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1 Introduction

Let (M, g) be a compact n−dimensional Riemannian manifold with n ≥ 3.
Denote by δg > 0 the injectivity radius of (M, g). For a fixed point p ∈ M , we
define (after [12]) on (M, g) a distance function ρp as follows

ρp(x) =

{
distg(p, x), x ∈ B(p, δg),
δg, x ∈M \B(p, δg).

(1.1)

Consider on (M, g) the Sobolev space H2
1 (M) consisting of the completion of

C∞(M) with respect to the norm

||u||2H2
1 (M) =

∫
M

(|∇u|2 + u2)dvg. (1.2)
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Let h and f be smooth functions on M . We are interested in studying existence
of positive solutions u ∈ H2

1 (M) of the following equation:

∆gu−
h(x)

ρ2
p(x)

u = f(x)|u|2∗−2u, x ∈M \ {p}, (Eh,f )

where ∆gu = −div(∇gu) is the Laplacian of u and 2∗ = 2n
n−2 is the critical

Sobolev exponent.
Equation (Eh,f ) is reminiscent of the famous prescribed scalar curvature equa-
tion that involves the term n−2

4(n−1)Scalg, where Scalg is the scalar curvature of

g, instead of the Hardy potential h
ρ2p

. It arises in the study of the conformal

deformation of the metric g to a prescribed scalar curvature and it has been ex-
tensively studied; we refer the reader to the books [3] and [10] for a compendium
on this equation and the related topics.

When the function ρp is of power 0 < γ < 2 and f(x) = 1, equation (Eh,f )
appears as a case of equations that arise in the study of conformal deformation
to constant scalar curvature of metrics which are smooth only in some geodesic
ball B(p, δ) ⊂ M ; it is a kind of a singular Yamabe problem that has been
formulated and studied in [12, 13].

In this paper, we are interested in the study of existence of weak solutions
of equation (Eh,f ) on the compact Riemannian manifold (M, g) approaching
the variational method. More precisely, we prove the existence of a function
u ∈ H2

1 (M) \ {0} such that∫
M

(∇u.∇v − h

ρ2
p

uv)dvg −
∫
M
f |u|2∗−2uvdvg = 0,∀v ∈ H2

1 (M).

Notice at first that equation (Eh,f ) contains the critical exponents 2∗ in the
nonlinear term and also the critical Hardy potential 1

ρ2p
which render the study

of existence of solutions via the variational method difficult due to the lack of
compactness in the inclusion of the Sobolev space H2

1 (M) in the Lebesgue spaces

L2∗(M) and L2(M,ρ2
p) (the space of functions u : M → R such that

∫
M

u2

ρ2p
dvg is

finite). For this reason, an analysis of blow-up phenomena is needed in order to
determine compactness levels of Palais-Smale sequences. Here, we should note
that the singular term plays an important role in the blow-up analysis. In fact,
it can be shown as in [14], that it interferes in the decomposition of the energy
of Palais-Smale sequences and then in the determination of critical compactness
level.

The nearest equation to (Eh,f ) is possibly the one studied in [15] on the
Euclidean space Rn. In [15], the author considered on the Euclidean space Rn
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the equation

∆Rnu−
λ

|x|2
u = K|u|2∗−2u, x ∈ Rn \ {0},

where 0 < λ < (n−2)2

4 is a constant and K is some function defined on Rn.
The author, obtained some existence results to this equation after having es-
tablished decomposition formulas for Palais-Smale sequences. At some extent,
the decomposition result obtained in [15] is relevant to our case where a similar
decomposition formulas can be obtained as it has been shown in [14].

Another important result is the classification of positive solutions, obtained
in [18], of the equation

∆Rnu−
λ

|x|2
u = |u|2∗−2u, x ∈ Rn \ {0}, (1.3)

where 0 < λ < (n−2)2

4 is a constant. The author proved that for each 0 < λ <
(n−2)2

4 , equation (1.3) has one parameter family of positive radially symmetric
solutions

Uλ,w(x) = w
2−n
2 Uλ

( x
w

)
, w > 0, x ∈ Rn, (1.4)

where

Uλ(x) = (n(n− 2))
n−2
4

(
aλ |x|aλ−1

1 + |x|2aλ

)n
2
−1

, x ∈ Rn,

with

aλ =

√
1− 4λ

(n− 2)2
. (1.5)

Moreover, the family functions Uλ(x) satisfies

inf
u∈D1,2(Rn)\{0}

∫
Rn

(
|∇u|2 − λ u2

|x|2

)
dx(∫

Rn |u|2
∗dx
) 2

2∗
=

∫
Rn

(
|∇Uλ,w|2 − λ

U2
λ,w

|x|2

)
dx(∫

Rn |Uλ,w|2
∗dx
) 2

2∗

=

(
1− λ( 2

n−2)2
)n−1

n

K2(n, 2)
. (1.6)

with K(n, 2) is the best constant appearing in the Euclidean Sobolev inequality(∫
Rn
|u2∗ |dx

) 2
2∗

≤ K2(n, 2)

∫
Rn
|∇u|2dx. (1.7)
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Its value is calculated in [3, 17, 9] and is given by

K(n, 2) =

√
4

n(n− 2)(wn)
n
2

, (1.8)

where wn is the volume of the unit sphere Sn ⊂ Rn+1.
Clearly, when λ = 0, we meet the classification result, obtained in [4] ( see

also [7, 8, 17]), of positive solutions of the unperturbed equation

∆Rnu = |u|
4

n−2u, x ∈ Rn, (1.9)

by the family of functions

Uw(x) = w
2−n
2 U

( x
w

)
, x ∈ Rn, (1.10)

where

U(x) = (n(n− 2))
n−2
4

(
1

1 + |x|2

)n
2
−1

, x ∈ Rn.

