A(e, e) \geq A(e, 1)+A(1, e)=1+1
$$

a contradiction. Therefore $e=1$ (and, as a consequence, A is a copula).
If A has an annihilator $a \in[0,1]$, we assume, if possible, that $a>0$. We have

$$
A(a, a)-A(a, 0)-A(0, a)+A(0,0)=-a \geq 0,
$$

a contradiction; as a consequence, $a=0$.
Let A be continuous on the border of $[0,1]^{2}$ and let $\left(x_{0}, y_{0}\right)$ be a point in $] 0,1\left[^{2}\right.$ such that A is not continuous in $\left(x_{0}, y_{0}\right)$. Suppose, without loss of generality, that there exists a sequence $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ in $[0,1], x_{n} \leq x_{0}$ for every $n \in \mathbb{N}$, which tends to x_{0}, and we have

$$
\lim _{n \rightarrow+\infty} A\left(x_{n}, y_{0}\right)<A\left(x_{0}, y_{0}\right) .
$$

Therefore, there exists $\epsilon>0$ and $n_{0} \in \mathbb{N}$ such that $A\left(x_{0}, y_{0}\right)-A\left(x_{n}, y_{n}\right)>\epsilon$ for every $n \geq n_{0}$. But, because A is continuous on the border of the unit square, there exists $\bar{n}>n_{0}$ such that $A\left(x_{0}, 1\right)-A\left(x_{\bar{n}}, 1\right)<\epsilon$. But this violates the 2-increasing property, because, in this case,

$$
V\left(\left[x_{\bar{n}}, x_{0}\right] \times\left[y_{0}, 1\right]\right)<0
$$

Thus the only possibility is that A is continuous on $[0,1]$.
Remark 3.1.1. Note that, if $A:[0,1]^{2} \rightarrow[0,1]$ is 2-increasing and has an annihilator element (which is necessarily equal to 0), then A is increasing in each place. In fact, because of the 2-increasing property, for every x_{1}, x_{2} and y in $[0,1], x_{1} \leq x_{2}$, we have

$$
A\left(x_{2}, y\right)-A\left(x_{1}, y\right) \geq A\left(x_{2}, 0\right)-A\left(x_{1}, 0\right)=0
$$

But, in general, if $A:[0,1]^{2} \rightarrow[0,1]$ is 2-increasing, then A need not be increasing in each place. Consider, for example, $A(x, y)=(2 x-1)(2 y-1)$.

Proposition 3.1.2. Let M_{f} be a quasi-arithmetic mean, viz. let a continuous strictly monotone function $f:[0,1] \rightarrow \mathbb{R}$ exist such that

$$
M_{f}(x, y):=f^{-1}\left(\frac{f(x)+f(y)}{2}\right)
$$

Then M_{f} is 2-increasing if, and only if, f^{-1} is convex.
Proof. Let s and t be real numbers and set $a:=f^{-1}(s)$ and $b:=f^{-1}(t)$. If M_{f} is 2-increasing, we have, because M_{f} is also commutative,

$$
M_{f}(a, a)+M_{f}(b, b) \geq 2 M_{f}(a, b)
$$

which is equivalent to

$$
f^{-1}(s)+f^{-1}(t) \geq 2 f^{-1}\left(\frac{s+t}{2}\right)
$$

This shows that f^{-1} is Jensen-convex and hence convex.
Conversely, let f^{-1} be convex; we have to prove that, whenever $x_{1} \leq x_{2}$ and $y_{1} \leq y_{2}$,

$$
M_{f}\left(x_{1}, y_{1}\right)+M_{f}\left(x_{2}, y_{2}\right) \geq M_{f}\left(x_{2}, y_{1}\right)+M_{f}\left(x_{1}, y_{2}\right)
$$

or, equivalently, that

$$
f^{-1}\left(s_{1}\right)+f^{-1}\left(s_{4}\right) \geq f^{-1}\left(s_{2}\right)+f^{-1}\left(s_{3}\right)
$$

where

$$
\begin{aligned}
& s_{1}:=\frac{f\left(x_{1}\right)+f\left(y_{1}\right)}{2}, \quad s_{4}:=\frac{f\left(x_{2}\right)+f\left(y_{2}\right)}{2}, \\
& s_{2}:=\frac{f\left(x_{2}\right)+f\left(y_{1}\right)}{2}, \quad s_{3}:=\frac{f\left(x_{1}\right)+f\left(y_{2}\right)}{2} .
\end{aligned}
$$

Assume now that f is (strictly) increasing; setting

$$
\alpha:=\frac{s_{4}-s_{2}}{s_{4}-s_{1}}
$$

we obtain $\alpha \in[0,1]$ and

$$
s_{2}=\alpha s_{1}+(1-\alpha) s_{4}, \quad s_{3}=(1-\alpha) s_{1}+\alpha s_{4}
$$

Because f^{-1} is convex, we have

$$
f^{-1}\left(s_{2}\right)+f^{-1}\left(s_{3}\right) \leq f^{-1}\left(s_{1}\right)+f^{-1}\left(s_{4}\right)
$$

namely the assertion.
If, on the other hand, f is (strictly) decreasing, then we set

$$
\alpha:=\frac{s_{1}-s_{2}}{s_{1}-s_{4}}
$$

in order to reach the same conclusion.

Corollary 3.1.1. If M_{f} is a 2-increasing quasi-arithmetic mean generated by f, then

$$
M_{f}(x, y) \leq \frac{x+y}{2} \quad \text { for every }(x, y) \in[0,1]^{2}
$$

Proof. In view of Proposition 3.1.2, M_{f} is 2-increasing if, and only if, f^{-1} is convex. But, if f is increasing, so is f^{-1}, and $M_{f}(x, y) \leq \frac{x+y}{2}$ is equivalent to the fact that f is Jensen-concave and, thus, f^{-1} convex. Instead, if f is decreasing, so is f^{-1}, and $M_{f}(x, y) \leq \frac{x+y}{2}$ is equivalent to the fact that f is Jensen-convex and, thus, f^{-1} convex.

Proposition 3.1.3. The Choquet integral-based agop, defined for a and b in $[0,1]$ by

$$
A_{C h}(x, y)= \begin{cases}(1-b) x+b y, & \text { if } x \leq y \\ a x+(1-a) y, & \text { if } x>y\end{cases}
$$

is 2-increasing if, and only if, $a+b \leq 1$.
Proof. It is easily proved that $A_{C h}$ is 2-increasing on every rectangle contained either in Δ_{+}or in Δ_{-}. Now, let $R:=[s, t]^{2}$. Then, for all s and t such that $0 \leq s<t \leq 1$,

$$
V_{A_{C h}}\left([s, t]^{2}\right)=s+t-[(1-b) s+b t]-[a t+(1-a) s] \geq 0
$$

if, and only if, $a+b \leq 1$. Now, the assertion follows directly from Proposition 1.6.1.
Notice that, if $a+b=1, A_{C h}$ is the weighted arithmetic mean; and, if $a=b \leq 1 / 2$, we have an OWA operator, $A_{C h}(x, y)=(1-a) \min \{x, y\}+a \max \{x, y\}$ (see [159]).

