
Chapter 3

Inverse methods

A general boundary value problem of elastostatics for a body B consists in
finding a motion x = χ(X) that satisfies a(X, t) = 0 for all particles X of Br and
for all times t. Recalling equation (1.24), this means that the motion must satisfy
the equilibrium equation

DivTR + ρrbr = 0, (3.1)

everywhere in Br, and the boundary conditions of surface tractions (1.22) and
place,

tN = TRN , prescribed on ∂B1
r , (3.2)

X = X̄, prescribed on ∂B2
r , (3.3)

respectively, where ∂B1
r and ∂B2

r are disjoint parts of ∂Br such that ∂Br = ∂B1
r ∪

∂B2
r .
The boundary value problem is expressed in terms of material description be-

cause, as we have just emphasized in the first chapter, the geometry of the de-
formed body generally is unknown a priori (otherwise equations (1.18) - (1.20)
may be used). From a theoretical point of view, a given rubberlike material can be
characterized by an appropriate constitutive equation that will enable us to pre-
dict its response to specified loading and displacement boundary conditions. We
assume, as a first approximation, that a certain rubber material may be modeled
as either a compressible or an incompressible, homogeneous isotropic hyperelastic
material such that (1.36) or (1.40) applies. These represention formulae are useful
to understand how the given material may be distinguished from another one on
grounds of the response functions βi only. But very little can be said a priori
about these response functions unless some helpful experiment is made. Then,
because measurements can be done only on the boundary of the test specimen, it
would better to know a priori the kind of deformation that we want to reproduce
experimentally in order to know what quantities can be effectively measured. To
this end, Beatty [9] says

It is clear, in particular, that the experimenter must know a priori the
class of deformations that actually may be produced in every compress-
ible or incompressible, homogeneous and isotropic, hyperelastic mate-
rial by the application of surface loading alone. Also, the surface loads
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38 Chapter 3. Inverse methods

needed to effect them must be known in order to select the kinds of
loading devices that may be used.

Theoretical results which fit this program are so-called universal results. A defor-
mation, or a motion, which satisfies the balance equations with zero body force and
which, in equilibrium, is supported by suitable surface tractions alone, is called a
controllable solution. A controllable solution which is the same for all materials in
a given class is a universal solution (when the solution is controllable for a specific
subclass of material, it is called a relative universal solution). Besides universal
solutions, other kind of universal results exist, which involve not only the strain
but also the stress. For a given deformation or motion, a local universal relation
is an equation relating the stress components and the position vector which holds
at any point of the body and which is the same for any material in a given class.

From the mathematical point of view, the analytical solution for the (3.1) - (3.3)
problem may be very hard to attain, even in the simplest boundary value prob-
lem, because the set of equations forms a non-trivial system of nonlinear, partial
differential equations generating often nonunique solutions. To solve the result-
ing boundary-value problems, inverse techniques can be used to provide simple
solutions and to suggest experimental programs for the determination of response
functions. Two powerful methods for inverse investigations are the so-called inverse
method and the semi-inverse method. They have been used in elasticity theory as
well as in all fields of the mechanics of continua. For example, it is quoted in the
book [77] that

In the inverse method, a known solution of the displacement is assumed
with the aid of which strain and stress states are determined. Finally,
using the boundary conditions, the body itself and its load and reactions
are determined.

In the semi-inverse method, part of unknowns is given, and the missing
quantities are determined in such a way that the differential equations
and boundary conditions are being satisfied.

Similarly, Carlson [19] states

In the inverse method, we start with a given deformation (i.e., guess
an F ), calculate the corresponding stress from the constitutive equa-
tion, and check to see if the stress satisfies equilibrium (generally for
zero body force). If equilibrium is not satisfied, then the deformation
is discarderd. However, if equilibrium is met, then we attempt to in-
terpret the deformation and stress in a physically meaningful setting.
I. e., we consider various shapes for the (deformed) body, calculate the
corresponding surface tractions, anh hope to get something of physical
interest.

The semi-inverse method is just the same, except that in the deforma-
tion one includes some arbitrary parameters of functions that can be
adjusted so that equilibrium is met or the boundary data comes out to
be more interesting.
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Here is what Neményi [90] says about such methods in a general framework of
continuum mechanics:

We shall call inverse an investigation of a partial differential equation
of physics if in it the boundary conditions (or certain other supplemen-
tary conditions) are not prescribed at the outset. Instead, the solution
is defined by the differential equation, and certain additional analyti-
cal, geometrical, kinematical, or physical properties of the field. In the
semi-inverse method some of the boundary conditions are prescribed at
the outset, whereas others are left open and obtained indirectly through
certain simplifying assumption concerning the properties of the fields.

The true power of the inverse methods is that they can reduce in most cases a
system of differential equations in three independent variables to a system having
only two, or even one, independent variable(s) which may, or may not, admit an
exact solution in closed form. If this reduced system can be solved in closed form,
then it is possible to obtain some exact solutions to boundary value problems,
that hopefully are meaningful within the framework of the theory that is being
employed1. Of course, even if it cannot be solved exactly, the semi-inverse method
leads to a simpler set of equations that can be resolved numerically. When the use of
inverse methods does not lead to new solutions, it may nonetheless yield a negative
result in certain cases; that is, the nonexistence of certain types of solutions may
be established. Inverse and semi-inverse procedures have been implemented in all
fields of the mechanics of continua, and the number of results obtained is very large
indeed (see [90] to have an idea of their applications).

3.1 Inverse Method

In order to find exact solutions to the problem (3.1) - (3.3) by the inverse
method, the starting point is to assume a suitable form for the deformation, then
find the stress fields associated to this deformation by making use of the constitutive
equations, and finally verify whether the equilibrium equations are satisfied. In
the positive case, one may deduce the surface tractions necessary to maintain the
deformation, some of which are of considerable importance experimentally. Let us
consider some examples, starting with some homogeneous deformations, with zero
body forces.

3.1.1 Homogeneous deformations

The most general homogeneous deformation is described by the following form

x = FX + c, (3.4)

where X and x are the the Cartesian coordinates in the reference and in the current
configurations, respectively, F is a constant tensor and c is a constant vector.

