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GENERICALLY SECANT AND SECANT FAMILIES

PAOLO DULIO

Abstract. [n the paper we state the notions of generalically secant and secant families
of varieties in Stoka’s integral geometry theory, showing some results on their union and
developing a few examples.

Let w be a set of varieties belonging to a family F,, and consisting of p-dimensional
varieties V,, defined in an n-dimensional space X,, by analytic equations

FA(IIJIZ}*“:IJHAHAZV"}Aq)} A= 1121*'*&” — P

Here x,x7,...,x, are coordinates in X,,, while A,,A»,... A, are essential parameters, that
is coordinates 1n the parameter space Y.

If G, is a group of transformations acting on X,,, and depending on r parameters, then the
invariant measures of w with respect to G,, whether these exist, are

UGr(w)=/ |<I>(A1,A2,...,Aq)\dA|AdA;A.../\qu, (1)
w(A)

where w C Y, is the set of parameters which determines w; @ 18 an invariant integral function,
that is one of the possible solution of Deltheil system

i A(ELAL, A, ..., AYD) _

0, h=1,2,...,r, (2)
0 A

k=1

being Eﬁ(A] Az, ..., A,) coefficients of infinitesimal transformations of F, with respect to
the group H,, isomorphic to G, [1], [2], [6], [7], [8], [9].

Let 7, = F,(A) be measurable with density dib = d(A) = ®(A) AY dA, and H; a
measurable subgroup of the group H, isomorphic to the maximal group of invariance G, of
Fq, (@ < s < r). Then there exist g relative components of G,, namely dD,,dDy, ... ,dD,,
such that the density of F, with respect to the group Gy, to which H; 1S isomorphic, 1$ given
by

dy = [dD\dD,...dD,] = dD| N dD>A.. . NdD, = N1dD (3)

This statement, pointed out in the previous form in [3], is a consequence of results of
Santalé and Stoka [6], [8]. It shows that, up to relations

{x'k(AlﬁAZ}"'iAQ‘jDIIDZE‘“f!D[f):0 k:lzzw'*ﬂ?m (4)
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it 1s always possible to obtain a change of parameters

Ar = A(Dy, Dy, ....\D,) k=1,2,...,q, (5)

such that

A
B(A1,As, ... A, )det P—] ~ 1.
oD

Consequently, ¢ being an invariant integral function, we have

MG, (W) = / DA, Ay, ...\ AdA, A dAyA. .. AdA, =
JwW(A)

A
= 1,A2, ..., A, )ldeéel | —— WA 2N AAdD, = A 2. . AAD,
DAL, Asy .. Adet | 25| dDy A aD dD, dD, A dD ab,
Jw(D) oD Jw(D)
(6)

then, the density of 7, may be written as the exterior product of the new parameters. These
are called normal parameters [10].

Remark 1. Since therelative components of a group are determined up to linear transfor-
mations with constant coefficients, these keep normal parameters, which consequently are
not unique. So, though it is always possible to represent a family with normal parameters,
not all normalizations are allowed, in sense that replacements (5) may restrict the family
F4(A) on a weak-subfamily ?,:,(Q) [3],[5]. Moreover, the maximal group of invariance G of
a weak-subfamily is not necessarily the same G, as that of the family [5]. Consequently the
normalized density might be meaningless for F (D) with respect to G, whether G; is not

contained in G. In this case the normalized density works for f&,(g) with respect to G, N G.

Definition 1. 7wo families of varieties F (A) and F,(B), depending respectively on g and t
essential parameters, {A} = {A1,As,...,A,} and {B} = {B|,B,...,B,}, are said to be
generically secant families if there exist s independent relations

(A,B)=0 k=1,2,...,5 0<s < min(g,1),

among {A} and {B}.

Remark 2. {A} and {B} being essential parameters, the number s cannot be greater than
min(q,t). If s = 0 then the families are independent [4].

A special case is obtained when s parameters appear both in {A} and in {B}. If this occurs
we say simply that F,(A) and F,(B) are secant families.

Definition 2. The number s of independent relations (or common parameters) between the
parameter sets of two generically secant families (or secant families) F,(A) and F(B), is
called the intersection order of F,(A) and F,(B).
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When we do not need to treat separately the cases of generically secant and secant families,
of intersection order s, we say simply that the families have intersection order s.