In the case of the prescribed scalar curvature equation, the family functions Uw
have been utilised as test functions to ensure that the minimum of the corre-
sponding variational setting is under the critical energy level of compactness
(see [3, 9]). In the same spirit, we will use the family of functions Uλ,w for the
same goal. As such, we prove the existence result formulated in theorem 2 below.

2 Notation, preliminaries and statement of the main
result.

Let (M, g) be a compact Riemannian manifold. By the Rellich-Kondrakov
theorem ( see [9] ), the space H2

1 (M) is compactly embedded in Lq(M) for
q < 2∗ = 2n

n−2 , and continuously embedded in L2∗(M). Moreover, on the space

H2
1 (M), the following optimal Sobolev inequality holds ( see [10, Theorem 4.6]):

for any function u ∈ H2
1 (M), there exists a positive constant B such that

||u||2L2∗ (M) ≤ K
2(n, 2)||∇u||2L2(M) +B||u||2L2(M), (2.11)

with K(n, 2) is given by (1.8).

Denote by L2(M,ρ2
p) the space of functions on M such that

∫
M

u2

ρ2p
dvg <∞.

This space is a Banach space endowed with the norm

||u||2L2(M,ρ2p) =

∫
M

u2

ρ2
p

dvg.
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In [12, Theorem 1.2], it is shown that the Sobolev space H2
1 (M) is continuously

embedded in L2(M,ρ2
p) and the following Hardy inequality on H2

1 (M) holds: for
every ε > 0 there exists a positive constant A(ε) such that for any u ∈ H2

1 (M),∫
M

u2

ρ2
p

dvg ≤ (K2(n, 2,−2) + ε)

∫
M
|∇u|2dvg +A(ε)

∫
M
u2dvg, (2.12)

where K(n, 2,−2) = 2
n−2 is the best constant in the Euclidean Hardy inequality∫

Rn

u2

|x|2
dx ≤ (

2

n− 2
)2

∫
Rn
|∇u|2dx.

We will use the notation K(n, 2,−2) to denote the number 2
n−2 , where n ≥ 3

is the dimension of the manifold M .

Besides, always in [12, Lemma 1.1], it is proved that if u is supported in
B(p, δ), 0 < δ < δg, a geodesic ball of center p and radius δ, then∫

B(p,δ)

u2

ρ2
p

dvg ≤ K2
δ (n, 2,−2)

∫
B(p,δ)

|∇u|2dvg,

with Kδ(n, 2,−2) goes to K(n, 2,−2) when δ goes to 0.

Let δ > 0 be a constant and q ∈ M be a point. A geodesic ball of center q
and radius δ is denoted by B(q, δ) and a Euclidean ball of center 0 and radius
δ is denoted simply by B(δ). The exponential map at a point q ∈ M , which
is denoted by exp−1

q , is a local diffeomorphism of class C∞: exp−1
q : B(q, δ) ⊂

M −→ B(δ) ⊂ Rn, which defines a geodesic normal system on the manifold
(M, g).

For δ > 0, we denote by ηδ a smooth cut-off function in Rn, which satisfies
0 ≤ ηδ ≤ 1, ηδ ≡ 1 in B(δ), ηδ ≡ 0 in Rn \B(2δ).

For q ∈M and 0 < δ < δg, where δg stands for the injectivity radius, we de-
note by ηq,δ the smooth cut-off function in M defined by ηq,δ(x) = ηδ(exp−1

q (x)),
x ∈M .

Now, let Jh,f be the functional defined on H2
1 (M) by

Jh,f (u) =
1

2

∫
M

(|∇u|2 − h

ρ2
p

u2)dvg −
1

2∗

∫
M
f |u|2∗dvg. (2.13)

The functional Jh,f is a C2 functional on H2
1 (M). Its (Fréchet) derivative at

u ∈ H2
1 (M) is given by

DJh,f (u).v =

∫
M

(∇u.∇v − h

ρ2
p

uv)dvg −
∫
M
f |u|2∗−2uvdvg, v ∈ H2

1 (M).
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A Palais-Smale sequence of Jh,f at a level β ∈ R is defined as a sequence
um ∈ H2

1 (M) such that Jh,f (um)→ β and DJf,h(um).v → 0, ∀v ∈ H2
1 (M).

A function u ∈ H2
1 (M) is called a critical point of Jh,f if it satisfiesDJh,f (u)ϕ

= 0, ∀ϕ ∈ H2
1 (M) and a constant β ∈ R is called a critical level of Jh,f if there

exists a critical point u of Jh,f such that β = Jh,f (u). Obviously, a critical point
u ∈ H2

1 (M) of Jh,f coincides with a weak solution of equation (Eh,f ).
In what follows, we say that the functional

I(u) =

∫
M

(|∇u|2 − h

ρ2
p

u2)dvg, u ∈ H2
1 (M). (2.14)

is coercive if there exists a constant λ > 0 such that for all u ∈ H2
1 (M),

I(u) ≥ λ‖u‖2H2
1 (M).

Suppose that the function f is positive on M , the function h satisfies

0 < h(p) <
1

K2(n, 2,−2)
,

and that the operator I is coercive. Set

µ = inf
u∈H2

1 (M)\{0}

∫
M

(
|∇u|2 − hu2

ρ2p

)
dvg

(
∫
M f |u|2∗dvg)

2
2∗

. (2.15)

Notice that by coercivity of I, positivity of the function f and Sobolev inequality
(2.11), we have that µ > 0.

