Note di Matematica, Volume 25, Issue 2 (2006)

An extreme example concerning factorization products on the Schwartz space ๐•พ  (R<sup>n</sup>)

Klaus Detlef Kรผrsten, Martin Lรคuter

Abstract


We construct linear operators S, T mapping the Schwartz space ๐•พ into its dual ๐•พ', such that any operator R โˆˆ ๐”(๐•พ, ๐•พ') may be obtained as factorization product S โ—‹ T. More precisely, given R โˆˆ ๐”(๐•พ, ๐•พ'), there exists a Hilbert space H<sub>R</sub> such that ๐•พ โŠ‚ H<sub>R</sub> โŠ‚ ๐•พ', the embeddings ๐•พ  	โ†ช H<sub>R</sub> and  H<sub>R</sub>  	โ†ช ๐•พ' are continuous, ๐•พ is dense in  H<sub>R</sub>, T(๐•พ) โŠ‚ H<sub>R</sub>, and S has a continuous extension \widetilde{S} :H<sub>R</sub> โ†’ ๐•พ' such that \widetilde{S}(T ฯ†)=R ฯ† for all ฯ† โˆˆ ๐•พ.