Remark 3. The way to get families of intersection order s is to start from any pair of
independent families of varieties, and to introduce, if possible, s relations (in particular s
equalities) among their essential parameters. Here we emphasize that intersection is related
to parameter spaces, that is, for given lists of parameters A and B, the related varieties of
F4(A) agd F(B) may have in X,, empty intersection.

If we take the union family of two generically secant families of varieties, Fy(A) and F(B),
of intersection order s, then the parameter space of F,(A) + F,(B) can be described, in the
cartesian product Y, x V;, by a (¢ + 1 — s)-dimensional variety V 4,_,. It F (A) and F/(B)
are secant families, then V4, is a linear subspace of ¥, X V.

When F,(A) and F,(B), ¢ < 1, have intersection order s, to each variety W € F(B) are
associated x /77 varieties belonging to *,(A). The union family F 4,—. = F(A) + F(B),
may be regarded as the family of x’ sets of ~ ¢~ pairs of this kind.

Definition 3. Each set of varieties of the union family F 4, = F (A)+ F(B) of two families
of intersection order s, g < t, obtained for any fixed W € F,, is said to be an s-secant figure.

The s-secant figures give, in X,,, a description of the (¢ + t — s)-dimensional variety which
determines, in Y, X Y, the parameter space of the union family.

Theorem 1. Let 7 (A, A>,...,Ay—,B1,B>,...,By) and F(B\,B, ...,B;, Cy, Cy,...,Ci—y)
be two measurable secant families of varieties, having intersection order s, whose respective
densities are

dqu(ﬂg JAa, L. ,Aq_,,-,Bth, ... By =

0y—s(A1\ Az ...\ Ag—s)Bs(B1.Ba, ... . By)dAA. .. NdB,,
d¥Y,(B\,B>,...,B;,Cy,Ca,...,C_y) =
BBy, Bay.. ., B)V—(Cy,Coyt o, C)dBy N AAC ;.
Then the family F,4,—(A,B,C) = F,(A, B) + F/(B, C) takes the density

duyti—s(A, B, C) = &y (A)BUB)Y—(C) N dA N dB N dC, (7)

for every group of invariance G, with respect to which F(A,B) and F(B,C) are both
measurable.

Proof. Let G, be a group of invariance of F,4,—, with respect to which F*, and F, are
measurable. The Deltheil system related to 7, through G, 1s

G§—5 , 5 I (
”Z O(E{(4,BYP(A, B) 3 0&y—s1(4, B)P(4,B)) _

0, h=1,2,...,r. (&)
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The only solution is ®(A,B) = «,_(A)[,(B). The Deltheil system related to F, through G,
1S

i o (B, O¥(B, C)) | i oM™ (B, OV¥(B, 0))
0 B; | 0C;

j=1 i=1

The only solution i1s W(B, C) = Bs(B)y,;—s(C). The Deltheil system related to F, + F, through
G, 1s

=0, h=12,...,r. (9)

fi 2 [£1A, B)S(A,B,O)] Z 3 [(&h_4 (A, B) +1/(B,C)(A, B, O)]

=1 aAR j=1 aB‘;

0 ['./(B, C)5(4, B, O)]
+Z L — _
i

h=12,...,r. (10)
=1

[t we set 0(A,B,C) = o;—s(A)Ps(B)y,—s(C), the left hand side of (10) becomes

§—=5 I
d [E1(A, B)ot,—s(A)Bs(B 0 |&g—si (A, B)ox,—s(A)B4(B)
’Vf_x(C)E 4 ):Ak()ﬁ )} - Yi— H(CE [” izl aBI P: }.
k=]

d [!(B, OB(BYYi-s(O) L0 [N 4B, O)B(B)Yi—(C
0t ,,.(A)Z U | mf,_m(A)Z 1B OB By O] ),
j_.

