Non-existence of non-trivial generic warped product in Kaehler manifolds

Falleh R. Al-Solamy
Department of Mathematics, King AbdulAziz University
P. O. Box 80015, Jeddah 21589, Saudi Arabia.
falleh@hotmail.com

Viqar Azam Khan
Department of Mathematics, King AbdulAziz University
P. O. Box 80015, Jeddah 21589, Saudi Arabia.
viqarster@gmail.com

Received: 26/04/2007; accepted: 04/09/2007.

Abstract. Warped product manifolds provide excellent setting to model space time near black holes or bodies with large gravitational force [7]. Recently there have been studies to explore the existence of warped products in certain settings [5], [9]. To continue the sequel, non existence of generic warped product submanifolds in a Kaehler manifold is established extending the results of B. Y. Chen [5] and B. Sahin [9].

Keywords: Generic Submanifold, purely real, totally real and holomorphic distributions, slant submanifold, warped product submanifold.

MSC 2000 classification: 53C40, 53C42, 53C15

1 Introduction

The study of geometry of warped product manifolds was introduced by R. L. Bishop and B. O’Neill [2]. These manifolds emerge in a natural manner. For instance the best relativistic model of the Schwarzschild space time that describes the outer space around a massive star or a black hole is a warped product manifold. Bishop and O’Neill obtained various fundamentally important results for warped product manifolds. Recently the study got impetus with B. Y. Chen’s work on warped product CR-submanifolds of a Kaehler manifold (cf. [5], [6], [7]). He studied CR-Submanifolds of a Kaehler manifold which are warped products of a holomorphic and totally real submanifolds N_T and N^\perp respectively. He proved that a warped product submanifold $N_\perp \times_f N_T$ in a Kaehler manifolds is simply a CR-product whereas the warped product $N_T \times_f N_\perp$ is nontrivial. B. Sahin [9] extended the study by proving that the semi-slant warped product submanifolds $N_T \times_f N_\theta$ and $N_\theta \times_f N_T$ in Kaehler manifolds are trivial in the
sense that they are simply Riemannian product of N_T and N_0 where N_0 denotes a proper slant submanifold of the underlying Kaehler manifold. Our aim in the present note is to extend the study by considering the warped products $N_T \times_f N^0$ and $N^0 \times_f N_T$ of a Kaehler manifold \overline{M} where N^0 is an arbitrary submanifold of \overline{M}.

2 Preliminaries

Let \overline{M} be a Kaehler manifold with an almost complex structure J and Levi-Civita connection $\overline{\nabla}$. If M is a submanifold of \overline{M}, then the Gauss and Weingarten formulae are given respectively by

\[
\overline{\nabla}_U V = \nabla_U V + h(U, V), \tag{1}
\]
\[
\overline{\nabla}_U \xi = -A_\xi U + \nabla^\perp_U \xi, \tag{2}
\]
for any vector fields U, V tangent to M and ξ normal to M, where ∇ and ∇^\perp denote the induced connections on the tangent bundle TM and the normal bundle $T^\perp M$ respectively. h is the second fundamental form and A is the shape operator of the immersion of M into \overline{M}. The two are related by

\[
g(A_\xi U, V) = g(h(U, V), \xi), \tag{3}
\]
where g denotes the metric on \overline{M} as well as the one induced on M.

For any vector field U tangent to M, we put

\[
JU = PU + FU, \tag{4}
\]
where PU and FU are respectively the tangential and normal components of JU.

The covariant differentiation of the tensor P is defined by

\[
(\overline{\nabla}_U P)V = \nabla_U PV - P \nabla_U V. \tag{5}
\]

As \overline{M} is Kaehler, by using (1), (2), (4) and (5), we obtain

\[
(\overline{\nabla}_U P)V = A_{FV} U + th(U, V). \tag{6}
\]

1 Definition. Let M be a submanifold of a Kaehler manifold \overline{M} and for $x \in M$, $D_x = T_x(M) \cap JT_x(M)$ be the maximal complex subspace of the tangent space $T_x(M)$. If $D : x \rightarrow D_x$ defines a C^∞-distribution on M, known as holomorphic distribution, then M is called a \textit{generic submanifold} (cf. [4]).
For a generic submanifold M of a Kaehler manifold, the tangent bundle TM, can be decomposed as

$$TM = D \oplus D^0,$$

where D^0 denotes the orthogonal complementary distribution of D and is known as \textit{purely real distribution}. A generic submanifold is a holomorphic submanifold if $D^0 = \{0\}$ and is called a \textit{purely real submanifold} if $D = \{0\}$. Further, if D^0 is totally real, the generic submanifold is a CR-submanifold. Thus, a generic submanifold provides a generalization of holomorphic, totally real, purely real and a CR-submanifold. It can also be observed that a purely real distribution D^0 on a submanifold M, is a slant distribution if the angle $\theta(Z) \in [0, \pi/2]$ between D^0_x and JZ is constant for each $Z \in D^0_x$ and $x \in M$. A purely distribution D^0 on M is called a \textit{proper purely real distribution} if $\theta(Z) \neq \pi/2$ for any $Z \in D^0$.

On a generic submanifold of a Kaehler manifold, a) $PD = D$, b) $PD^0 \subset D^0$, c) $FD = \{0\}$.

\textbf{2 Theorem.} [4] Let M be a generic submanifold of a Kaehler manifold \mathcal{M}. Then the holomorphic distribution D on M is integrable if and only if

$$g(h(JX,Y),FZ) = g(h(X,JY),FZ),$$

for each $X,Y \in D$ and $Z \in D^0$.