Remark 3.1.2. The above proposition can be also proved by using some known results on fuzzy measures. In fact, following [30], it is known that a Choquet integral operator based on a fuzzy measure m is supermodular if, and only if, the fuzzy measure m is supermodular. But, in the case of 2 inputs, say $\mathbb{X}_{2}:=\{1,2\}$, we can define a fuzzy measure m on $2^{\mathbb{X}_{2}}$ by giving the values $m(\{1\})=a$ and $m(\{2\})=b$, where a and b are in $[0,1]$. Moreover, it is also known that m is supermodular if, and only if, $a+b \leq 1$.

A special subclass of 2 -increasing agops is that formed by modular agops, i.e. those A for which $V_{A}(R)=0$ for every rectangle $R \subseteq[0,1]^{2}$. For these operators the following characterization holds.

Proposition 3.1.4. For an agop A the following statements are equivalent:
(a) A is modular;
(b) increasing functions f and g from $[0,1]$ into $[0,1]$ exist such that $f(0)=g(0)=$ $0, f(1)+g(1)=1$, and

$$
\begin{equation*}
A(x, y)=f(x)+g(y) \tag{3.1}
\end{equation*}
$$

Proof. If A is modular, set $f(x):=A(x, 0)$ and $g(y):=A(0, y)$. From the modularity of A

$$
0=V_{A}([0, x] \times[0, y])=A(x, y)-f(x)-g(y)+A(0,0)
$$

which implies (b). Viceversa, it is clear that every function of type (3.1) is modular.

3.2 Construction of 2-increasing agops

In the literature, there are a variety of construction methods for agops (see [10] and the references therein). In this section, some of these methods are used to obtain an agop satisfying the 2-increasing property.

Proposition 3.2.1. Let f and g be increasing functions from $[0,1]$ into $[0,1]$ such that $f(0)=g(0)=0$ and $f(1)=g(1)=1$. Let A be a 2 -increasing agop. Then, the function defined by

$$
\begin{equation*}
A_{f, g}(x, y):=A(f(x), g(y)) \tag{3.2}
\end{equation*}
$$

is a 2-increasing agop.
Proof. It is obvious that $A_{f, g}(0,0)=0, A_{f, g}(1,1)=1$ and $A_{f, g}$ is increasing in each place, since it is the composition of increasing functions. Moreover, given a rectangle $R=\left[x_{1}, x_{2}\right] \times\left[y_{1}, y_{2}\right]$, we obtain

$$
V_{A_{f, g}}(R)=V_{A}\left(\left[f\left(x_{1}\right), f\left(x_{2}\right)\right] \times\left[g\left(y_{1}\right), g\left(y_{2}\right)\right]\right) \geq 0
$$

which is the desired assertion.
Example 3.2.1. Let f and g be increasing functions from $[0,1]$ into $[0,1]$ with $f(0)=$ $g(0)=0$ and $f(1)=g(1)=1$. Then

$$
\begin{aligned}
& A_{f, g}(x, y):=f(x) \wedge g(y), \quad B_{f, g}(x, y):=f(x) \cdot g(y), \\
& C_{f, g}(x, y):=\max \{f(x)+g(y)-1,0\} .
\end{aligned}
$$

are 2-increasing agops as a consequence of the previous proposition by taking, respectively, $A=M, B=\Pi$ and $C=W$.

Corollary 3.2.1. The following statements are equivalent:
(a) H is the restriction to the unit square $[0,1]^{2}$ of a bivariate d.f. on $[0,1]^{2}$ with $H(0,0)=0$ and $H(1,1)=1$;
(b) there exist a copula C and increasing and left continuous functions f and g from $[0,1]$ into $[0,1], f(0)=g(0)=0$ and $f(1)=g(1)=1$, such that $H(x, y):=$ $C(f(x), g(y))$.

Proof. It is a direct consequence of Sklar's Theorem 1.6.1.
Corollary 3.2.2. If A is a-increasing and continuous agop with annihilator element 0 , then there exist two increasing functions f and g from $[0,1]$ into $[0,1], f(0)=$ $g(0)=0$ and $f(1)=g(1)=1$, such that $A_{f, g}$ defined by (3.2) is a copula.

Proof. Let f and g be the functions given by

$$
\begin{aligned}
f(x) & :=\sup \{t \in[0,1]: A(t, 1)=x\} \\
g(y) & :=\sup \{t \in[0,1]: A(1, t)=y\}
\end{aligned}
$$

Then f and g satisfy the assumptions of Proposition 3.2.1 and, hence, $A_{f, g}$ is $2-$ increasing. Moreover, it is easily proved that 1 is the neutral element of $A_{f, g}$ and, thus, $A_{f, g}$ is a copula.

Example 3.2.2. Let B and C be copulas and consider the function $A(x, y)=B(x, y)$. $C(x, y)$. As we will show in the sequel (see chapter 8), A is a continuous 2 -increasing agop with annihilator 0 . Moreover, we have

$$
f(x)=g(x)=\sup \{t \in[0,1]: A(t, 1)=x\}=\sqrt{x}
$$

Therefore, in view of Corollary 3.2.2 the function

$$
A_{f, g}(x, y)=A(f(x), g(y))=B(\sqrt{x}, \sqrt{y}) \cdot C(\sqrt{x}, \sqrt{y})
$$

is a copula.
Proposition 3.2.2. Let f be an increasing and convex function from $[0,2]$ into $[0,1]$ such that $f(0)=0$ and $f(2)=1$. Then the function

$$
\begin{equation*}
A_{f}(x, y):=f(x+y) \tag{3.3}
\end{equation*}
$$

is a 2-increasing agop.
Proof. It is obvious that $A_{f}(0,0)=0, A_{f}(1,1)=1$ and A_{f} is increasing in each place. Moreover, given a rectangle $R=\left[x_{1}, x_{2}\right] \times\left[y_{1}, y_{2}\right]$, we obtain

$$
V_{A_{f}}(R)=f\left(x_{2}+y_{2}\right)+f\left(x_{1}+y_{1}\right)-f\left(x_{2}+y_{1}\right)-f\left(x_{1}+y_{2}\right) .
$$

By using an argument similar to the proof of Proposition 3.1.2, the convexity of f implies that $V_{A_{f}}(R) \geq 0$.

Notice that the agop A_{f} given in (3.3) is Schur-constant.
Example 3.2.3. Consider the function $f:[0,2] \rightarrow[0,1]$, given for every $t \in[0,2]$ by $f(t):=\max \{t-1,0\}$. Then the function A_{f} defined by (3.3) is W.