0 B; 0 Ci
h=1,2,...,r. Consequently (11) is equal to zero, and then
ditgi—s(4,B,C) = 8(A,B,C) ANT™* dA N* dB N~ dC =

— D{q—s(&) BE(.@)YF—E(.Q) A d{_ﬁi_ A’ dﬁ AF_S dga

1s a density for F,4,—¢ with respect to G,.
Remark 4. Theorem 1 shows that a set w C F,4,_; can be measured with respect to G, by

He, (W) = / 0%—s(A)Bs(BYY4—s(C) N dA N dB N7 dC, (12)

(other measures may exist), where w 1s the set of points corresponding to w in the parameter
space Y, x Y;. If H, 1s transitive on this space, then F,4,_; 1S measurable with respect to G,
with this measure.

Remark 5. Theorem 1| holds even if the secant families are not measurable, on the condition
that these assume the described densities with respect to suitable groups of invariance of

-E;+r—.~:-

Remark 6. If s = O then the families 7,(A) and F,(B) are taken independently, and Theorem
| gives the same result as shown in [4].
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Remark 7. Theorem I holds even if the common parameters {B,B>,...,B,} are not all
essential for both families, but only for one of them, because they are all essential in Fgti—s
even 1n this case. However if this occurs, the intersection order is not equal to s, but to the
number of parameters, among {B;, B>, ..., B}, which are essential in both families.

We can consider of the family of intersections between two families F A, B)and F(B, C)
having intersection order s. Its elements are obtained, forevery list A, B, C, by intersecting the
correspondent varieties of F,(A, B) and F,(B, C). The groups of invariance of this family are
the same as those of 7 (A, B) + F,(B, €), since a group of transformations keeps belongings
relations. Then we have the same Deltheil systems, and consequently densities obtained by
Theorem 1 can also be related to the family of intersections between F (A, B) and (B, ()

f;’+ff—.‘s' {

[ F/(A, B)
| Fy(B,O).

Here the brace means intersection, while 7, (A, B)+F,(B,C) is the family of systems of
Fq4(A, B) and F,(B, C). Both notations are often used for the family of systems. However by
the previous arguments, as regards measurability problems we can refer to each one of them.

Remark 8. As emphasized in Remark 3, the family of intersections between two families,
having intersection order s, might be empty. In this case we can formally associate densitics
to an empty family of varieties. Indeed the empty family is invariant with respect to every
group of transformations, and so it can take every density.

Following the early classification given by Stoka [9], a family of varieties is measurable
or not measurable whether it assumes a single density, or more, with respect to its transitive
groups of invariance. This classification can be refined, as shown in [5], pointing out different
kinds of measurability or not measurability.

Definition 4. We say that a family of varieties is of class A [S), if the first Stoka’s condition
holds.

Theorem 2. Let F,(A) and F(B), g < t, be two families of class A, whose respective densities
are
d{I‘)ff(i) — fxq(&J A dA,

d¥,(B) = B.(B) N\ dB.

[f the same conditions (possibly no conditions) hold for s pairs of normal parameters { D} and
{E}, obtained by {A} and {B} respectively, (0 < s < g), then F (D) and F(B) can be made
generically secant of order s, such that their union family F ., (D, B) takes the invariant
integral function [3,(B) with respect to its maximal group of invariance. Analogously, F,(A)
and F,(E) can be made generically secant of order s, such that their union family F 4 — (A, E)
takes the invariant integral function &, (A) with respect to its maximal group of invariance.
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Proof. We can always normalize parameters A by ¢ relations

vi(A,D) =0, k=1,2,...,q, (13)
in such a way that 7,(D) is the whole *,(A), and its density is given by

ANdD = dDy NdDyA.. . NdDy_sA. .. NdDy.
The same holds for F,(B), so we normalize also parameters B by f relations
op(B,E)y=0, h=1,2,...,t (14)
this gives the family in the form JF,(E), and the density is
NAE = dE, N dE>A. . . ANdEGA. .. NdE,.