1This is not always the case, as it is well known in the framework of the Navier-Stokes theory
where the exact solutions found by the semi-inverse method are often not compatible with the
canonical no-slip boundary conditions.
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From (1.35) we deduce that the Cauchy stress T is also constant throughout a
compressible material. It follows that the equilibrium equations are satisfied only
when the body force b is zero and these deformations therefore may be produced
by surface tractions alone2. For incompressible materials we deduce from (1.39)
that if the hydrostatic pressure p is constant, then the above results also apply.

Let us consider pure homogeneous deformations, described by

x1 = λ1X1, x2 = λ2X2, x3 = λ3X3, (3.5)

where (X1, X2, X3) and (x1, x2, x3) are the the Cartesian coordinates in the ref-
erence and in the current configurations, respectively, and λ1, λ2, λ3, are positive
constants. The physical components of B and of his inverse B−1 are given by





λ2
1 0 0

0 λ2
2 0

0 0 λ2
3



 ,





λ−2
1 0 0
0 λ−2

2 0
0 0 λ−2

3



 , (3.6)

respectively, and the first three principal invariants are given by

I1 = λ2
1 + λ2

2 + λ2
3,

I2 = λ2
1λ

2
2 + λ2

2λ
2
3 + λ2

3λ
2
1, (3.7)

I3 = λ2
1λ

2
2λ

2
3.

By formula (1.36) the stress components for a compressible material are

T11 = β0 + β1λ
2
1 + β−1λ

−2
1 , T22 = β0 + β1λ

2
2 + β−1λ

−2
2 , (3.8)

T33 = β0 + β1λ
2
3 + β−1λ

−2
3 , Tij = 0 (i 6= j).

In the incompressible case the deformation (3.5) must satisfy the constraint I3 = 1,
that is

λ1λ2λ3 = 1, (3.9)

so that, in contrast to the compressible case, only two of the constants λ1, λ2, λ3

are independent. By formula (1.40), and because we are considering zero body
force, the equilibrium equations are satisfied only if p = p0 with p0 constant. The
stress components for an incompressible material are

T11 = −p0 + 2W1λ
2
1 − 2W2λ

−2
1 , T22 = −p0 + 2W1λ

2
2 − 2W2λ

−2
2 , (3.10)

T33 = −p0 + 2W1λ
2
3 − 2W2λ

−2
3 , Tij = 0 (i 6= j).

In both cases only normal stresses are present on surfaces parallel to the coordinate
planes. The incompressible case (3.10) differs from (3.8) by an arbitrary constant
p0. The appearance of this term is one of the reasons why constrained materials
are easier to deal with mathematically than unconstrained ones.

2This result is important physically since it is relatively easy to apply forces to a boundary,
see Beatty [9].
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Dilatation

In the special case where λ1 = λ2 = λ3 = λ (with λ > 0 because J > 0), the
deformation (3.5) is called uniform dilatation. The stress components (3.8) then
become

Tij = (β0 + β1λ
2 + β−1λ

−2)δij, (3.11)

where δ is the Kronecker symbol. The term −(β0 + β1λ
2 + β−1λ

−2) corresponds
therefore to a hydrostatic pressure that we denote by P (λ2). When P > 0 the
body is subjected to a hydrostatic pressure, while for P < 0 it is subjected to a
hydrostatic tension. By (1.18) we obtain the stress vector t in the form

tn = −P (λ2)n, (3.12)

where n is a unit vector normal to the surface. Hence, to maintain this deformation,
the stress vector must be normal to the surface at each point of the boundary.
In general one would expect that the volume of a compressible material held in
equilibrium under the action of a uniform pressure should be less than its volume
before deformation, that under the action of a uniform tension, the volume should
be greater than its initial volume, and that when no traction is applied on the
boundary, the volume remains unchanged. Since the variation of volume is J = λ3,
an equivalent statement is that

λ < 1 when P > 0,

λ > 1 when P < 0, (3.13)

λ = 1 when P = 0.

Furthermore, P should be a monotonic decreasing function of λ in order to increase
the volume when the applied pressure is increased and viceversa, so that

dP

dλ
< 0. (3.14)

In linear elasticity this constraint is equivalent to require that the bulk modulus κ
is positive (see (1.54)2). In view of the definition of P , the relation (3.14) places
some restrictions on the response functions βi. In the incompressible case, the
constraint (3.9) requires that λ = 1 so that there is no deformation.

Simple extension

When λ1 = λ and λ2 = λ3 = λ̄, the deformation (3.5) is called uniform ex-
tension (when λ > 1) or contraction (when λ < 1) in the X1−direction, together
with equal extension or contraction in the lateral X2− and X3−directions. For
compressible materials we deduce from (3.8) that the stress components are

T11 = β0 + β1λ
2 + β−1λ

−2, T22 = T33 = β0 + β1λ̄
2 + β−1λ̄

−2, (3.15)

Tij = 0 (i 6= j).
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The simplest stress system arises when (if possible), T22 = T33 = 0 in order to have
traction free lateral sides. This gives

β0 + β1λ̄
2 + β−1λ̄

−2 = 0. (3.16)

Equation (3.16) depends on λ2 and λ̄2 and for a given λ, it is not obvious that it
should have a single positive root λ̄2. If (3.16) has no root then uniform extension
cannot be effected by applying a tension T11 alone, i.e. others surface tractions
are necessary. If (3.16) has more than one root, then there are more than one
tensile sress which produce a given extension with the remaining faces traction-
free. When it is possible to apply a tension in the X1-direction with the other
stresses being zero, the extension is called simple, and we expect the specimen to
increase in length in this direction, whereas when we apply a pressure the length
should decrease. Also, if no tension is applied on the boundary, then the length
should remain unchanged. Finally when T11 is increased, the extension should
increase and vice-versa. Hence T11 should verify

dT11

dλ
> 0. (3.17)

This inequality places a further restriction on the response functions βi. For in-
compressible materials, the constraint (3.9) implies λ̄ = 1/

√
λ. Here the stress

components (3.10) become

T11 = −p0 + 2W1λ
2 − 2W2λ

−2, Tij = 0 (i 6= j), (3.18)

T22 = T33 = −p0 + 2W1λ
−1 − 2W2λ.