Sometimes, it is useful to construct an agop with specified values on its diagonal, horizontal or vertical section (see, for example, [91, 81]). Specifically, given a suitable function f, the problem is whether there is a 2 -increasing agop with (diagonal, horizontal or vertical) section equal to f.

Proposition 3.2.3. Let h, v and δ be increasing functions from $[0,1]$ into $[0,1]$, $\delta(0)=0$ and $\delta(1)=1$. The following statements hold:

- $A_{\delta}(x, y)=\delta(x)$ is a 2-increasing agop with diagonal section is δ;
- a 2-increasing agop with horizontal section at $b \in] 0,1[$ equal to h is given by

$$
A_{h}(x, y)= \begin{cases}1, & \text { if } y=1 \\ 0, & \text { if } y=0 \\ h(x), & \text { otherwise }\end{cases}
$$

- a 2-increasing agop with vertical section at $a \in] 0,1[$ equal to v is given by

$$
A_{v}(x, y)= \begin{cases}1, & \text { if } x=1 \\ 0, & \text { if } x=0 \\ v(y), & \text { otherwise }\end{cases}
$$

Proof. The proof is a consequence of Proposition 3.1.4 because A_{δ}, A_{h} and A_{v} are all modular agops.

In [107] (see also [10]), an ordinal sum construction for agops is given. Here, we modify that method in order to ensure that an ordinal sum of 2-increasing agops is again 2-increasing.

Consider a partition of the unit interval [0,1] by the points $0=a_{0}<a_{1}<\cdots<$ $a_{n}=1$ and let $A_{1}, A_{2}, \ldots, A_{n}$ be 2 -increasing agops. For every $i \in\{1,2, \ldots, n\}$, consider the function \widetilde{A}_{i} defined on the square $\left[a_{i}, a_{i+1}\right]^{2}$ by

$$
\widetilde{A}_{i}(x, y)=a_{i}+\left(a_{i+1}-a_{i}\right) A_{i}\left(\frac{x-a_{i}}{a_{i+1}-a_{i}}, \frac{y-a_{i}}{a_{i+1}-a_{i}}\right)
$$

Then we can easily prove that \widetilde{A}_{i} is 2 -increasing on $\left[a_{i}, a_{i+1}\right]^{2}$. Now, define, for every point (x, y) such that $a_{i} \leq \min \{x, y\}<a_{i+1}$,

$$
\begin{equation*}
A_{1, n}(x, y):=\widetilde{A}_{i}\left(\min \left\{x, a_{i+1}\right\}, \min \left\{y, a_{i+1}\right\}\right) \tag{3.4}
\end{equation*}
$$

(and $A_{1, n}(1,1)=1$ by definition). Therefore, it is not difficult to prove that $A_{1, n}$ is also a 2-increasing agop, called the ordinal sum of the agops $\left\{A_{i}\right\}_{i=1,2, \ldots, n}$; we write

$$
A_{1, n}=\left(\left\langle a_{i}, A_{i}\right\rangle\right)_{i=1,2, \ldots, n}
$$

Example 3.2.4. Consider a partition of [0, 1] by means of the points $0=a_{0}<a_{1}<$ $\cdots<a_{n}=1$. Let $A_{1}, A_{2}, \ldots, A_{n}$ be 2 -increasing agops such that, for every index i, $A_{i}=A_{S}$, the smallest agop. Let $A_{1, n}$ be the ordinal sum $\left(\left\langle a_{i}, a_{i+1}, A_{i}\right\rangle\right)_{i=1,2, \ldots, n}$. For every point (x, y) such that $a_{i} \leq \min \{x, y\}<a_{i+1}, A_{1, n}(x, y)=a_{i}$. Note that $A_{1, n}$ is the smallest agop with idempotent elements $a_{0}, a_{1}, \ldots, a_{n}$.

3.3 Bounds on sets of 2-increasing agops

Given a (2-increasing) agop A, it is obvious that

$$
A_{S}(x, y) \leq A(x, y) \quad \text { for every }(x, y) \text { in }[0,1]
$$

where A_{S} is the smallest agop defined in section 1.11. Because A_{S} is 2-increasing, it is also the best-possible lower bound in the set \mathcal{A}_{2}, because it is 2-increasing.

The best-possible upper bound in \mathcal{A}_{2} is the greatest agop A_{G}. Notice that A_{G} is not 2 -increasing, e.g. $V_{A_{G}}\left([0,1]^{2}\right)=-1$, but it is the pointwise limit of the sequence $\left\{A_{n}\right\}_{n \in \mathbb{N}}$ of 2-increasing agops, defined by

$$
A_{n}(x, y)= \begin{cases}1, & \text { if }(x, y) \in[1 / n, 1]^{2} \\ 0, & \text { otherwise }\end{cases}
$$

In particular, (\mathcal{A}, \leq) is not a complete lattice. But, the following result holds.
Proposition 3.3.1. Every agop is the supremum of a suitable subset of \mathcal{A}_{2}.
Proof. Let A be an agop; we may (and, in fact do) suppose that $A \neq A_{G}$, since this case has already been considered, and that A is not 2 -increasing, this case being trivial. For every $\left(x_{0}, y_{0}\right)$ in $[0,1]$, let $z_{0}=A\left(x_{0}, y_{0}\right)$ and consider the following 2-increasing agop

$$
\widehat{A}_{x_{0}, y_{0}}:= \begin{cases}1, & \text { if }(x, y)=(1,1) ; \\ z_{0}, & \text { if }(x, y) \in\left[x_{0}, 1\right] \times\left[y_{0}, 1\right] \backslash\{(1,1)\} ; \\ 0, & \text { otherwise. }\end{cases}
$$

Then we have

$$
A(x, y)=\sup \left\{\widehat{A}_{x_{0}, y_{0}}:\left(x_{0}, y_{0}\right) \in[0,1]^{2}\right\}
$$

The lattice structure of the class of copulas was considered in [123]. Here, other cases will be considered. The following result, for instance, gives the bounds on the subsets of 2-increasing agops with the same margins.