Up to rename the parameters, we can suppose that the s pairs of normal parameters depending
on the same conditions are D; E;, (¢ — s+ 1 <i<¢q, 1<j<5s). Sowecan put

Df_;—.\'-[-] — Elan—x-i—E — EL R 3Dr_,r — E‘i‘h (15)

which makes 7 ,(D) and F,(E) secant families of intersection order s. By the previous theorem,
the family 7,4, (D, E) = F,(D) + F,(E), takes the density

dDy A dD>A...NdD,_s \' dE.
Relations (14) and 1dentifications (15) turn out to be s independent relations
pm(Qmﬁ):G: m = 1121---151 (16)

among parameters D and B consequently 7, (D) and 7(B) are generically secant families of
intersection order s, and ¥4, (D, B) = F,(D) + F,(B) takes the density

d}(q-{—r—x(ngl Do, aDq-—s) = dD| NdD>A. .. f\de,f—.ﬂ' A’ dE =

= B,(B) A" dB A dDy A dDaA. .. NdD,_,

with respect to its maximal group of invariance. In the same way we see that F 4, (A, E)
takes the density o ,(A) A1 dA N dEg4y NdEs oA .. AdE,, with respect to its maximal group
of invariance.

Remark 9. If s = 0, Theorem 2 gives the same result as shown in [4].

Remark 10. The assumption that 7,(A) and F,(B) are of class A can be weakened, and
densities can be taken only with respect to certain groups of invariance of these families.
Of course, in that case, the density dx,4,—s(B,D;,D,,...,D,_;) must be related to the
intersection of the chosen groups.



Generically secant and secant families 7

Remark 11. Theorem 2 does not ensure that 74, 1s of class A. It points out that d¥,+,—
1S one among the possible densities assumed by the family with respect to its maximal group
of invariance G,; however other densities may exist if the group H,, 1somorphic to G,, 1s not
transitive. This surely occurs if r< g + t — s.

Examples.

1. Let F5(u, v, w) be the family of planes in the Euclidean space E;
Fyiux+vw+wz+1=0. (07

It is measurable with respect to the group of congruences of E3, Gg, with density [1], [11]

du N\ dv A\ dw

[Py = . |8
T T T ) (18)
With the change of parameters
sinfcosB sinBsing cos0
H = ’1}' po—— R e \
—p —p —D
the equation (17) becomes
F3(0,d,p) : xsinBcosd + ysinBsind + zcos® — p = 0, (19)
and (18) turns in o
d®s = |sinB|dd N dO A dp. (20)
Let F4(a, b, c, R) be the family of spheres in the projective space P;
Fy : (Iwﬂ')z—l—(}‘—“b)z-!-(:’.—{'}2 -~ R =0. (21)
This family 1s of class A [8], with density
d¥y = R™*da A db A dc A dR. (22)

The maximal group of invariance of Fy is the group of similarities, which contains the
group of congruences, and Fi(a, b, ¢, R) takes the same density (22) on this group.

Now we consider in E3 the families (19) and (21), depending, respectively, on parameters
0,d,p and a, b, c,R. The relation

oc(a,b,c,p,0,0) : p — alcosdsin®) — b(sindpsin®) — c(cosO) = 0,
allows us to write F3(8, &, p) in the form

Fs(0,d,a,b,c) : (x — a)cosdsin® + (y — b)sindsin® + (z — c)cos® =0,  (23)
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where only 1 among a, b, c 1s essential. By Theorem 1 and Remark 7, F5(0, &, a, b, c) and
Fala, b, c,R) become secant families of intersection order 1, and the tamily

Fe = Fs5(0,d,a,b,c) + Fala,b,c,R),
takes the density

|sin6|

R—4

dug(R,a,b,c,0,d) = dR A da A db A dc A dO A dob,

with respect to the group of congruences.

The same density works, with respect to the group of congruences, on the family of
intersections between F5(9, &, a, b, ¢) and Fi(a,b,c,R)

r'(.Jr:—-nr)j—I-(}*—b)z-+-(.:—f:)?“—R’E:0

Fe <
{ (- aycospsin® + (y — b)sindpsin® + (z — ¢)cosd® = 0,

that 1s the tamily of circumferences of the space.

2. Let 75(A,A>) : Ajx+ Ary + 1 = 0 be the famuly of straight lines of the Euclidean plane
E,. It is of class A [7], [12], with density

- —dA| N\ dA,. (24)
(A7 + A3)2
The change of parameters
cosD, sinD
AI — = y 412 — )
D D

gives the family in the form
fj(Dl,Dg) . CU.S‘DI.T <+ .S'EJIDH-’ — Dg = 0, (Dg 2 O)

The density becomes
dD, N\ dD».

so D) and D, are normal parameters for the family of straight lines.