Now, let us take f ≡ 1. In [12, Theorem 4.1], it has been proven that equation
(Eh,f )( for f ≡ 1) admits a weak solution if

µ <
1− h(p)K2(n, 2,−2)

K2(n, 2)
.

It seems that the level
1− h(p)K2(n, 2,−2)

K2(n, 2)
,

is not the critical one since the existence of solutions of (Eh,f ), for f ≡ 1, can
be extended to the greater level(

1− h(p)K2(n, 2,−2)
)n−1

n

K2(n, 2)
.

This can be easily deduced from Proposition (1) below after, of course, replacing
the function f by the constant function f ≡ 1. In fact, Proposition (1) extends
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Theorem 4.1 in [12] to non constant functions f and, more importantly, to a
wider range of compactness levels(

1− h(p)K2(n, 2,−2)
)n−1

n

(supx∈M f(x))
n−2
n K2(n, 2)

.

Now, for α ∈ [0,∞[, let hα be a family of continuous functions on M and
consider

µα = inf
u∈H2

1 (M)\{0}

∫
M

(
|∇u|2 − hα u

2

ρ2p

)
dvg

(
∫
M f |u|2∗dvg)

2
2∗

.

Suppose that the following conditions, referred to as by H, are satisfied

(H)



a- 0 < hα(p) < 1
K2(n,2,−2)

, ∀α ∈ [0,∞[.

b- µα <
1−hα(p)K2(n,2,−2)

(supx∈M f(x))
n−2
n K2(n,2)

, ∀α ∈ [0,∞[.

c- |hα(x)| ≤ C, for a constant C > 0, ∀x ∈M and ∀α ∈ [0,∞[.
d- There exists a function h∞ such that supM |hα − h∞| → 0,
as α→∞.

In [14], the authors considered on a compact Riemannian manifold (M, g), the
following equations

∆gu−
hα(x)

ρ2
p

u = f(x)|u|2∗−2u, α ∈ (0,∞). (Eα)

Let conditions H be satisfied and let uα be a sequence of weak solutions of
(Eα) with

∫
M f |uα|2

∗
dvg ≤ C,C > 0. In [14], the authors proved that, under

conditions H, there exist k sequences Rim > 0, Rim →
m→∞

0, ` sequences T jm >

0, T jm →
m→∞

0, converging sequences of points xjm → xjo 6= p in M , a solution

uo ∈ H2
1 (M) of the limiting equation

∆gu−
h∞(x)

ρ2
p

u = f(x)|u|2∗−2u, x ∈M \ {p},

and functions vi, νj ∈ D1,2(Rn) respectively nontrivial solutions of the equations

∆Rnu−
h∞(p)

|x|2
u = f(p)|u|2∗−2u, x ∈ Rn \ {0}, (2.16)
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and
∆Rnu = |u|2∗−2u, (2.17)

such that, up to a subsequence, uα satisfies

uα = uo +
k∑
i=1

(Riα)
2−n
n ηp,δ(x)vi((R

i
α)−1 exp−1

p (x))

+

l∑
j=1

(T jα )
2−n
n η

xjα,δ
(x)f(xjo)

2−n
4 νj((r

j
α)−1 exp−1

xjα
(x)) +Wα,

with Wα → 0 in H2
1 (M),

and

Jhα,f (uα) = Jh∞,f (uo) +
k∑
i=1

J∞(vi) +
l∑

j=1

f(xjo)
2−n
2 J(νj) + o(1).

Here, J and J∞ are the following functionals

J(u) =
1

2

∫
Rn
|∇u|2dx− 1

2∗

∫
Rn
|u|2∗dx, (2.18)

and

J∞(u) =
1

2

∫
Rn
|∇u|2dx− h∞(p)

2

∫
Rn

u2

|x|2
dx− 1

2∗
f(p)

∫
Rn
|u|2∗dx. (2.19)

By replacing the sequence hα by a function h( a constant sequence in α ) and the
sequence of solutions uα of (Eα) by simply a Palais-Smale sequence um of the
functional Jh,f and mimicking what has been done in [14], with absolutely no
changes, we get that the Palais-Smale sequence um satisfies the decomposition
laws as above. Note that, in this case, condition H is reduced to the condition

0 < h(p) <
1

K2(n, 2,−2)
.

In fact, the condition

µ <
1− h(p)K2(n, 2,−2)

(supM f(x))
n−2
2 K2(n, 2)

,

it is not needed as we take simply a Palais-Smale sequence which replaces the
sequence of solutions uα.
In a very precise way, we get that the following theorem holds:
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Theorem 1. Let (M, g) be a compact Riemannian manifold with dim(M) =
n ≥ 3. Let f be a smooth positive function on M and h a smooth function on
M such that on the point p ∈M , it satisfies 0 < h(p) < 1

K2(n,2,−2)
.