Proposition 3.3.2. Let A be a 2-increasing agop with margins h_{0}, h_{1}, v_{0} and v_{1}. Let

$$
\begin{equation*}
A_{*}(x, y):=\max \left\{h_{0}(x)+v_{0}(y), h_{1}(x)+v_{1}(y)-1\right\} \tag{3.5}
\end{equation*}
$$

and

$$
\begin{equation*}
A^{*}(x, y):=\min \left\{h_{1}(x)+v_{0}(y)-A(0,1), h_{0}(x)+v_{1}(y)-A(1,0)\right\} \tag{3.6}
\end{equation*}
$$

Then, for every (x, y) in $[0,1]$,

$$
\begin{equation*}
A_{*}(x, y) \leq A(x, y) \leq A^{*}(x, y) \tag{3.7}
\end{equation*}
$$

Proof. Let A be a 2 -increasing agop. Let (x, y) be a point in $] 0,1\left[^{2}\right.$. In view of the 2 -increasing property, we have

$$
\begin{aligned}
& A(x, y) \geq A(x, 0)+A(0, y)=h_{0}(x)+v_{0}(y) \\
& A(x, y) \geq A(x, 1)+A(1, y)-1=h_{1}(x)+v_{1}(y)-1
\end{aligned}
$$

which together yield the first of the inequalities (3.7). Analogously,

$$
\begin{aligned}
& A(x, y) \leq A(0, y)+A(x, 1)-A(0,1)=h_{1}(x)+v_{0}(y)-A(0,1) \\
& A(x, y) \leq A(x, 0)+A(1, y)-A(1,0)=h_{0}(x)+v_{1}(y)-A(1,0)
\end{aligned}
$$

namely the second of the inequalities (3.7).
It should be noticed that, in the special case of copulas, the bounds of (3.7) coincide with the usual Fréchet-Hoeffding bounds (1.13).

The subclasses of 2-increasing agops with prescribed margins have the smallest and the greatest element (in the pointwise ordering), as stated here.

Theorem 3.3.1. For every 2-increasing agop A, the bounds A_{*} and A^{*} defined by (3.5) and (3.6) are 2-increasing agops.

Proof. The functions A_{*} and A^{*} defined by (3.5) and (3.6), respectively, are obviously agops. Below we shall prove that they are also 2 -increasing. To this end, let $R=$ $\left[x, x^{\prime}\right] \times\left[y, y^{\prime}\right]$ be any rectangle contained in the unit square.

Consider, first, the case of A^{*}. Then

$$
\begin{aligned}
& A^{*}\left(x^{\prime}, y^{\prime}\right):=\min \left\{h_{1}\left(x^{\prime}\right)+v_{0}\left(y^{\prime}\right)-A(0,1), h_{0}\left(x^{\prime}\right)+v_{1}\left(y^{\prime}\right)-A(1,0)\right\}, \\
& A^{*}(x, y):=\min \left\{h_{1}(x)+v_{0}(y)-A(0,1), h_{0}(x)+v_{1}(y)-A(1,0)\right\}, \\
& A^{*}\left(x^{\prime}, y\right):=\min \left\{h_{1}\left(x^{\prime}\right)+v_{0}(y)-A(0,1), h_{0}\left(x^{\prime}\right)+v_{1}(y)-A(1,0)\right\}, \\
& A^{*}\left(x, y^{\prime}\right):=\min \left\{h_{1}(x)+v_{0}\left(y^{\prime}\right)-A(0,1), h_{0}(x)+v_{1}\left(y^{\prime}\right)-A(1,0)\right\} .
\end{aligned}
$$

There are four cases to be considered.
Case 1. If

$$
A^{*}\left(x^{\prime}, y^{\prime}\right)=h_{1}\left(x^{\prime}\right)+v_{0}\left(y^{\prime}\right)-A(0,1), A^{*}(x, y)=h_{1}(x)+v_{0}(y)-A(0,1)
$$

then

$$
\begin{aligned}
A^{*}\left(x^{\prime}, y^{\prime}\right)+ & A^{*}(x, y)=h_{1}\left(x^{\prime}\right)+v_{0}(y)-A(0,1) \\
& +h_{1}(x)+v_{0}\left(y^{\prime}\right)-A(0,1) \geq A^{*}\left(x^{\prime}, y\right)+A^{*}\left(x, y^{\prime}\right) .
\end{aligned}
$$

Case 2. If

$$
A^{*}\left(x^{\prime}, y^{\prime}\right)=h_{0}\left(x^{\prime}\right)+v_{1}\left(y^{\prime}\right)-A(1,0), A^{*}(x, y)=h_{0}(x)+v_{1}(y)-A(1,0)
$$

then

$$
\begin{aligned}
A^{*}\left(x^{\prime}, y^{\prime}\right)+ & A^{*}\left(x^{\prime}, y^{\prime}\right)=h_{0}\left(x^{\prime}\right)+v_{1}(y)-A(1,0) \\
& +h_{0}(x)+v_{1}\left(y^{\prime}\right)-A(1,0) \geq A^{*}\left(x^{\prime}, y\right)+A^{*}\left(x, y^{\prime}\right)
\end{aligned}
$$

Case 3. If

$$
A^{*}\left(x^{\prime}, y^{\prime}\right)=h_{1}\left(x^{\prime}\right)+v_{0}\left(y^{\prime}\right)-A(0,1), A^{*}(x, y)=h_{0}(x)+v_{1}(y)-A(1,0)
$$

then, since A is 2-increasing, we have $h_{1}\left(x^{\prime}\right)+h_{0}(x) \geq h_{1}(x)+h_{0}\left(x^{\prime}\right)$, so that

$$
\begin{aligned}
A^{*}\left(x^{\prime}, y^{\prime}\right) & +A^{*}\left(x^{\prime}, y^{\prime}\right) \\
& =h_{1}\left(x^{\prime}\right)+h_{0}(x)-A(0,1)+v_{0}\left(y^{\prime}\right)+v_{1}(y)-A(1,0) \\
& \geq h_{1}(x)+v_{0}\left(y^{\prime}\right)-A(0,1)+h_{0}\left(x^{\prime}\right)+v_{1}(y)-A(0,1) \\
& \geq A^{*}\left(x^{\prime}, y\right)+A^{*}\left(x, y^{\prime}\right) .
\end{aligned}
$$

Case 4. If

$$
A^{*}\left(x^{\prime}, y^{\prime}\right)=h_{0}\left(x^{\prime}\right)+v_{1}\left(y^{\prime}\right)-A(1,0), A^{*}(x, y)=h_{1}(x)+v_{0}(y)-A(0,1)
$$

then, since A is 2-increasing, we have $v_{1}\left(y^{\prime}\right)+v_{0}(y) \geq v_{1}(y)+v_{0}\left(y^{\prime}\right)$, so that

$$
\begin{aligned}
A^{*}\left(x^{\prime}, y^{\prime}\right) & +A^{*}\left(x^{\prime}, y^{\prime}\right) \\
& =h_{0}\left(x^{\prime}\right)+v_{1}\left(y^{\prime}\right)-A(1,0)+h_{1}(x)+v_{0}(y)-A(0,1) \\
& \geq h_{0}\left(x^{\prime}\right)+v_{1}(y)-A(1,0)+h_{1}(x)+v_{0}\left(y^{\prime}\right)-A(0,1) \\
& \geq A^{*}\left(x^{\prime}, y\right)+A^{*}\left(x, y^{\prime}\right) .
\end{aligned}
$$