The principal difference with the compressible case is that the boundary conditions
T22 = T33 = 0 appropriate to the block subject to a tension T11 can always be
satisfied on setting

p0 = 2W1λ
−1 − 2W2λ. (3.19)

The uniaxial tension necessary to maintain this deformation (see also (2.6)) is

T11 = 2(λ2 − λ−1)W1 + 2(λ − λ−2)W2. (3.20)

Simple shear

Let us consider the homogeneous deformation of simple shear,

x1 = X1 + kX2, x2 = X2, x3 = X3, (3.21)

where k is a constant parameter representing the amount of shear. We consider the
shearing by applied surface tractions alone of a block with faces initially parallel
to the coordinates planes. This deformation is quite difficult to produce experi-
mentally because of the complex surface tractions needed to maintain it (as we see
below). However, it is probably the simplest example illustrating that large defor-
mations are different from infinitesimal deformations described by linear elasticity,
not only in magnitude but also in the novel effects they produce.
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It easy to determine the physical components of the left Cauchy-Green defor-
mation tensor B and of its inverse B−1 as





1 + k2 k 0
k 1 0
0 0 1



 ,





1 −k 0
−k 1 + k2 0
0 0 1



 , (3.22)

respectively, so that the first three principal invariants of B are I1 = I2 = 3 +
k2, I3 = 1. The stress components for this deformation for compressible materials
(see (1.36)) are given by

T11 = β0 + β1(1 + k2) + β−1, T12 = k(β1 − β−1),

T22 = β0 + β1 + β−1(1 + k2), T13 = 0, (3.23)

T33 = β0 + β1 + β−1, T23 = 0.

Thus we see that both normal and shear stresses are present on surfaces paral-
lel to the coordinate planes and that, as in the previous deformation, the stress
components are constants.

To consider the relation between the shear stress and the amount of shear, we
define

µ(k2) = β1(3 + k2, 3 + k2, 1) − β−1(3 + k2, 3 + k2, 1), (3.24)

so that

T12 = µ(k2)k. (3.25)

The quantity µ(k2) is called the generalized shear modulus. Its value µ ≡ µ(0) in
the natural state is the initial shear modulus. Physically we would expect the shear
stress acting on a surface with normal in the 2−direction to be in the direction in
which the surface has been displaced, so that we expect

µ(k2) > 0. (3.26)

By (3.24) we can see how the empirical inequalities (1.46) are sufficient to establish
(3.26). Because the shear stress T12 is an odd function of the amount of shear,
the shear stress is therefore in the direction of the amount of shear (since the
normal stresses are even functions of the amount of shear, they do not depend
on its direction). In linear elasticity (making use of (1.51)), simple shear can be
maintained by applying only shear stresses on the faces of specimen. A similar
situation does not arise with a finite deformation, unless a degenerate material is
considered for which a simple shear can be produced in the absence of all stress.
In fact, imposing T11 = T22 = T33 = 0 gives the conditions

β0 + β1(1 + k2) + β−1 = 0,

β0 + β1 + β−1(1 + k2) = 0, (3.27)

β0 + β1 + β−1 = 0,

from which it follows that β0 = β1 = β−1 = 0 and in this case, T12 is also zero. We
therefore conclude that, for all materials exhibiting physically reasonable response,
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the simple shear (3.21) cannot be produced by applying only shear stresses on
surfaces parallel to the cordinate planes: normal stresses are also necessary3.

From (3.23) we obtain

β1k
2 = T11 − T33, β−1k

2 = T22 − T33, (3.28)

β0k
2 = (2 + k2)T33 − (T11 + T22).

This is an example of how the inverse method can be applied to find universal
solutions and of how it is possible to use this kind of solutions to design an exper-
imental test to determine the βi’s. However, we note that an experiment based on
simple shear only is too restrictive to determine completely the response functions.
In fact this deformation allows exploration of what happens only along the line
I3 = 1, I1 = I2 in the space of invariants, made of I1 > 0, I2 > 0 and I3 > 0.

From (3.23) it is also possible to derive the relations

T13 = T23 = 0, kT12 = T11 − T22. (3.29)

These relations provide links between the stress components and the amount of
shear k which do not depend on the particular elastic isotropic material. They
are universal relations. They are important because for example if one finds ex-
perimentally that (3.29)2 is not satisfied then one may conclude that the material
under investigation is not an isotropic elastic material. Also, except in the case
of a degenerate material, T11 cannot be equal to4 T22. By (3.29)2 we deduce also
that the knowledge of the behavior of the shear stress in simple shear gives no
information about the normal stresses. This intuition is present in linear elasticity,
where simple shear alone cannot determine the normal stresses while by (3.29)2

the normal stresses characterize the simple shear.

The unit normal n and the unit tangent τ on the inclined faces have the
components

n = (1,−k, 0) /
√

(1 + k2), τ = (k, 1, 0) /
√

(1 + k2), (3.30)

so that we may calculate the normal stress N and the shear stress T which have
to be applied to the inclined faces of the deformed specimen in order to maintain
the simple shear deformation. By use of (1.18), they are

N = tn · n, T = tn · τ . (3.31)

and we therefore obtain the following relationships

(1 + k2)N = T11 + k2T22 − 2kT12, (3.32)

(1 + k2)T = k(T11 − T22) + (1 − k2)T12.

3When normal stresses are not applied, the material tends to contract or expand. This result
was apparently conjectured by Kelvin and is often called the Kelvin effect [123].

4In 1909 Poynting noticed a similar phenomenon and performed a series of torsion experiments
to illustrate the lengthening of a metal wire when no normal force was applied. The existence of
unequal normal stresses is often referred to as the Poynting effect [102].
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Using the universal relation (3.29)2 we deduce

T12 = (1 + k2)T,

kT12 = (1 + k2)(T22 − N), (3.33)

N = T22 − kT.

We deduce some interesting consequences from these relationships. First, we can
see that |T | < |T12| and |N | < |T22|. Hence if T22 is negative, so is N , i.e. if the
normal traction on the shearing planes is a pressure, then so is the normal traction
on the inclined faces. Since N is different from T22 (otherwise this would again
imply that µ(k2) = 0), the Poynting effect still holds when referred to the current
faces of the sheared block. Finally by (3.33)2 it follows that there may be special
elastic materials such that N = 0 for all shears k.