Let um be a Palais-Smale sequence of the functional Jh,f at a level β. Then, there

exist k ∈ N, sequences Rim > 0, Rim →
m→∞

0, ` ∈ N sequences T jm > 0, T jm →
m→∞

0,

converging sequences xjm → xjo 6= p in M , a weak solution u ∈ H2
1 (M) of (Eh,f ),

solutions vi ∈ D1,2(Rn) of

∆Rnu−
h(p)

|x|2
u = f(p)|u|2∗−2u, x ∈ Rn \ {0}, (2.20)

and nontrivial solutions νj ∈ D1,2(Rn) of (2.17) such that up to a subsequence

um = u+

k∑
i=1

(Rim)
2−n
n ηp,δ(x)vi((R

i
m)−1 exp−1

p (x))

+
∑̀
j=1

(T im)
2−n
n η

xjm,δ
(x)f(xjo)

2−n
4 νj((τ

j
m)−1 exp−1

xjm
(x)) +Wm, (2.21)

with Wm → 0 in H2
1 (M),

and

Jh,f (um) = Jh,f (u) +
k∑
i=1

J∞(vi) +
l∑

j=1

f(xjo)
2−n
2 J(νj) + o(1). (2.22)

Proof. The proof is the same as that of theorem 3.1 in [14]. QED

The above theorem will be used in order to determine regions in which a
Palais-Smale sequence of Jh,f is relatively compact and then a condition of
existence of a weak solution of equation (Eh,f ) is derived. After that, a test
function, constructed from the functions defined by (1.4), will be employed in
order to ensure that, under some assumptions, the condition of existence is
satisfied. Doing so, we prove the following main result

Theorem 2. Let (M, g) be a compact Riemannian manifold of dimension
n and Scalg its scalar curvature. Let p be a fixed point of M and ρp the distance
function defined by (1.1). Let h and f be two smooth functions on M such that
f is positive, supx∈M f(x) = f(p) and h is such that the operator I ( defined by
(2.14)) is coercive. Then, under the following conditions:

(1) 0 < h(p) < (n−2)2

4 ,
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(2) n > 2
a + 2, where a =

√
1− 4h(p)

(n−2)2
,

(3) 0 ≤ Scalg(p) < 3 min
(

(∆gf)(p)
f(p) ,

(∆gh)(p)
h(p)

)
,

there exists a positive weak solution of (Eh,f ).

3 Proof of the main result.

In this section, we prove theorem 2. We look for a weak solution of equation
(Eh,f ) as a critical point of the functional Jh,f . Let us introduce the Nehari
manifold for the functional Jh,f

Nh,f = {u ∈ H2
1 (M) \ {0}, DJh,f (u).u = 0}.

We suppose that the function f is positive on M and the function h is such that
the operator I ( defined by (2.14)) is coercive. It can be easily checked that for
each u ∈ H2

1 (M) \ {0}, the function

Φ(u) =

∫M (|∇u|2 − h
ρ2p
u2)dvg∫

M f |u|2∗dvg

n−2
4

u, (3.23)

belongs to Nh and that

Jh,f (Φ(u)) = max
t>0

Jh,f (tu). (3.24)

Put Gh,f (u) = DJh,f (u)u, u ∈ H2
1 (M) \ {0}. Denote by ∇Jh,f (u) the gradient

of the functional Jh,f (u) at u ∈ H2
1 (M) defined by (∇Jh,f (u), v) = DJf,h(u).v,

∀v ∈ H2
1 (M).

The projection of∇Jh,f on the tangent space TuNh,f denoted by∇Nh,fJh,f (u)
is given by (see [1])

∇Nh,fJh,f (u) = ∇Jh,f (u)−
∇Jh,f (u) · ∇Gh,f (u)

||∇Gh,f (u)||2
∇Gh,f (u), u ∈ Nh,f .

A constrained Palais-Smale sequence of Jh,f on Nh,f at level β is a sequence um
such that ∇Nh,fJh,f (um) → 0 and Jh,f (um) → β. The following lemma, whose
proof is common (see for example [1]), follows immediately from the expression
of ∇Nh,fJh,f (u).

Lemma 1. If um is a constrained Palais-Smale sequence of Jh,f on Nh,f ,
then um is a Palais-Smale sequence of Jh,f on H2

1 (M).
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The following lemma indicates the level under which all Palais-Smale se-
quences of the functional Jh,f are relatively compact.

Lemma 2. Let f and h be smooth functions on M such that f is positive on
M and h is such that 0 < h(p) < 1

K2(n,2,−2)
. Let um be a Palais-Smale sequence

of the functional Jh,f at a level β. Then, if

0 < β <

(
1− h(p)K2(n, 2,−2)

)n−1
2

n (supx∈M f(x))
n−2
2 Kn(n, 2)

,

the sequence um converges strongly in H2
1 (M), up to a subsequence, to a non

zero weak solution of (Eh,f ).

Proof. First, note that if u ∈ D1,2(Rn) \ {0} is a weak solution of equation
(2.20), then

J∞(u) ≥
(
1− h(p)K2(n, 2,−2)

)n−1
2

n (supx∈M f(x))
n−2
2 Kn(n, 2)

, (3.25)

where J∞ is the functional defined by (2.19) (with h∞(p) = h(p)). In fact, if

u ∈ D1,2(Rn) \ {0} is a weak solution of equation (2.20), then v = (f(p))
n−2
4 u

is a non trivial weak solution of (1.3) with λ = h(p). Thus, by (1.6), we get

(

∫
Rn
|v|2∗dx)

2
n =

∫
Rn(|∇v|2 − h(p)

|x|2 v)dx

(
∫
Rn |v|2

∗dx)
2
2∗

≥ (1− h(p)K2(n, 2,−2))
n−1
n

K2(n, 2)
.

Hence

J∞(u) =
f(p)

n

∫
Rn
|u|2∗dx =

(f(p))1−n
2

n

∫
Rn
|v|2∗dx

≥ (1− h(p)K2(n, 2,−2))
n−1
2

n(supx∈M f(x))
n−2
2 Kn(n, 2)

.