This proves that A^{*} is 2-increasing.
A similar proof holds for A_{*}. Given a rectangle $R=\left[x, x^{\prime}\right] \times\left[y, y^{\prime}\right]$ in the unit square, we have

$$
\begin{aligned}
& A_{*}\left(x^{\prime}, y^{\prime}\right):=\max \left\{h_{0}\left(x^{\prime}\right)+v_{0}\left(y^{\prime}\right), h_{1}\left(x^{\prime}\right)+v_{1}\left(y^{\prime}\right)-1\right\}, \\
& A_{*}(x, y):=\max \left\{h_{0}(x)+v_{0}(y), h_{1}(x)+v_{1}(y)-1\right\}, \\
& A_{*}\left(x^{\prime}, y\right):=\max \left\{h_{0}\left(x^{\prime}\right)+v_{0}(y), h_{1}\left(x^{\prime}\right)+v_{1}(y)-1\right\}, \\
& A_{*}\left(x, y^{\prime}\right):=\max \left\{h_{0}(x)+v_{0}\left(y^{\prime}\right), h_{1}(x)+v_{1}\left(y^{\prime}\right)-1\right\} .
\end{aligned}
$$

Here, again, four cases will be considered.
Case 1. If

$$
A_{*}\left(x^{\prime}, y\right)=h_{0}\left(x^{\prime}\right)+v_{0}(y), \quad A_{*}\left(x, y^{\prime}\right)=h_{0}(x)+v_{0}\left(y^{\prime}\right),
$$

then

$$
\begin{aligned}
A_{*}\left(x^{\prime}, y\right)+A_{*}\left(x, y^{\prime}\right) & =h_{0}(x)+v_{0}(y)+h_{0}\left(x^{\prime}\right)+v_{0}\left(y^{\prime}\right) \\
& \leq A_{*}\left(x^{\prime}, y^{\prime}\right)+A_{*}(x, y) .
\end{aligned}
$$

Case 2. If

$$
A_{*}\left(x^{\prime}, y\right)=h_{0}\left(x^{\prime}\right)+v_{0}(y), \quad A_{*}\left(x, y^{\prime}\right)=h_{1}(x)+v_{1}\left(y^{\prime}\right)-1
$$

then, since A is 2-increasing, we have $h_{0}\left(x^{\prime}\right)+h_{1}(x) \leq h_{1}\left(x^{\prime}\right)+h_{0}(x)$ so that

$$
\begin{aligned}
A_{*}\left(x^{\prime}, y\right)+A_{*}\left(x, y^{\prime}\right) & =h_{0}\left(x^{\prime}\right)+v_{0}(y)+h_{1}(x)+v_{1}\left(y^{\prime}\right)-1 \\
& \leq h_{1}\left(x^{\prime}\right)+v_{1}\left(y^{\prime}\right)-1+h_{0}(x)+v_{0}(y) \\
& \leq A_{*}\left(x^{\prime}, y^{\prime}\right)+A_{*}(x, y)
\end{aligned}
$$

Case 3. If

$$
A_{*}\left(x^{\prime}, y\right)=h_{1}\left(x^{\prime}\right)+v_{1}(y)-1, \quad A_{*}\left(x, y^{\prime}\right)=h_{0}(x)+v_{0}\left(y^{\prime}\right)
$$

then, since A is 2-increasing, we have $v_{1}(y)+v_{0}\left(y^{\prime}\right) \leq v_{1}\left(y^{\prime}\right)+v_{0}(y)$, so that

$$
\begin{aligned}
A_{*}\left(x^{\prime}, y\right)+A_{*}\left(x, y^{\prime}\right) & =h_{1}\left(x^{\prime}\right)+v_{1}(y)-1+h_{0}(x)+v_{0}\left(y^{\prime}\right) \\
& \leq h_{1}\left(x^{\prime}\right)+v_{1}\left(y^{\prime}\right)-1+h_{0}(x)+v_{0}(y) \\
& \leq A_{*}\left(x^{\prime}, y^{\prime}\right)+A_{*}(x, y)
\end{aligned}
$$

Case 4. If

$$
A_{*}\left(x^{\prime}, y\right)=h_{1}\left(x^{\prime}\right)+v_{1}(y)-1, A_{*}\left(x, y^{\prime}\right)=h_{1}(x)+v_{1}\left(y^{\prime}\right)-1
$$

then

$$
\begin{aligned}
A_{*}\left(x^{\prime}, y\right)+A_{*}\left(x, y^{\prime}\right) & =h_{1}\left(x^{\prime}\right)+v_{1}\left(y^{\prime}\right)-1+h_{1}(x)+v_{1}(y)-1 \\
& \leq A_{*}\left(x^{\prime}, y^{\prime}\right)+A_{*}(x, y)
\end{aligned}
$$

The following result gives a necessary and sufficient condition that ensures $A_{*}=A^{*}$ in the case of a symmetric agop A.

Proposition 3.3.3. For a symmetric and 2-increasing agop A, the following statements are equivalent:
(a) $A_{*}=A^{*}$;
(b) there exists an interval $I \subseteq[0,1], 0 \in I$, and $a \in[0,1]$ such that

$$
h_{1}(t)= \begin{cases}h_{0}(t)+a, & \text { if } t \in I, \tag{3.8}\\ h_{0}(t)+(1-a), & \text { if } t \in[0,1] \backslash I\end{cases}
$$

Proof. If A is a symmetric agop, then $h_{0}=v_{0}$ and $h_{1}=v_{1}$. Set $a:=A(0,1)=A(1,0)$, $a \leq 1 / 2$. Therefore

$$
A_{*}(x, y):=\max \left\{h_{0}(x)+h_{0}(y), h_{1}(x)+h_{1}(y)-1\right\}
$$

and

$$
A^{*}(x, y):=\min \left\{h_{1}(x)+h_{0}(y)-a, h_{0}(x)+h_{1}(y)-a\right\}
$$

If $A=A^{*}$, then $A(x, x)=h_{1}(x)+h_{0}(x)-a$. Now, from $A=A_{*}$, we obtain that either $A(x, x)=2 h_{0}(x)$ or $A(x, x)=2 h_{1}(x)-1$. Therefore, either

$$
\begin{equation*}
h_{1}(x)-h_{0}(x)=a, \tag{3.9}
\end{equation*}
$$

or

$$
\begin{equation*}
h_{1}(x)-h_{0}(x)=1-a . \tag{3.10}
\end{equation*}
$$

If $a=1 / 2$, then $h_{1}(x)=h_{0}(x)+a$ on $[0,1]$. Otherwise, note that (3.9) holds at the point $x=0$ and (3.10) holds at the point $x=1$. Moreover, if (3.9) does not hold at a point x_{1}, then (3.9) does not hold also for every $x_{2}>x_{1}$. In fact, for the 2 -increasing property, we obtain

$$
h_{1}\left(x_{2}\right)-h_{0}\left(x_{2}\right) \geq h_{1}\left(x_{1}\right)-h_{0}\left(x_{1}\right)=1-a>1 / 2 .
$$

Thus h_{1} has the form (3.8), where I is an interval. The converse is just a matter of straightforward verification.