Many of the results for compressible materials are still valid for incompressible
bodies. In this case, by (1.40) the stress components are given as

T11 = −p0 + 2(1 + k2)W1 − 2W2,

T22 = −p0 + 2W1 − 2(1 + k2)W2, (3.34)

T33 = −p0 + 2W1 − 2W2,

T12 = kµ(k2), T13 = T23 = 0,

where p0 is a constant to be determined by the prescribed boundary conditions,
and µ(k2) = 2(W1 +W2) is obtained from (3.24) by replacing β1 with 2W1 and β−1

with −2W2. As in the compressible case, the remarks concerning the behaviour
of normal stress and shear stresses when the direction of shear is reversed are still
valid, as are the results (3.29), (3.32) and (3.33) from which we deduce that T11

and T22 cannot be equal, and that the Poynting effect is still present. In constrast
with the compressible case, it is possible to make any one of the normal stresses
vanish by an appropriate choice of p0. For example we may choose p0 such that
T33 = 0 and in this case we see that T11 > 0 and T22 < 0 if and only if the empirical
inequalities hold. In this particular case (T33 = 0) we obtain

p0 = 2(W1 − W2), (3.35)

and

T11 = 2k2W1, T22 = −2k2W2, (3.36)

T12 = kµ(k2), T33 = T13 = T23 = 0, (3.37)

showing that the normal stress on the shearing planes is always a pressure since
T22 < 0, from which we deduce (as in the compressible case) that T < 0. If these
pressures are not applied in addition to the shear forces, then we would expect
the material to stretch in the 1− and 2−directions and hence to contract in the
3−direction (because of the incompressibility constraint). In other words, one form
of the Poynting effect is observed.

Rivlin was one of the first authors to use inverse procedures to construct some
examples of exact solutions of physical interest to both analysts and experimenters.
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His work is very interesting also because it marked the birth in 1948 of the modern
theory of finite elasticity (see Rivlin [111] for the collected works). Later, Ericksen
[33, 34] introduced a different and more general approach to the investigation of
inverse solutions, and such results provide the kinds of tools requested by experi-
menters.

3.1.2 Universal solutions

We know from the previous section that homogeneous deformations, which play
a fundamental role in the theory of finite elastic deformations, can be maintained
in all homogeneous bodies under the action of surface forces alone, because the
stress corresponding to (3.4) is a constant tensor, and the balance equations are
then trivially satisfied in absence of body forces. They therefore represent a set
of universal solutions for all homogeneous materials. Ericksen [34] proved in 1955
that they are the only controllable deformations possible in every compressible, ho-
mogeneous and isotropic hyperelastic material. This result is known as Ericksen’s
theorem.

For incompressible materials, the definite answer is still lacking in the search for
all universal solutions. So far, five families of universal solutions have been found
in addition to homogeneous deformations. All solutions are such that appropriate
physical components of stress are constants on each member of a family of parallel
planes, coaxial cylinders, or concentric spheres. Let us start by looking at how
some restrictions on the physical components of the stress can help to simplify the
problem, in general by reducing a partial differential system to an ordinary one
with less unknowns. To this end we consider the case of cylindrical coordinate
(r, θ, z) only. A similar discussion can be conducted for Cartesian and spherical
coordinates.

The equilibrium equations, in the absence of body force (1.20), read

∂Trr

∂r
+

1

r

∂Trθ

∂θ
+

∂Trz

∂z
+

Trr − Tθθ

r
= 0,

∂Trθ

∂r
+

1

r

∂Tθθ

∂θ
+

∂Tθz

∂z
+

2

r
Trθ = 0, (3.38)

∂Trz

∂r
+

1

r

∂Tθz

∂θ
+

∂Tzz

∂z
+

1

r
Trz = 0.

If we assume that T + pI depends on r only (such assumption is often made
when the problem has cylindrical symmetry), the partial differential system (3.38)
simplifies as

∂Trr

∂r
+

Trr − Tθθ

r
= 0,

1

r2

∂ (r2Trθ)

∂r
− 1

r

∂p

∂θ
= 0, (3.39)

1

r

∂ (rTrz)

∂r
− ∂p

∂z
= 0.
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By the further assumptions that

Trθ = 0, Trz = 0, (3.40)

it follows from (3.39) that p depends only on r and consequently that the Trr com-
ponent depends on r only. Under these strong assumptions, the partial differential
system (3.38) is reduced to an ordinary differential system that is easier to solve.
The Trr and Tθθ components are given by

Trr = −
∫

Trr − Tθθ

r
dr, Tθθ =

d (rTrr)

dr
. (3.41)

Let us consider the first family of universal solutions (in the literature, these
solutions are classified in “families”). It is given by the following deformation

Family 1:

r =
√

2AX, θ = BY, z =
Z

AB
− BCY, (3.42)

which describes bending, stretching and shearing of a rectangular block. Here
(X,Y, Z) and (r, θ, z) are the cartesian and cylindrical coordinates in the refer-
ence and in the current configuration, respectively, and A,B,C are constants with
AB 6= 0. If C = 0 the deformation describes pure bending and carries the par-
allepipedic block bounded by the planes X = X1, X = X2, Y = ±Y0, Z = ±Z0

into the circular annular wedge bounded by the cylinders r = r1 =
√

2AX1,
r = r2 =

√
2AX2, and the planes θ = ±θ0 = ±BY0, z = ±z0 = ±Z0/(AB).

When B is prescribed, then the arbitrary axial stretch 1/(AB) is allowed, and the
radial stretch is so adjusted as to render the deformation isochoric5. The physical
components of B and of its inverse B−1 are given by










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r2
0 0

0 B2r2 −B2Cr

0 −B2Cr B2C2 +
1
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



, (3.43)

and





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


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0
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A2B2C2
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0
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
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, (3.44)

respectively. The first two principal strain invariants are

I1 =
A2

r2
+ B2r2 + B2C2 +

1

A2B2
, (3.45)

I2 =
r2

A2
+

1

r2

(

1

B2
+ A2B2C2

)

+ A2B2,

5In the general case, the deformation may be effected in two steps, the first of which is the
bending and axial stretch, while the second is a homogeneous strain which carries the body into
the solid bounded by the cylindrical surfaces r = r1 and r = r2, the planes θ = ±θ0, and the
helicoidal surfaces z + Cθ = ±z0.
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respectively, and I3 = 1 in agreement with incompressibility. From (1.40) we see
that the physical components of T + pI are functions of r only and that (3.40) is
satisfied. By (3.41)1

Trr = −
∫ [

2
∂W

∂I1

(

A2

r3
− B2r

)

− 2
∂W

∂I2

(

r

A2
− 1

r3

(

1

B2
+ A2B2C2

))]

dr

=

∫ (

∂W

∂I1

dI1

dr
− ∂W

∂I2

dI2

dr

)

dr, (3.46)

from which we obtain the other components of the stress.