Similarly, if u ∈ D1,2(Rn) is a weak solution of (2.17), then

J(u) ≥ 1

nKn(n, 2)
, (3.26)

with J is defined by (2.18).
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Now, let um be a Palais-Smale sequence of Jh,f at level β. By theorem 1,
there is a critical point u of Jh,f , such that identities (2.21) and (2.22) are
satisfied. Suppose that u ≡ 0. Then, by (3.25) and (3.26), we get easily that

β ≥ (1−K2(n, 2,−2)h(p))
n−1
2

n (supx∈M f(x))
n−2
2 Kn(n, 2)

,

which contradicts the hypothesis of the lemma. Thus, all the vi and νj in (2.21)
must be zero functions and u 6= 0. Hence, um converges, up to a subsequence,
strongly to a non zero weak solution u. QED

The following proposition is the first step towards the proof of theorem 2.

Proposition 1. Let f and h be smooth functions on M such that f is
positive on M and h is such that 0 < h(p) < 1

K2(n,2,−2)
and that the operator I

( defined by (2.14)) is coercive.

If

µ <

(
1− h(p)K2(n, 2,−2)

)n−1
n

(supx∈M f(x))
n−2
n K2(n, 2)

, (3.27)

where µ is defined by (2.15), then there exists a positive weak solution of equation
(Eh,f ).

Proof. First, we note that the functional Jh,f is bounded from below on the
Nehari manifold Nh,f . Then, the variational principle of Ekeland (see for ex-
ample [11]) gives a Palais-Smale sequence un ∈ Nh,f of Jh,f at level β =
infu∈Nh,f Jh,f (u).

Now, let u ∈ H2
1 (M), u 6= 0, then we have

Jh,f (Φ(u)) =
1

n

∫
M
f |Φ(u)|2∗dvg =

1

n

∫M (|∇u|2 − hu2
ρ2p

)dvg

(
∫
M f |u|2∗dvg)

2
2∗

n
2

, (3.28)

where Φ(u) is defined by (3.23). Of course, if u ∈ Nh,f , we have

Jh,f (u) = Jh,f (Φ(u)) =
1

n

∫M (|∇u|2 − hu2
ρ2p

)dvg

(
∫
M f |u|2∗dvg)

2
2∗

n
2

.

Then, by coercivity of the functional I, positivity of the function f and Sobolev
inequality (2.11), we get that β ≥ c > 0, for some positive constant c.
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On the other hand, since Φ(u) ∈ Nh,f , then

Jh,f (Φ(u)) =
1

n

∫M (|∇u|2 − hu2
ρ2p

)dvg

(
∫
M f |u|2∗dvg)

2
2∗

n
2

≥ β,∀u ∈ H2
1 (M) \ {0}.

Since u is arbitrary in H2
1 (M) \ {0}, we get by definition of µ that

µ ≥ (nβ)
2
n ,

and since by assumption,

µ <

(
1− h(p)K2(n, 2,−2)

)n−1
n

(supx∈M f(x))
n−2
n K2(n, 2)

,

we get that

0 < β <

(
1− h(p)K2(n, 2,−2)

)n−1
2

n (supx∈M f(x))
n−2
2 Kn(n, 2)

.

Thus, it follows by lemma 2 that there exists a subsequence of un, still denoted
by un, that converges strongly, in H2

1 (M), to a non zero weak solution uo of
(Eh,f ). Furthermore, this solutions satisfies β = Jh,f (uo) = infu∈Nh,f Jh,f (u).

Finally, to see that uo is positive, we proceed as follows: since |uo| ∈ H2
1 (M)\

{0} and |∇|uo|| = |∇uo| a.e (see [9, Proposition 5.1.9]), by (3.28), we remark
that

Jh,f (Φ(|uo|)) = Jh,f (Φ(uo)) = Jh,f (uo) = inf
u∈Nh,f

Jh,f (u).

Since Φ(|uo|) = |uo| ∈ Nh,f , this implies that the solution is positive. QED

A simple consequence of the above proposition is the following corollary:

Corollary 1. Let f and h be smooth functions on M . Suppose that f and
h satisfy the following condition.

(1) f is positive, I is coercive and 0 < h(p) < 1
K2(n,2,−2)

,

(2) 0 < V ol(B(p, δg))−
∫
M hdvg < δ2

g and

(
supx∈M f(x)∫
M\B(p,δg) fdvg

) 2
2∗

≤
(
1− h(p)K2(n, 2,−2)

)n−1
n

K2(n, 2)
.

Then, there exists a positive weak solution of (Eh,f ).
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Proof. Take the function u(x) = ρp(x). Then, u ∈ H2
1 (M)\{0} as ρp is Lipschitz

function ( see [9, Proposition 5.1.8]). Moreover, u satisfies |∇u| = 1 a.e on
B(p, δg) ( see [9, Corollary 4.1.5]). Thus, by definition of µ we have

µ ≤
∫
M |∇ρp|

2dvg −
∫
M hdvg

(
∫
M f |ρp|2∗dvg)

2
2∗

≤
V ol(B(p, δg))−

∫
M hdvg

δ2
g(
∫
M\B(p,δg) fdvg)

2
2∗

<
1

(
∫
M\B(p,δg) fdvg)

2
2∗
.

Thus, if condition 2 of the corollary is satisfied, then we get

µ <

(
1− h(p)K(n, 2,−2)2

)n−1
n

(supx∈M f(x))
n−2
n K2(n, 2)

,

and the conclusion follows from proposition 1. QED

Another important step towards the proof of theorem 2 is lemma 4 below.
In this lemma, we test the quotient

Qh,f (u) =

∫
M (|∇u|2 − hu2

ρ2p
)dvg

(
∫
M f |u|2∗dvg)

2
2∗

,

on some family functions that we define just below. Then, we derive conditions
under which inequality (3.27) of proposition 1 holds.