Note that if $A=A^{*}=A_{*}$, then $A=2 a B+(1-2 a) C$, where B is a symmetric and modular agop, and $C=1_{I^{2}}$ is the indicator function of the set I^{2}.

Example 3.3.1. Consider the arithmetic mean $A(x, y):=(x+y) / 2$, which is obviously 2 -increasing. Then, we easily evaluate $A_{*}=A^{*}=A$.

Consider the 2-increasing agop given by the geometric mean $G(x, y):=\sqrt{x y}$. We have

$$
G_{*}(x, y)=\max \{0, \sqrt{x}+\sqrt{y}-1\} \quad \text { and } \quad G^{*}(x, y)=\min \{\sqrt{x}, \sqrt{y}\}
$$

both of which are 2-increasing.
Remark 3.3.1. In the general case of a 2-increasing agop A such that $A=A_{*}=A^{*}$, as above it can be proved that one among the following four equalities holds:

- $h_{1}(x)-h_{0}(x)=A(0,1)$;
- $h_{1}(x)-h_{0}(x)=1-A(1,0)$;
- $v_{1}(y)-v_{0}(y)=1-A(0,1) ;$
- $v_{1}(y)-v_{0}(y)=A(1,0)$.

However, one need not have explicit conditions as in the symmetric case for $h_{1}(x)-$ $h_{0}(x)$ and $v_{1}(y)-v_{0}(y)$.

Let h, v and δ be increasing functions from $[0,1]$ into $[0,1], \delta(0)=0$ and $\delta(1)=1$. Denote by $\mathcal{A}_{h}, \mathcal{A}_{v}$ and \mathcal{A}_{δ}, respectively, the subclasses of 2 -increasing agops with horizontal section at $b \in] 0,1[$ equal to h, vertical section at $a \in] 0,1[$ equal to v, diagonal section equal δ, respectively. Notice that the sets $\mathcal{A}_{h}, \mathcal{A}_{v}$ and \mathcal{A}_{δ} are not empty, in view of Proposition 3.2.3. The following results give the best-possible bounds in these subclasses.

Proposition 3.3.4. Let $h:[0,1] \rightarrow[0,1]$ be an increasing function. For every A in \mathcal{A}_{h} we obtain

$$
\begin{equation*}
\left(A_{h}\right)_{*} \leq A(x, y) \leq\left(A_{h}\right)^{*} \tag{3.11}
\end{equation*}
$$

where

$$
\begin{aligned}
\left(A_{h}\right)_{*}(x, y): & : \begin{cases}1, & \text { if }(x, y)=(1,1) ; \\
0, & \text { if } 0 \leq y<b ; \\
h(x), & \text { otherwise } ;\end{cases} \\
\left(A_{h}\right)^{*}(x, y): & : \begin{cases}0, & \text { if }(x, y)=(0,0) ; \\
1, & \text { if } b<y \leq 1 ; \\
h(x), & \text { otherwise. }\end{cases}
\end{aligned}
$$

Moreover,

$$
\left(A_{h}\right)_{*}(x, y)=\bigwedge_{A \in \mathcal{A}_{h}} A(x, y) \quad \text { and } \quad\left(A_{h}\right)^{*}(x, y)=\bigvee_{A \in \mathcal{A}_{h}} A(x, y),
$$

where $\left(A_{h}\right)_{*}$ is a 2 -increasing agop and $\left(A_{h}\right)^{*}$, while it is still an agop, is not necessarily 2 -increasing.

Proof. For all $(x, y) \in[0,1]^{2}$ and $A \in \mathcal{A}_{h}, A(x, y) \geq 0$ for every $y \in[0, b[$ and $A(x, y) \geq h(x)$ for every $y \in[b, 1]$, viz. $A(x, y) \geq\left(A_{h}\right)_{*}(x, y)$ on $[0,1]^{2}$. Analogously, $A(x, y) \leq h(x)$ for every $y \in[0, b]$ and $A(x, y) \leq 1$ for every $y \in] b, 1]$, viz. $A(x, y) \leq$ $\left(A_{h}\right)^{*}(x, y)$ on $[0,1]^{2}$. Both $\left(A_{h}\right)_{*}$ and $\left(A_{h}\right)^{*}$ are agops, as is immediately seen; it is also immediate to check that $\left(A_{h}\right)_{*}$ is 2 -increasing and, therefore, that $\left(A_{h}\right)_{*}=$ $\bigwedge_{A \in \mathcal{A}_{h}} A$. Now, suppose that B is any agop greater than, or at least equal to,
$\bigvee_{A \in \mathcal{A}_{h}} A$. Then $B(x, y) \geq A_{1}(x, y)$, where A_{1} is the 2-increasing agop given by

$$
A_{1}(x, y):= \begin{cases}0, & \text { if } y=0 \\ h(x), & \text { if } 0<y \leq b ; \\ 1, & \text { if } b<y \leq 1\end{cases}
$$

and $B(x, y) \geq A_{2}(x, y)$, where A_{2} is the 2-increasing agop given by

$$
A_{2}(x, y):= \begin{cases}0, & \text { if } x=0 \\ h(x), & \text { if } x \neq 0 \text { and } 0<y \leq b ; \\ 1, & \text { if } x \neq 0 \text { and } b<y \leq 1\end{cases}
$$

therefore $B(x, y) \geq \max \left\{A_{1}(x, y), A_{2}(x, y)\right\}=\left(A_{h}\right)^{*}(x, y)$ on $[0,1]^{2}$ and we obtain $\left(A_{h}\right)^{*}=\bigvee_{A \in \mathcal{A}_{h}} A$. However $\left(A_{h}\right)^{*}$ need not be 2-increasing; in fact,

$$
V_{\left(A_{h}\right)^{*}}([0,1] \times[b, 1])=h(0)-h(1),
$$

and thus $\left(A_{h}\right)^{*}$ is 2-increasing if, and only if, $h=0$.
Analogously, we prove the following result for the class \mathcal{A}_{v}.
Proposition 3.3.5. Let $v:[0,1] \rightarrow[0,1]$ be an increasing function. For every A in \mathcal{A}_{v} we obtain

$$
\begin{equation*}
\left(A_{v}\right)_{*} \leq A(x, y) \leq\left(A_{v}\right)^{*}, \tag{3.12}
\end{equation*}
$$

where

$$
\begin{aligned}
& \left(A_{v}\right)_{*}(x, y):= \begin{cases}1, & \text { if }(x, y)=(1,1) ; \\
0, & \text { if } 0 \leq x<a ; \\
v(y), & \text { otherwise } ;\end{cases} \\
& \left(A_{v}\right)^{*}(x, y):= \begin{cases}0, & \text { if }(x, y)=(0,0) ; \\
1, & \text { if } a<x \leq 1 ; \\
v(y), & \text { otherwise. }\end{cases}
\end{aligned}
$$

Moreover,

$$
\left(A_{v}\right)_{*}(x, y)=\bigwedge_{A \in \mathcal{A}_{v}} A(x, y) \quad \text { and } \quad\left(A_{v}\right)^{*}(x, y)=\bigvee_{A \in \mathcal{A}_{v}} A(x, y),
$$

where $\left(A_{v}\right)_{*}$ is a 2 -increasing agop and $\left(A_{v}\right)^{*}$, while it is still an agop, is not necessarily 2 -increasing.