Tθθ = Trr + 2

[

B2r2 − A2

r2

]

∂W

∂I1

− 2

[

1

r2

(

1

B2
+ A2B2C2

)

− r2

A2

]

∂W

∂I2

,

Tzz = Trr + 2

[

B2C2 +
1

A2B2
− A2

r2

]

∂W

∂I1

− 2

[

A2B2 − r2

A2

]

∂W

∂I2

, (3.47)

Tθz = −2B2Cr
∂W

∂I1

− 2
A2B2C

r

∂W

∂I2

.

To obtain the unknown p we make use of (1.40),

p = −Trr + 2W1(B)11 − 2W2(B
−1)11, (3.48)

and therefore by (3.43), (3.44) and (3.46),

p = −
∫ (

∂W

∂I1

dI1

dr
− ∂W

∂I2

dI2

dr

)

dr + 2

(

A2

r2
W1 −

r2

A2
W2

)

. (3.49)

It is possible to choose the constants in (3.46) in order to have the cylinder r = r1

free of traction. To have the cylinder r = r2 also free of traction, it is then necessary
that

∫ r2

r1

(

∂W

∂I1

dI1

dr
− ∂W

∂I2

dI2

dr

)

dr = 0, (3.50)

and when this is verified, a particular relation among the constants A,B,C applies.
Independently of whether or not (3.50) can be satisfied, the helicoidal faces z+Cθ =
±z0 (with unit normal n = (0, C/r, 1)/

√

1 + C2/r2) cannot be free of traction in
order to maintain the deformation. The normal and tangential tractions N and T ,
respectively, are

N =
1

1 + C2/r2

[

Tzz + 2
C

r
Tθz +

C2

r2
Tθθ

]

, (3.51)

T =
1

1 + C2/r2

[(

1 − C2

r2

)

Tθz +
C

r
(Tθθ − Tzz)

]

,

respectively. Only when pure bending is considered (i.e. C = 0) we can deduce
from (3.47) and (3.51) that T = 0 and N = Tzz. In general, both normal and
tangential tractions must be applied. The presence of these tractions gives rise to
the Poynting effect for bending, similar to the Poynting effect discussed for the
simple shear deformation. We thus underline how the Poynting effet is in general
inevitable in nonlinear elasticity.

A similar discussion can be made for the other four families, which are described
by the following deformations.
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Family 2: Straightening, stretching and shearing of a sector of a hollow
cylinder,

x =
1

2
AB2R2, y =

Θ

AB
, z =

Z

B
+

CΘ

AB
. (3.52)

Family 3: Inflation, bending, torsion, extension and shearing of an annular
wedge,

r =
√

AR2 + B, θ = CΘ + DZ, z = EΘ + FZ, (3.53)

with A(CF − DE) = 1.

Family 4: Inflation or eversion of a sector of a spherical shell,

r =
(

±R3 + A
)1/3

, θ = ±Θ, ϕ = Φ. (3.54)

Family 5: Inflation, bending, extension, and azimuthal shearing, of an an-
nular wedge,

r =
√

AR, θ = D ln(BR) + CΘ, z = FZ, (3.55)

with ACF = 1.

Here A,B,C,D,E, F are constants. It seems that the class of static deforma-
tions that are possible in all homogeneous, isotropic, incompressible elastic bodies
subject to surface tractions only is likely to be exhausted by these cases. Some
progress toward determining other deformations may be made if we replace the
purely inverse method by a semi-inverse one, considering a family of deformations
involving one or more arbitrary functions which may be determined so as to render
the deformation possible for a particular material.

3.2 Semi-inverse method

In elasticity the first application of the semi-inverse method is due to Saint-
Venant [5, 6] in 1855. He was the first to study the problem of linear elastostatics
for a right long cylinder free from volume forces and loaded only at the bases by
unspecified tractions. This problem was later on called the problem of Saint-Venant
(Saint-Venantsche Problem) by Clebsch [23]. The starting point of the application
of the semi-inverse method in order to solve the problem is that some components
of the stress vanish. In particular, it is assumed that the normal tension on every
section parallel to X3, the axis of the cylinder, be zero:

T11 = T12 = T22 = 0. (3.56)

When this assumption is made, it is possible to find a closed-form solution of the
problem by the use of the linear equilibrium equations (1.50), of the linear con-
stitutive equations (1.48), of the compatibility Beltrami conditions (1.63), and of
the prescribed boundary conditions. The displacement field for the points of the
cylinder turns out to depend linearly on four constants; these represent kinematic
parameters to be specified at one base of the cylinder. Each of them characterizes a
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simple mode of deformation of the cylinder: extension, bending, torsion, and flex-
ure, and it may be shown that the four kinematic parameters are linear functions
of the resultant actions on the bases.

The semi-inverse assumption on the field of stress is of fundamental importance
to find the approximate analytical solution. Although this assumption is suggested
by the geometrical and boundary surface tractions, it is justified afterwards by the
existence of the solution found. The Kirchhoff principle shows then the uniquess
of the solution.

Kirchhoff, 1859 If either the surface displacement or the surface
tractions are given, the solution of the problem of equilibrium of an
elastic body is unique in the sense that the state of stress (and strain)
is determinate without ambiguity, provided that the magnitude of the
stress (and strain) is so small that the strain energy function exists and
remains positive definite.

Several applications of the semi-inverse method can be found in the literature
on nonlinear elasticity. Of course it is not possible to list all such results because
a survey aiming at completeness would require a whole book. Here we present
some representative examples in order to underline some aspects of the semi-inverse
method, and other useful examples for our discussion are given in the next chapters.
First, we recall something just discussed on simple extension, but here we modify
the problem a little bit. Then we discuss a problem of anti-plane shear (see [59,
61, 63, 113] for more details). Finally, some others remarks are discussed for the
radial deformation problem.

3.2.1 Simple uniaxial extension

Let us consider the uniaxial extension of a rod by prescribing some boundary
conditions at the outset: we ask that our model gives traction-free lateral surfaces.
In this case, coming back to (3.5), we set λ1 = λ to denote the uniaxial stretch,
while λ2 and λ3 denote the lateral stretches.

In the compressible case, making use of the (3.8) relations and the fact that
the stress components are constants, we have to set

β0 + β1λ
2
2 + β−1λ

−2
2 = 0, (3.57)

β0 + β1λ
2
3 + β−1λ

−2
3 = 0.