Let 0 < δ <
δg
2 be a constant and let ϕ be a smooth cut-off function defined

on R such that 0 ≤ ϕ < 1,ϕ ≡ 1 on (−δ, δ) and ϕ ≡ 0 on R \ (−2δ, 2δ).

Given ε ∈ (0, 1) and 0 < εo < δ a small fixed constant. Consider on M the
functions

φε(x) = C(n, a)ϕ(ρp(x))

(
εa

((ρp(x))1−a(ε2a + (ρp(x))2a)

)n−2
2

,

where

C(n, a) = (a2n(n− 2))
n−2
4 , (3.29)

and a =
√

1− h(p)K2(n, 2,−2) with, of course, the condition that 0 < h(p) <
1

K2(n,2,−2)
.

Let us, first, prove the following lemma
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Lemma 3. For each ε ∈ (0, 1), the function φε(x) belongs to the Sobolev
space H2

1 (M).

Proof. Let j ∈ N∗ and consider the functions gj : R+ −→ R defined by

gj(t) = C(n, a)

 ϕ(t)
(

εa

(t1−a(ε2a+t2a)

)n−2
2
, t ≥ 1

j(
εa

ja−1(ε2a+j−2a)

)n−2
2
, 0 ≤ t ≤ 1

j .

For each j ∈ N∗, the function gj is differentiable on R+\{1
j } and |g′j(t)| ≤ Cj for

t ∈ R+ \ {1
j } and Cj is some positive constant. Then, gj is a Lipschitz function

on R+ \ {1
j }.

Let t1 ∈ [0, 1
j [ and t2 ∈]1

j ,∞[. Then,

|gj(t1)− gj(t2)|

= C(n, a)|
(

εa

ja−1(ε2a+j−2a)

)n−2
2 − ϕ(t2)

(
εa

t1−a2 (ε2a+t2a2 )

)n−2
2 |

≤ C(n,a)εa
n−2
2

(ja−1(ε2a+j−2a))n−2 |
(
t1−a2 (ε2a + t2a2 )

)n−2
2 − ϕ(t2)

(
ja−1(ε2a + j−2a)

)n−2
2 |

≤ C(n,a)εa
n−2
2

(ja−1(ε2a+j−2a))n−2 |ϕ(t1)
(
t1−a2 (ε2a + t2a2 )

)n−2
2 − ϕ(t2)

(
t1−a1 (ε2a + t2a1 )

)n−2
2 |.

Since the function γ(t) = ϕ(t1 + t2 − t)
(
t1−a(ε2a + t2a)

)n−2
2 , t ∈ [0,∞[ is a

Lipschitz function, we get that there exists a positive constant Cε > 0 such that

|gj(t1)− gj(t2)| ≤ Cε|t2 − t1|,

which means that the function gj(t) is a Lipschitz function on [0,∞[ for each
j ∈ N∗.
Now, put φε,j(x) = gj(ρp(x)). It is not difficult to see that φε,j ∈ L2(M). Then,
since ρp ∈ H2

1 (M), and gj is a Lipschitz function for each j ∈ N∗, we get by [9,
Proposition 5.1.9], that φε,j ∈ H2

1 (M).
Finally, simple calculations show that φε,j → φε in H2

1 (M) as j → ∞. Thus,
φε ∈ H2

1 (M). QED
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Lemma 4. For n > 2
a + 2, we have the following expansion

Qh,f (φε)

=
(
∫
M |∇φε|

2 − h(x)
(ρp(x))2

φ2
ε)dvg

(
∫
M f |φε|2∗dvg)

2
2∗

(3.30)

=
(1− h(p)K2(n, 2,−2))

n−1
n

f(p)
2
2∗K2(n, 2)

− 1

n

∫ ∞
0

tan+1

(1 + t2a)n
dt∫Rn(|∇U |2 − h(p) U

2

|x|2 )dx

2∗(
∫
Rn f(p)|U |2∗dx)

2
2∗+1

(
(∆gf)(p)− 1

3
f(p)Scalg(p)

)
C(n, a)wn−1+

1

2(
∫
Rn f(p)|U |2∗)

2
2∗ dx

(
1

3
Scalg(p)C1(n, a)+(

(∆gh)(p)− 1

3
h(p)Scalg(p)

)
C2(n, a)

)]
ε2 + o(ε2).

where C1(n, a) and C2(n, a) are given respectively by (3.38) and (3.39).

Proof. First, for α, β ∈ R such that 2aβ − 1 > α > 0, let us define the integral

Iαβ =

∫ ∞
0

rα

(1 + r2a)β
dr. (3.31)

Then, by integration by part we obtain,

Iαβ =
2aβ

α+ 1
Iα+2a
β+1 . (3.32)

On the other hand

Iαβ =

∫ ∞
0

rα(1 + r2a)

(1 + r2a)β+1
dr = Iαβ+1 + Iα+2a

β+1 .

Then, for 2aβ > α+ 1, we obtain

Iαβ =
2aβ

2aβ − (α+ 1)
Iαβ+1.

But, by (3.32) we have for α > 2a

Iα−2a
β =

2aβ

α− 2a+ 1
Iαβ+1.
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then, we get for 2aβ − 1 > α > 2a

Iαβ =
α− 2a+ 1

2aβ − (α+ 1)
Iα−2a
β . (3.33)

Now, in order to have the development of Qh,f (φε) we have to develop each one

of the terms
∫
M |∇φε|

2dvg,
∫
M hφ

2
ε
ρ2p
dvg and

(∫
M f |φε|2

∗
dvg
)− 2∗

2 .