Proposition 3.3.6. Let δ be an increasing function with $\delta(0)=0$ and $\delta(1)=1$. For every A in \mathcal{A}_{δ}, we obtain

$$
\begin{equation*}
\left(A_{\delta}\right)_{*}:=\min \{\delta(x), \delta(y)\} \leq A(x, y) \leq\left(A_{\delta}\right)^{*}:=\max \{\delta(x), \delta(y)\} . \tag{3.13}
\end{equation*}
$$

Moreover, $\left(A_{\delta}\right)_{*}$ and $\left(A_{\delta}\right)^{*}$ are the best-possible bounds, in the sense that

$$
\left(A_{\delta}\right)_{*}(x, y)=\bigwedge_{A \in \mathcal{A}_{\delta}} A(x, y) \quad \text { and } \quad\left(A_{\delta}\right)^{*}(x, y)=\bigvee_{A \in \mathcal{A}_{\delta}} A(x, y)
$$

where $\left(A_{\delta}\right)_{*}$ is a 2-increasing agop and $\left(A_{\delta}\right)^{*}$, while it is still an agop, is never $2-$ increasing.

Proof. For all $(x, y) \in[0,1]^{2}$ and $A \in \mathcal{A}_{\delta}$,

$$
A(x, y) \geq A(x \wedge y, x \wedge y)=\min \{\delta(x), \delta(y)\}
$$

and

$$
A(x, y) \leq A(x \vee y, x \vee y)=\max \{\delta(x), \delta(y)\}
$$

This proves (3.13). Both $\left(A_{\delta}\right)_{*}$ and $\left(A_{\delta}\right)^{*}$ are agops, as is immediately seen; it is also immediate to check that $\left(A_{\delta}\right)_{*}$ is 2-increasing (because of Proposition 3.2.1) and, therefore, that $\left(A_{\delta}\right)_{*}=\bigwedge_{A \in \mathcal{A}_{\delta}} A$. Now, suppose that B is any agop greater than, or at least equal to, $\bigvee_{A \in \mathcal{A}_{\delta}} A$. Then $B(x, y) \geq A_{1}(x, y):=\delta(x)$ and $B(x, y) \geq$ $A_{2}(x, y):=\delta(y)$, where A_{1} and A_{2} are 2-increasing agops. Thus, $B(x, y) \geq\left(A_{\delta}\right)^{*}$ so that $\left(A_{\delta}\right)^{*}=\bigvee_{A \in \mathcal{A}_{\delta}} A$. This proves that $\left(A_{\delta}\right)^{*}$ is the best possible upper bound for the set \mathcal{A}_{δ}. However $\left(A_{\delta}\right)^{*}$ is never 2 -increasing, in fact

$$
V_{\left(A_{\delta}\right)^{*}}\left([0,1]^{2}\right)=\delta(0)-\delta(1)=-1<0
$$

Corollary 3.3.1. Let δ be an increasing function with $\delta(0)=0$ and $\delta(1)=1$. For every symmetric agop A in \mathcal{A}_{δ}, we obtain

$$
\left(A_{\delta}\right)_{*}:=\min \{\delta(x), \delta(y)\} \leq A(x, y) \leq \frac{\delta(x)+\delta(y)}{2}
$$

where $(\delta(x)+\delta(y)) / 2$ is the maximal element in the subclass of the symmetric agops in \mathcal{A}_{2}.

Proof. If A is symmetric and 2-increasing, we have, for every x, y in $[0,1]$,

$$
\delta(x)+\delta(y)=A(x, x)+A(y, y) \geq 2 A(x, y)
$$

3.4 A construction method for copulas

The main result of this section is to give a simple method of constructing a copula from a 2 -increasing and 1-Lipschitz agop.

Theorem 3.4.1. For every 2-increasing and 1-Lipschitz agop A, the function

$$
C(x, y):=\min \{x, y, A(x, y)\}
$$

is a copula.

Proof. First, in order to prove that C is a copula, we note that C has neutral element 1 and annihilator 0 ; in fact, for every $x \in[0,1]$, we have

$$
|A(1,1)-A(x, 1)| \leq 1-x
$$

and thus $A(x, 1) \geq x$. Consequently, we have

$$
C(x, 1)=\min \{A(x, 1), x\}=x, \quad C(x, 0)=\min \{A(x, 0), 0\}=0
$$

and, similarly, $C(1, x)=x$ and $C(0, x)=0$. Then, we prove that C is 2 -increasing by using Proposition 1.6.1.

For every rectangle $R:=[s, t] \times[s, t]$ on $[0,1]^{2}$, set

$$
V_{C}(R)=\min \{A(s, s), s\}+\min \{A(t, t), t\}-\min \{A(s, t), s\}-\min \{A(t, s), s\} .
$$

We have to prove that $V_{C}(R) \geq 0$ and several cases are considered.
If $A(s, s) \geq s$, then also $A(s, t), A(t, s)$ and $A(t, t)$ are greater than s, because A is increasing in each variable, and thus

$$
V_{C}(R)=\min \{A(t, t), t\}-s \geq 0
$$

If $A(s, s)<s$, then we distinguish:

- if $A(t, t)<t$, since A is 2-increasing, we have

$$
A(s, s)+A(t, t) \geq A(s, t)+A(t, s) \geq \min \{A(s, t), s\}+\min \{A(t, s), s\}
$$

viz. $V_{C}(R) \geq 0$;

- if $A(t, t) \geq t$, since A is 1 -Lipschitz, we have

$$
\min \{A(t, s), s\}-\min \{A(s, s), s\} \leq t-s \leq t-\min \{A(t, s), s\}
$$

and thus $V_{C}(R) \geq 0$.
Now, let $R=\left[x_{1}, x_{2}\right] \times\left[y_{1}, y_{2}\right]$ be a rectangle contained in Δ_{+}. Then $V_{C}(R)$ is given by

$$
\begin{aligned}
V_{C}(R)= & \min \left\{A\left(x_{1}, y_{1}\right), y_{1}\right\}+\min \left\{A\left(x_{2}, y_{2}\right), y_{2}\right\} \\
& -\min \left\{A\left(x_{2}, y_{1}\right), y_{1}\right\}-\min \left\{A\left(x_{1}, y_{2}\right), y_{2}\right\} .
\end{aligned}
$$