Forming the difference, we obtain

(λ2
2 − λ2

3)

(

β1 −
1

λ2
2λ

2
3

β−1

)

= 0. (3.58)

Applying the empirical inequalities (1.46) to (3.58), we obtain a necessary condi-
tion: λ2 = λ3 to be satisfied. The same condition is also discussed in the previous
chapter by using Batra’s Theorem [7]. But now we see how the arbitrary parame-
ters λ2 and λ3 are adjusted a posteriori to meet the boundary conditions. In this
case, by equations (3.57), we may solve uniquely as

λ3 = λ2 = λ2(λ), (3.59)



Chapter 3. Inverse methods 51

and obtain a simple extension under a tensile stress

T11(λ) = (λ2 − λ2
2)

(

β1 −
1

λ2λ2
2

β−1

)

. (3.60)

In the incompressible case, equation (3.60) is remplaced by (3.20). The Poisson
function ν(λ) given by the expression (2.34) for an incompressible material reads
here as

ν(λ) =
1√

λ(
√

λ + 1)
. (3.61)

In the natural state of an incompressible material, the Poisson ratio has the value
ν = ν(1) = 1/2, otherwise (3.61) is a monotone decreasing function of the amount
of uniaxial stretch. In a simple tension experiment, we see that (3.61) can be
used to evaluate whether the material is incompressible6. Indeed equation (3.61) is
universal for any isotropic uniform elastic material which is incompressible. In the
case of compressibility, equation (2.34) is not universal since λ2(λ) depends on the
special material we are considering. For example, for a general Blatz-Ko material
(2.38), we know from (2.36) that

λ2(λ) = λ(n−1)/2, (3.62)

where n is parameter characterizing a particular Blatz-Ko model. By formula
(2.34) it is clear that the Poisson function,

ν(λ) =
1 − λ(n−1)/2

λ − 1
, (3.63)

depends now on the Blatz-Ko model used.

3.2.2 Anti-plane shear deformation

Let us consider the following deformation written in Cartesian coordinates

x1 = X1, x2 = X2, x3 = X3 + w(X1, X2), (3.64)

representing an anti-plane shear deformation, where X denote the reference co-
ordinates and x the current coordinates of the body. The displacement is there-
fore described by a single smooth scalar function (the out-of-plane displacement)
w ≡ w(X1, X2). By the semi-inverse procedure, in the search of static solutions
with zero body force, we must verify if the balance equations divT = 0 are satisfied
for some specified w and/or for some specific class of materials.

Let us consider the incompressible case. Before analysing the general case (3.64)
we suppose that our body has axial symmetry (cylindrical body) and we assume
that the anti-plane shear problem may be solved by considering an axisymmetric
deformation of the form

w(X1, X2) = w(X2
1 + X2

2 ). (3.65)

6Beatty and Stalnaker [12] show that although the Poisson function of every incompressible
material has the universal constant, natural limit value 1/2, the converse is generally false.
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In cylindrical coordinates, the deformation (3.64) can be rewritten as

r = R, θ = Θ, z = Z + w(R), (3.66)

where w(R) is the axial displacement. Such a deformation is also called telescopic
shear. The physical components of B and its inverse B−1 are given by





1 0 w′

0 1 0
w′ 0 1 + w′2



 ,





1 + w′2 0 −w′

0 1 0
−w′ 0 1



 , (3.67)

respectively, where the prime denotes differentation respect to R, and the first
three principal strain invariants are

I1 = I2 = 3 + w′(R)2, (3.68)

and I3 = 1 in agreement with the incompressibility constraint. By formula (1.40)
we obtain the physical components of the Cauchy stress tensor as

Trr = −p + 2W1 − 2(1 + w′2)W2, Trθ = 0,

Tθθ = −p + 2W1 − 2W2, Trz = 2(W1 + W2)w
′, (3.69)

Tzz = −p + 2(1 + w′2)W1 − 2W2, Tθz = 0.

Finally, the equilibrium equations reduce to equations (3.39) but now Trθ only is
zero, showing that p = p(r, z). On using the expressions of Trr and Tθθ in (3.39)1

we obtain

p(r, z) = 2W1 − 2W2(1 + w′2) −
∫

2

r
W2w

′2 dr + g(z), (3.70)

where g is an arbitrary function of z. By virtue of (3.70) and the expression of Trz,
we can rewrite (3.39)3 as

d

dr
(rTrz) = λr, (3.71)

where λ = dg(z)/dz. This equation is a second-order nonlinear ordinary differential
equation for w(R), with an immediate first integral in the form of a first-order
differential equation for w(R), namely

2(W1 + W2)w
′ =

λR

2
+

C1

R
, (3.72)

where C1 is a constant of integration. The problem may be completely solved once
the strain energy function W is specified.

The important issue to emphasize here is that the system of partial differential
equations divT = 0 is a compatible system that may have an analytical solution
when W is given. The telescopic shear is a special anti-plane shear problem and
even though a solution to this problem may be found, in general we are not able to
get any information on the general anti-plane problem (3.64). In fact, reconsidering
(3.64), we show that the previous favourable situation is not verified now. This
means that in the search for solutions of the balance equations by a semi-inverse
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method we are not always lucky; in some cases, the semi-inverse method may be
used in a negative sense, by showing the nonexistence of solutions. For example,
as in the general antiplane shear (3.64), it may happen that the balance equations
reduce to an overdetermined set of differential equations which are not compatible,
showing therefore that a pure antiplane shear is not always possible.

The physical components of B and of its inverse B−1 for the general anti-plane
shear deformation (3.64), are given by





1 0 w1

0 1 w2

w1 w2 1 + k2



 ,





1 + w2
1 w1w2 −w1

w1w2 1 + w2
2 −w2

−w1 −w2 1



 , (3.73)

respectively, and the first three principal invariants are I1 = I2 = 3 + k2, I3 = 1,
where k = |∇w| and wi (i = 1, 2) are the derivatives of w with respect to Xi, (i =
1, 2). Following (1.40), the Cauchy stress components are given by

T11 = −p + 2
(

W1 − (1 + w2
1)W2

)

, T12 = −2w1w2W2,

T22 = −p + 2
(

W1 − (1 + w2
2)W2

)

, T13 = 2(W1 + W2)w1, (3.74)

T33 = −p + 2W1(1 + k2) − 2W2, T23 = 2(W1 + W2)w2.