3.1 Development of
∫
M
|∇φε|2dvg.

Consider a geodesic normal coordinate system around p. Let |g| denote the
determinant of the matrix formed of the components of the metric g in this
system. Let G be the function

G(r) =
1

wn−1

∫
Sn−1

√
|g|dσ,

where dσ denotes the volume element on the unit sphere Sn−1 ⊂ Rn and wn−1

is the volume of the standard sphere Sn−1. Then, we have the expansions (see
for example [9, pages 283-284]).

dvg =

(
1− 1

6
Ricij(p)xixj + o(r2)

)
dx, (3.34)

and

G(r) = 1− 1

6n
Scalg(p)r

2 + o(r2), (3.35)

where (x1, ..., xn) are the coordinates of x in the geodesic normal system, r =
dg(p, x) and Ricij(p) is the Ricci curvature at p.

Now, we have∫
M
|∇φε|2dvg

= C(n, a)2εa(n−2)

∫
M
|∇

(
ϕ(ρp(x))

(
1

ρp(x)1−a(ε2a + ρp(x)2a)

)n
2
−1
)
|2dvg

= C(n, a)2εa(n−2)

[∫
B(p,2δ)

|n− 2

2
ϕ(ρp(x))

(a− 1)ε2a − (1 + a)ρp(x)
2a

ρp(x)a (ρp(x)1−a(ε2a + ρp(x)2a))
n
2

+ ϕ′(ρp(x))

(
1

ρp(x)1−a(ε2a + ρp(x)2a)

)n
2
−1

|2.|∇ρp(x)|2dvg

]
.
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Then, ∫
M
|∇φε|2dvg = C(n, a)2wn−1ε

a(n−2)[
(
n− 2

2
)2

∫ δ

0

ra(n−2)−1((a− 1)ε2a − (1 + a)r2a)2

(ε2a + r2a)n
G(r)dr

+ (
n− 2

2
)2

∫ 2δ

δ

ra(n−2)−1((a− 1)ε2a − (1 + a)r2a)2

(ε2a + r2a)n
(ϕ(r))2G(r)dr

+ (
n− 2

2
)2

∫ 2δ

δ

ra(n−2)+1

(ε2a + r2a)n−2
(ϕ′(r))2G(r)dr

+ (n− 2)

∫ 2δ

δ

ra(n−2)((a− 1)ε2a − (1 + a)r2a)

(ε2a + r2a)n−1
ϕ(r)ϕ′(r)G(r)dr

]

The functions G(r), ϕ and ϕ′ are bounded in [0, 2δ], then we have for n > 2
a +2,

εa(n−2)

∫ 2δ

δ

ra(n−2)−1((a− 1)ε2a − (1 + a)r2a)2

(ε2a + r2a)n
(ϕ(r))2G(r)dr = o(ε2), ε→ 0

εa(n−2)

∫ 2δ

δ

ra(n−2)+1

(ε2a + r2a)n−2
(ϕ′(r))2G(r)dr = o(ε2), ε→ 0

εa(n−2)

∫ 2δ

δ

ra(n−2)((a− 1)ε2a − (1 + a)r2a)

(ε2a + r2a)n−1
ϕ(r)ϕ′(r)G(r)dr = o(ε2), ε→ 0.

We have also for n > 2
a + 2,

εa(n−2)

∫ ∞
δ

ra(n−2)−1((a− 1)ε2a − (1 + a)r2a)2

(ε2a + r2a)n
dr = o(ε2), ε→ 0,

εa(n−2)

∫ ∞
δ

ra(n−2)−1((a− 1)ε2a − (1 + a)r2a)2

(ε2a + r2a)n
r2dr = o(ε2), ε→ 0.

Then, by using the expansion (3.35), we obtain∫
M
|∇φε|2dvg

= (
n− 2

2
)2C(n, a)2wn−1ε

a(n−2)

[∫ ∞
0

ra(n−2)−1((a− 1)ε2a − (1 + a)r2a)2

(ε2a + r2a)n
dr

− 1

6n
Scalg(p)

∫ ∞
0

ra(n−2)+1((a− 1)ε2a − (1 + a)r2a)2

(ε2a + r2a)n
dr

+

∫ ∞
0

ra(n−2)−1((a− 1)ε2a − (1 + a)r2a)2

(ε2a + r2a)n
o(r2)dr + o(ε2)

]
.
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Hence, after making the change of variable r = εt , we obtain∫
M
|∇φε|2dvg

= (
n− 2

2
)2C(n, a)2wn−1

[∫ ∞
0

ta(n−2)−1((1− a) + (1 + a)t2a)2

(1 + t2a)n
dt

− 1

6n
Scalg(p)ε

2

∫ ∞
0

ta(n−2)+1((a− 1)− (1 + a)t2a)2

(1 + t2a)n
dt+ o(ε2)

]
,

By using (3.33), we get for n > 2
a + 2,

∫ ∞
0

ta(n−2)+1((1− a) + (1 + a)t2a)2

(1 + t2a)n
dt

= (1− a)2Ia(n−2)+1
n + 2(1− a2)Ian+1

n + (1 + a)2Ia(n+2)+1
n

=

[
(1− a)2 an− 2

a(n− 2) + 2
+ 2(1− a2) + (1 + a)2 an+ 2

a(n− 2)− 2

]
Ian+1
n ,

and by observing that

C(n, a)2(
n− 2

2
)2wn−1

∫ ∞
0

ta(n−2)+1((a− 1)− (1 + a)t2a)2

(1 + t2a)n
dt =

∫
Rn
|∇U |2dx,

where

U(x) = C(n, a)

(
|x|a−1

(1 + |x|2a)

)n−2
2

, x ∈ Rn, (3.36)

we get for n > 2
a + 2,

(3.37)∫
M
|∇φε|2dvg =

∫
Rn
|∇U |2dx− 1

6n
Scalg(p)C1(n, a)Ian+1

n ε2 + o(ε2),

with

C1(n, a) = (
n− 2

2
)2C(n, a)2wn−1

[
(1− a)2 an− 2

a(n− 2) + 2
+ 2(1− a2)+

(1 + a)2 an+ 2

a(n− 2)− 2

]
. (3.38)
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3.2 Development of
∫
M
hφ

2
ε

ρ2p
dvg.