If $A\left(x_{1}, y_{1}\right) \geq y_{1}$, then also $A\left(x_{2}, y_{1}\right), A\left(x_{1}, y_{2}\right)$ and $A\left(x_{2}, y_{2}\right)$ are greater than y_{1}, because A is increasing in each variable, and thus

$$
V_{C}(R)=\min \left\{A\left(x_{2}, y_{2}\right), y_{2}\right\}-y_{1} \geq 0
$$

If $A\left(x_{1}, y_{1}\right)<y_{1}$, then we distinguish:

- if $A\left(x_{2}, y_{2}\right)<y_{2}$, since A is 2-increasing, we have

$$
\begin{aligned}
A\left(x_{2}, y_{2}\right)+A\left(x_{1}, y_{1}\right) & \geq A\left(x_{2}, y_{1}\right)+A\left(x_{1}, y_{2}\right) \\
& \geq \min \left\{A\left(x_{2}, y_{1}\right), y_{1}\right\}+\min \left\{A\left(x_{1}, y_{2}\right), y_{2}\right\}
\end{aligned}
$$

viz. $V_{C}(R) \geq 0$;

- if $A\left(x_{2}, y_{2}\right) \geq y_{2}$, we have

$$
V_{C}(R)=A\left(x_{1}, y_{1}\right)+y_{2}-A\left(x_{1}, y_{2}\right)-\min \left\{A\left(x_{2}, y_{1}\right), y_{1}\right\}
$$

and, since A is 1 -Lipschitz,

$$
A\left(x_{1}, y_{2}\right) \leq y_{2}-y_{1}+A\left(x_{1}, y_{1}\right) \leq y_{2},
$$

moreover, from the fact that

$$
A\left(x_{1}, y_{2}\right)-A\left(x_{1}, y_{1}\right) \leq y_{2}-y_{1} \leq y_{2}-\min \left\{A\left(x_{2}, y_{1}\right), y_{1}\right\}
$$

it follows that $V_{C}(R) \geq 0$.
Finally, let $R=\left[x_{1}, x_{2}\right] \times\left[y_{1}, y_{2}\right]$ be a rectangle contained in Δ_{-}. Then $V_{C}(R)$ is given by

$$
\begin{aligned}
V_{C}(R)= & \min \left\{A\left(x_{1}, y_{1}\right), x_{1}\right\}+\min \left\{A\left(x_{2}, y_{2}\right), x_{2}\right\} \\
& -\min \left\{A\left(x_{2}, y_{1}\right), x_{2}\right\}-\min \left\{A\left(x_{1}, y_{2}\right), x_{1}\right\} .
\end{aligned}
$$

If $A\left(x_{1}, y_{1}\right) \geq x_{1}$, then, because A is increasing in each variable,

$$
V_{C}(R)=\min \left\{A\left(x_{2}, y_{2}\right), x_{2}\right\}-x_{1} \geq 0 .
$$

If $A\left(x_{1}, y_{1}\right)<x_{1}$, then we distinguish:

- if $A\left(x_{2}, y_{2}\right)<x_{2}$, since A is 2 -increasing, we have

$$
\begin{aligned}
A\left(x_{2}, y_{2}\right)+A\left(x_{1}, y_{1}\right) & \geq A\left(x_{2}, y_{1}\right)+A\left(x_{1}, y_{2}\right) \\
& \geq \min \left\{A\left(x_{2}, y_{1}\right), x_{1}\right\}+\min \left\{A\left(x_{1}, y_{2}\right), x_{2}\right\}
\end{aligned}
$$

viz. $V_{C}(R) \geq 0$;

- if $A\left(x_{2}, y_{2}\right) \geq x_{2}$, we have

$$
V_{C}(R)=A\left(x_{1}, y_{1}\right)+x_{2}-\min \left\{A\left(x_{1}, y_{2}\right), x_{1}\right\}-A\left(x_{2}, y_{1}\right),
$$

and, since A is $1-$ Lipschitz

$$
A\left(x_{2}, y_{1}\right) \leq x_{2}-x_{1}+A\left(x_{1}, y_{1}\right) \leq x_{2}
$$

moreover, from the inequality

$$
A\left(x_{2}, y_{1}\right)-A\left(x_{1}, y_{1}\right) \leq x_{2}-x_{1} \leq x_{2}-\min \left\{A\left(x_{1}, y_{2}\right), x_{1}\right\},
$$

it follows that $V_{C}(R) \geq 0$.

Notice that agops satisfying the assumptions of Theorem 3.4.1 are stable under convex combinations. Thus, many examples can be provided by using, for examples, copulas, quasi-arithmetic means bounded from above by the arithmetic mean, and their convex combinations.

Example 3.4.1. Let A be the modular agop $A(x, y)=(\delta(x)+\delta(y)) / 2$, where δ : $[0,1] \rightarrow[0,1]$ is an increasing and 2 -Lipschitz function with $\delta(0)=0$ and $\delta(1)=1$. Then A satisfies the assumptions of Theorem 3.4.1 and it generates the following copula

$$
C_{\delta}(x, y)=\min \left\{x, y, \frac{\delta(x)+\delta(y)}{2}\right\}
$$

Copulas of this type were introduced in [56] and are called diagonal copulas.
Example 3.4.2. Let consider the following 2-increasing and 1-Lipschitz agop

$$
A(x, y)=\lambda B(x, y)+(1-\lambda) \frac{x+y}{2}
$$

defined for every $\lambda \in[0,1]$ and for every copula B. This A satisfies the assumptions of Theorem 3.4.1 and, therefore, the following class of copulas is obtained

$$
C_{\lambda}(x, y):=\min \left\{x, y, \lambda B(x, y)+(1-\lambda) \frac{x+y}{2}\right\} .
$$

Example 3.4.3. Let A be a 2-increasing agop of the form $A(x, y)=f(x) \cdot g(y)$. If A is 1 -Lipschitz, then A satisfies the assumptions of Theorem 3.4.1. Consider, for instance, either $f(x)=x$ and $g(y)=(y+1) / 2$, or $f(x)=(x+1) / 2$ and $g(y)=y$, which yield, respectively, the following copulas

$$
C_{1}(x, y)=\min \left\{y, \frac{x(y+1)}{2}\right\}, \quad C_{2}(x, y)=\min \left\{x, \frac{y(x+1)}{2}\right\} .
$$