It is easy to check that now the balance equations form a system of three differential
equations in the two unknowns p(X1, X2, X3) and w(X1, X2), i.e.

p,1 − 2[W1 − (1 + w2
1)W2],1 + 2[w1w2W2],2 = 0,

p,2 − 2[W1 − (1 + w2
2)W2],2 + 2[w1w2W2],1 = 0, (3.75)

p,3 − 2[(W1 + W2)w1],1 − 2[(W1 + W2)w2],2 = 0,

where the subscripts 1 and 2 stand for differentiation with respect to X1 and X2,
respectively, and where

Wi =
∂W

∂Ii

∣

∣

∣

∣

I1=I2=3+k2,I3=1

. (3.76)

Since w1 and w2 are independent of X3, so are I1 and I2. From (3.75)3, we deduce
that p,3 has the same property. Thus p is linear in X3:

p(X1, X2, X3) = cX3 + p̄(X1, X2), (3.77)

where c is a constant (called here the axial pressure gradient) and p̄ = p̄(X1, X2)
is an undetermined function. A further reduction of the first two equilibrium
equations (3.75)1 and (3.75)2 may be obtained by eliminating p,12 by appropriate
cross-differentation. In the end, we obtain an overdetermined differential system
in which the unknown w must satisfy simultaneously the following two nonlinear
ordinary differential equations,

[(

w2
1 − w2

2

)

W2

]

,12
= [w1w2W2],11 − [w1w2W2],22, (3.78)

[(W1 + W2)w1],1 + [(W1 + W2)w2],2 −
c

2
= 0.

It is possible to show that the overdetermined differential system (3.78) is compat-
ible only for particular choices of the strain energy function and only for special
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classes of materials. Knowles [72] gives necessary and sufficient condition in terms
of the strain energy function for a homogeneous, isotropic, incompressible material
to admit nontrivial states of anti-plane shear. For example, in the case of the
following rectilinear shear deformation

x1 = X1, x2 = X2, x3 = X3 + w(X1), (3.79)

the system (3.78) reduces to a single second-order differential equation for w(X1):

[(W1 + W2)w1],1 −
c

2
= 0, (3.80)

where the subscript 1 stands for differentation with respect the argument X1. In
this case a formal solution of the balance equations is possible. This situation is
similar to the situation discussed earlier for a telescopic shear deformation. Another
example where positive results may occur is that of the generalized neo-Hookean
materials (2.12). Here the overdetermined system (3.78) reduces to a single quasi-
linear second-order partial differential equation

[(W1)w1],1 + [(W1)w2],2 −
c

2
= 0, (3.81)

and then a formal solution of the balance equations is also possible.
From a mathematical point of view, the fact that a pure antiplane shear defor-

mation cannot be sustained in an elastic material means that the overdetermined
differential system (3.78), corresponding to the strain energy function we are using
to model real materials, do not have common solutions. Therefore Mathematics
says that the geometry and load condition of the problem does not allow a pure
antiplane shear deformation. On the other hand, it may be possible to have a
pure antiplane shear deformation coupled to secondary deformations (see [63]).
For example, by coupling an in-plane deformation to the antiplane one, as

x1 = X1 + u(X1, X2),

x2 = X2 + v(X1, X2), (3.82)

x3 = X3 + w(X1, X2),

where u, v are the in-plane smooth displacement functions. For every incompress-
ible elastic material, the balance equations divT = 0 now reduce to a determined
system of partial differential equations. This does not mean that, for a generic
material, it is not possible to deform the body as prescribed by our geometry and
load condition, but it emphasizes that by semi-inverse methods it is not easy to un-
derstand when the equations lead to a deformation field that is more complex than
an anti-plane shear. For generalized neo-Hookean materials, we have the following
expressions for the Cauchy stress components

T11 = −p + 2W1[(1 + u1)
2 + u2

2],

T22 = −p + 2W1[v
2
1 + (1 + v2)

2],

T33 = −p + 2W1[w
2
1 + w2

2 + 1], (3.83)
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T12 = 2W1[(1 + u1)v1 + u2(1 + v2)],

T13 = 2W1[(1 + u1)w1 + u2w2],

T23 = 2W1[v1w1 + (1 + v2)w2].

It is clear that the stress components T13 and T23 involve a coupling of in-plane
and out-of-plane deformations7. The boundary condition of traction may therefore
couple the in-plane displacements with the out-of-plane displacement. It is only for
special cases (for example of pure displacement boundary conditions) that in-plane
and out-of-plane displacements may be decoupled.

3.2.3 Radial deformation

The following example shows how the semi-inverse method may be used to
search for exact and analytical solutions which are not universal but relative uni-
versal (see Horgan [60]). Let us consider spherical polar coordinates for the radial
deformation written as

r = r(R), θ = Θ, φ = Φ, (3.84)

where (R, Θ, Φ) are the polar coordinates in the reference configuration and (r, θ, φ)
are the polar coordinates in the current configuration, respectively, and dr/dR > 0.
The polar components of the deformation gradient tensor associated with (3.84)
are given by

F = diag(dr/dR, r/R, r/R) (3.85)

and the principal stretches are thus λ1 = dr/dR, λ2 = λ3 = r/R. Now, the
equilibrium equations in the absence of body forces divT = 0 can be shown to
reduce to the single equation

d

dR

(

R2Ŵ1

)

− 2RŴ2 = 0, (3.86)

which is a second-order nonlinear ordinary differential equation for r(R). Six classes
of compressible materials have received much attention in the literature; they are
all examples of relative universal solutions for the solutions r(R).

Class I. W = f(i1) + b1(i2 − 3) + c1(i3 − 1), f ′′(i1) 6= 0, (3.87)

where f is an arbitrary function of i1, b1 and c1 are arbitrary constants and i1, i2, i3
are the principal invariants of V . This class represents the harmonic materials
introduced by John [67]. In this case, on using the hypothesis f ′′(i1) 6= 0, one finds
that

r(R) = AR +
B

R2
, (3.88)

where A and B are constants of integration. Abeyaratne and Horgan [1] and Ogden
[95] employed the deformation (3.88) to obtain closed-form solutions for pressurized

7It is possible to show that the pressure depends on the out-of-plane deformation and therefore
that the normal stresses in (3.83) contain all the deformation fields.
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hollow spheres composed of harmonic materials. Aboudi and Arnold [2] applied
(3.88) to micromechanical modeling of multiphase composites.