Now let F3(B),B>,B3) : x> +y* —2Bix—2B>y+ By = 0, (B% +B% — B3 > 0) be the family
of circumferences of the plane E5, which is of class A [8], with density

1
(B + B3 — B3)?

dB| N\ dB> N\ dBs. (25)

We can normalize the parameters B with the following relations [8]

E,—By =0,E; — B, =0,E;(B} + B3 —B3) — | = 0.
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With respect to the normal parameters, the family 7 has the form
FAEr, Ea, B3 (x — E\) + (0 — E2)” = —,

and 1ts density 1s

dEy A\ dEy A dE3.

We wish to point out the s-secant figures, s = 0, 1,2, which are determined by the union
family Fs_; = F>(D,, D)+ F3(B,, B>, B3) of straight lines and circumferences. When these

have intersection order s, by Theorem 2 F5_; takes the invariant integral function T BL_ N
] 2 :

with respect to the group of Euclidean motions.

L s = 0. In this case Fs = F2(D,, D,) + F3(By, B3, B3) 1s the independent union of straight
lines and circumferences, so the O-secant figure 1s obtained by taking, for every circumference,
the whole family of straight lines, (hig.1).

fig.1

- 1

II. s = 1. Now the families of straight lines and circumferences are generically secant of
intersection order 1. This is possible in various ways by taking one between parameters
D,, D, equal to one among parameters £y, E,, E3, but not all identifications are allowed. We
have the following possibilities:

Il a). D, = E;. This gives D, = B, so the l-secant figure consists of a circumference
of centre C(B;, B>) and the ~! straight lines intersecting the y-axis under an angle ¢ = x¢,

(fig.2).
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fig.2

II b). D, = E>. In this case we have D, = B», and the 1-secant figure is determined by
joining to a circumference of centre C(B;, B>) the ~! straight lines intersecting the y-axis
under an angle o = y¢ (fig.3).
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--------------------------

fig.3

II ¢). D| = E3. This case 1s not allowed, being £5 > 0, while D can take all real values.
The same for cases D, = E| and D, = E, since D, > 0 but E| and E; can be negative.

Il d). D, = E;. The l-secant figure consists of a circumference of radius R and the ~'
straight lines whose distance from the origin 1s % (hg.4).
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fig.4

I11. s = 2. This case occurs in two ways:
Il a). D, = E, and D> = Ej;
III b). D, = E> and D, = E5.
[n III a) the 2-secant figure 1s the pair determined by a circumference with centre C(B,, B»)

and radius R, and the straight line which intersects the y-axis under an angle ¢ = x,. and
whose distance from the origin is J,", (fig.5).
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fig.5

In III b) the 2-secant figure 1s the pair determined by a circumference with centre C(B,, B»)
and radius R, and the straight line which intersects the y-axis under an angle ¢ = y. and
whose distance from the origin is % (fig.6).
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Remark 12. When the identifications among normal parameters 1s forbidden, we can relate
the arguments to the possible weak subfamilies on which these are allowed. Then Theorem
2 works again with respect to the maximal group of invariance of the union family of the
weak subfamilies, which may be different from the maximal group of invariance of the union
family of the starting families. For instance it becomes trivial in all the cases pointed out 1n
the previous 11 ¢).

3. By Remark 1, it is always possible to normalize the parameters of a measurable family
of varieties, but not all normalization are allowed. An example 1s given by taking, in the
Euclidean plane E>, the family of straight lines 7> : Ajx + A2y 4+ 1 = 0, [S].

Indeed, if we do the change of parameters

As 1
t¢D) = —=, D, = kA

Al \/A?-FA%_}

where k& >0 is a given constant, we obtain again the normalization of the density of 75, but
now the family is restricted on the weak subfamily F1, consisting of all straight lines whose
distance from the origin is greater or equal k. Since the maximal group of invariance of F»
does not contain any translation, the normalized density cannot be related to F» with respect
to the group of Euclidean motions.
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