\textbf{3 Definition.} Let B and F be two Riemannian manifolds with Riemannian metric g_B and g_F respectively and $f > 0$ a smooth function on B. Consider the product manifold $B \times F$ with its projections $\pi : B \times F \rightarrow B$ and $\eta : B \times F \rightarrow F$. The \textit{warped product} $B \times_f F$ is the manifold $B \times F$ equipped with the Riemannian metric such that

$$||U||^2 = ||d\pi U||^2 + f^2(\pi(x)||d\eta U||^2,$$

for any tangent vector U on $B \times F$. In other words, the Riemannian metric g on a warped product manifold $B \times_f F$ is given by

$$g = g_B + f^2 g_F.$$

The function f is called the \textit{warping function} of the warped product. For a warped product $N \times_f N^0$, we may consider D and D^0 the distributions determined by the vectors tangent to the leaves and fibres respectively. That is, D is obtained from tangent vectors of N via the horizontal lift and D^0 is obtained by tangent vectors of N^0 via the vertical lift.

A warped product $N \times_f N^0$ is said to be trivial if its warping function f is constant. A trivial generic warped product $N_T \times_f N^0$ is nothing but a
generic product $N_T \times N_f^0$, where N_f^0 is the manifold with metric $f^2g_{N_0}$ which is homothetic to the original metric g_{N_0} on N_0.

R. L. Bishop and B. O’Neill [2] obtained the following basic results for warped product manifolds.

4 Theorem. [2] Let $M = B \times_f F$ be a warped product manifold. Then for any $X, Y \in D$ and $V, W \in D^0$,

(i) $\nabla_X Y \in D$,
(ii) $\nabla_X V = \nabla_V X = (X \ln f)V$,
(iii) $\nabla_V W = -\frac{g(V, W)}{f} \nabla f$.

∇f is the gradient of f and is defined as $g(\nabla f, U) = Uf$.

3 Warped product generic submanifolds in a Kaehler manifold

In this section, we study generic submanifolds of a Kaehler manifold M which are warped products of the form $N^0 \times_f N_T$ and $N_T \times_f N^0$ where N_T is a holomorphic submanifold and N^0 is a proper purely real submanifold of M.

5 Theorem. A Kaehler manifold does not admit non-trivial warped products with one of the factors a holomorphic submanifold.

Proof. Let N_T be a holomorphic submanifold of a Kaehler manifold M and N^0 an arbitrary submanifold.

Consider the warped product $M = N^0 \times_f N_T$ in a Kaehler manifold M. Then by Theorem 4

$$\nabla_X Z = \nabla_Z X = (Z \ln f)X,$$

for each $X \in TN_T$ and $Z \in TN^0$. Thus

$$g(X, \nabla_J X Z) = 0.$$

Making use of (1), (2), (4) and the fact that M is Kaehler, we deduce from the above equation that

$$0 = g(JX, \nabla_J X JZ) = g(JX, \nabla_J X PZ) - g(h(JX, JX), FZ),$$

which on applying formula (7) yields that

$$g(h(JX, JX), FZ) = (PZ \ln f)\|X\|^2. \quad (8)$$
Now, by (5), (6) and (7), we obtain
\[(PZ \ln f)X - (Z \ln f)PX = A_{FZ}X + th(X, Z).\]

On taking inner product with \(Y \in TN_T\), the above equation gives
\[(Z \ln f)g(X, Y) - (PZ \ln f)g(PX, Y) = g(h(JX, Y), FZ).\] (9)

Interchanging \(X\) and \(Y\) in the above equation and adding the resulting equation in (9) while taking account of Theorem 2, we obtain
\[(Z \ln f)g(X, Y) = g(h(JX, Y), FZ).\] (10)

In particular, we have
\[g(h(JX, JX), FZ) = 0.\] (11)

Now, by (8) and (11), it follows that
\[PZ \ln f = 0,\]
for each \(Z \in TN^0\). This shows that \(f\) is constant and thus \(M\) is a Riemannian product of \(N^0\) and \(N_T\).

Let now \(M\) be the warped product submanifold \(N_T \times_f N^0\) of \(\overline{M}\). Then for any \(X \in TN_T\) and \(Z \in TN^0\), by Theorem 4
\[\nabla_X Z = \nabla_Z X = (X \ln f)Z,\] (12)
and therefore
\[(\nabla_X P)Z = 0,\]
\[(\nabla_Z P)X = (PX \ln f)Z - (X \ln f)PZ.\]

The above equations, in view of (6) yield
\[A_{FZ}X + th(X, Z) = 0,\] (13)
and,
\[(PX \ln f)Z - (X \ln f)PZ = th(X, Z).\] (14)

Thus, we have
\[A_{FZ}X = (X \ln f)PZ - (PX \ln f)Z.\] (15)
Taking inner product with \(PZ\) in (15) and making use of (13), we obtain
\[g(h(X, PZ), FZ) = g(h(X, Z), FPZ) = (X \ln f)\|PZ\|^2.\] (16)
On the other hand as \overline{M} is Kaehler and formula (13) holds we have

\[g(\nabla PZ JZ, JX) = 0. \]

Which on using (1), (2) and (4) yields

\[g(\nabla PZ PZ, JX) = g(A FZ PZ, JX). \]

The above equation on taking account of (5) gives

\[g(h(X, PZ), FZ) = -(X \ln f) ||PZ||^2. \] (17)

By (16), (17) and the assumption that N^0 is a proper purely real submanifold, we get

\[X \ln f = 0. \]

This proves that the product $N_T \times f N^0$ is trivial.

QED

References