Class II. W = a2(i1 − 3) + g(i2) + c2(i3 − 1), g′′(i2) 6= 0, (3.89)

where g is an arbitrary function of i2 and a2 and c2 are arbitrary constants. Here,
one finds that

r2(R) = AR2 +
B

R
, (3.90)

where A and B are constants of integration. Murphy [88] used the controllable
deformation (3.90) to treat the problems of inflation and eversion of hollow spheres
of class II materials. Aboudi and Arnold [2] utilized (3.90) in their recent study of
micromechanics of multiphase composites.

Class III. W = a3(i1 − 3) + b3(i2 − 3) + h(i3), h′′(i3) 6= 0, (3.91)

where h is an arbitrary function of i3 and a3 and b3 are arbitrary constants. This
class of materials are called generalized Varga materials [58]. Here, one finds that

r3(R) = AR3 + B, (3.92)

where A and B are constants of integration. Horgan [58] used the controllable
deformation (3.92) to illustrate the phenomenon of cavitation for compressible ma-
terials in a particularly tractable setting. Aboudi and Arnold [2] utilized (3.92) in
their micromechanics analysis of composites undergoing finite deformation. Mur-
phy [87] introduced the next three material classes.

Class IV. W = a4i1i2 + b4i1 + c4i2 + d4i3 + e4, a4 6= 0, (3.93)

where a4, b4, c4, d4, e4 are arbitrary constants. Here, one finds that

r3(R) =
(A + BR3)2

R3
, (3.94)

where A and B are constants of integration.

Class V. W = a5i2i3 + b5i1 + c5i2 + d5i3 + e5, a5 6= 0, (3.95)

where a5, b5, c5, d5, e5 are arbitrary constants. Here, one finds that

r5(R) =
(A + BR3)2

R
, (3.96)

where A and B are constants of integration.

Class VI. W = a6i1i3 + b6i1 + c6i2 + d6i3 + e6, a6 6= 0, (3.97)

where a6, b6, c6, d6, e6 are arbitrary constants. Here, one finds that

r2(R) = AR2 +
B

R
, (3.98)
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where A and B are constants of integration. This deformation field is identical to
that given for Class II (see (3.89)).

This type of investigation was proposed by Currie and Hayes [25] where the
search for exact solutions starts from a different point of view. They search for
special solutions by choosing a deformation whose geometry is completely known
a priori; in doing so they are solving Ericksen’s problems in miniature: they are
searching all the corresponding relative universal solutions8.

Other typical applications of semi-inverse investigations are concerned for ex-
ample in finding, for a given deformation (fixed a priori), the general form of the
strain energy for which such deformation is a controllable solution. This is a sort
of inverse problem: find the elastic materials (i.e. the functional form of the strain
energy function) for which a given deformation field is controllable (i.e. for which
the deformation is a solution to the equilibrium equations in the absence of body
force).

Both problems are very difficult to solve and generally only partial results are
available. The influential papers by Knowles [75] and Currie and Hayes [25] have
stimulated the developement of a large amount of research on closed-form solu-
tions in nonlinear elasticity. Beatty, Boulanger, Carroll, Chadwick, Hill, Horgan,
Murphy, Ogden, Polignone, Rajagopal, Saccomandi, Wineman, and many others
have determined a long list of exact solutions for special classes of constitutive
equations. We refer to the recent books edited by Fu and Ogden [43] and by Hayes
and Saccomandi [55] for an overview of this activity.

Although several authors have used such inverse procedures, and many solu-
tions have been derived by using such methods, it is not easy to find a definition
describing the true power of these methods. Further, no general mathematical
theory can be applied, at least at first, sight, because they are a sort of heuristics
methods. Only Lie group theory can provide a general, algorithmic, and efficient
method for obtaining exaxt solutions of partial differential equations by a reduction
method. It shares many similarities with the semi-inverse method. For this reason
many authors have tried to find a relationship between Lie’s classical method of
reduction and the semi-inverse method, but the standard Lie method of symmetry
reduction is not always applicable; it has to be generalized to recover all the solu-
tions obtainable via ad hoc reduction methods. Olver and Rosenau [96] introduced
the concept of weak symmetry, based on the analytic properties of the overdeter-
mined system, and made it clear that a group theory nature is indeed possible for
every solution of a given partial differential equation9. But it is still not known
how to obtain the relevant groups.

8The expression “in miniature” is taken from a paper by Knowles [75] where the author tries
to find non-homogeneous universal solutions in the family of anti-plane shear deformations.

9In [114] Saccomandi, considering the Navier-Stokes equations, shows how it is necessary to
resort to the idea of weak symmetries to recover all the solutions found by the semi-inverse
method.
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Notes

A list of some suitable of inverse methods, useful to solve boundary value prob-
lems in elasticity, are given in this chapter. We have also underlined the important
contributions of these methods to continuum mechanics in understanding the non-
linear behaviour of materials (or fluids in the case of fluid dynamics), overcoming
the difficulty in solving boundary value problem by direct methods. By inverse
procedure, in addition to those homogeneous, five families of universal solutions
are been found (they are listed in Section 3.1.2) where we have not widely discussed
families 2-5 to save space but we refer to Section 57 of [127] for more details. The
first investigation about universal solutions dates back to 1954, when Ericksen [33]
was able to find several families of universal inhomogeneous deformations. However
the proof of Ericksen was not complete in two points:

1. when two principal stretches of the deformation are equal and at least one of
the principal invariants is not constant;

2. when all the principal invariants of the deformation are constants.

The first point has been completely resolved by Marris and Shiau [80] who showed
that if two principal stretches are equal then the universal deformations are homo-
geneous or enclosed in Family 2. As regards the second point the final answer is
still lacking but further developments on this problem are contained in the work
on universal solutions for the elastic dielectric by Singh and Pipkin [119]. As a
by-product of this research a new family of deformation with constant invariants
has been discovered (Family 5).

Although the search for solutions of boundary value problems by use of in-
verse methods has been important and fundamental, on the other hand we are
nonetheless of the opinion that some solutions have been the source of possible
confusion in the field, and that some investigations are even incorrect in their use
of the semi-inverse method (see [28]). In the next chapter we develop our point of
view further, by analysing in detail some inhomogeneous solutions for compressible
materials subjected to isochoric deformations.