First, by choosing δ small we can write for x ∈ B(p, 2δ)

h(x)(ϕ(ρp(x))2 = h(p) + (∇ih)(p)xi +
1

2
(∇ijh)(p)xixj + o(r2).

By using the expansion (3.34), we get∫
M

h(x)

(ρp(x))2
φ2
εdvg

= C(n, a)2εa(n−2)

[
h(p)

∫
B(2δ)

1

|x|2

(
|x|a−1

ε2a + |x|2a

)n−2

dx

+ (∇ih)(p)

∫
B(2δ)

1

|x|2

(
|x|a−1

ε2a + |x|2a

)n−2

xidx

+

(
1

2
(∇ijh)(p)− 1

6
h(p)Ricij(p)

)∫
B(2δ)

1

|x|2

(
|x|a−1

ε2a + |x|2a

)n−2

xixjdx

+

∫
B(2δ)

1

|x|2

(
|x|a−1

ε2a + |x|2a

)n−2

o(r2)dx

]
+ o(ε2),

Using the fact that
∫
Sn−1 xidσ = 0 and

∫
Sn−1 xixjdσ =

{ wn−1

n r2, i=j
0, i 6= j

,

we get ∫
M

h(x)

(ρp(x))2
φ2
εdvg

= C(n, a)2εa(n−2)wn−1

[
h(p)

∫ 2δ

0

(
ra−1

ε2a + r2a

)n−2

rn−3dr

+

(
1

2n
(∆gh)(p)− 1

6n
h(p)Scalg(p)

)∫ 2δ

0

(
ra−1

ε2a + r2a

)n−2

rn−1dr

+

∫ 2δ

0

1

r2

(
ra−1

ε2a + r2a

)n−2

rn−3o(r2)dr

]
,

Note that , for n > 2 + 2
a , we have

εa(n−2)

∫ ∞
2δ

(
ra−1

ε2a + r2a

)n−2

rn−1ds = o(ε2), ε→ 0,

and

εa(n−2)

∫ ∞
2δ

(
ra−1

ε2a + r2a

)n−2

rn−3ds = o(ε2), ε→ 0.
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Thus, after the change of variable r = εt, we get∫
M

h(x)

(ρp(x))2
φ2
εdvg

= C(n, a)2wn−1

[
h(p)

∫ ∞
0

(
ta−1

1 + t2a

)n−2

tn−3dt

+

(
1

2n
(∆gh)(p)− 1

6n
h(p)Scalg(p)

)
ε2

∫ ∞
0

(
ta−1

1 + t2a

)n−2

tn−1dr + o(ε2)

]
Noting that ∫

Rn

U2

|x|2
dx = C(n, a)2wn−1

∫ ∞
0

(
ta−1

1 + t2a

)n−2

tn−3dt,

we get then∫
M

h(x)

(ρp(x))2
φ2
εdvg = h(p)

∫
Rn

U2

|x|2
dx+ c(n, a)2wn−1(

1

2n
(∆gh)(p)− 1

6n
h(p)Scalg(p)

)
ε2

∫ ∞
0

(
ta−1

1 + t2a

)n−2

tn−1dr + o(ε2)

= h(p)

∫
Rn

U2

|x|2
dx+ c(n, a)2wn−1(

1

2n
(∆gh)(p)− 1

6n
h(p)Scalg(p)

)
ε2

∫ ∞
0

ta(n−2)+1(1 + t2a)2

(1 + t2a)n
dt+ o(ε2).

But, for n > 2
a + 2, we have∫ ∞

0

ta(n−2)+1(1 + t2a)2

(ε2a + t2a)n
dt = Ia(n−2)+1

n + 2Ian+1
n + Ia(n+2)+1

n

=

(
2 +

an− 2

a(n− 2) + 2
+

an+ 2

a(n− 2)− 2

)
Ian+1
n

Then, for n > 2
a + 2, put

C2(n, a) = c(n, a)2wn−1

(
2 +

an− 2

a(n− 2) + 2
+

an+ 2

a(n− 2)− 2

)
, (3.39)

we get ∫
M

h(x)

(ρp(x))2
φ2
εdvg = h(p)

∫
Rn

U2

|x|2
dx

+

(
1

2n
(∆gh)(p)− 1

6n
h(p)Scalg(p)

)
C2(n, a)Ian+1

n ε2 + o(ε2). (3.40)
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3.3 Development of (
∫
M
f |u|2∗dvg)−

2∗
2 .

First, suppose that maxx∈M f(x) = f(p), then we write

f(ϕ(ρp(x))2∗ = f(p) +
1

2
(∇ijf)(p)xixj + o(r2).

By using (3.34), we get∫
M
f |φε|2

∗
dvg

= C(n, a)2∗εan
∫
B(p,2δ)

f(x)η2∗
p,δ

(
ρp(x)a−1

ε2a + (ρp(x))2a

)n
dvg

= C(n, a)2∗εan

[
f(p)

∫
B(2δ)

(
|x|a−1

ε2a + |x|2a

)n
dx

+

(
1

2
(∇ijf)(p)− 1

6
f(p)Ric(p)

)∫
B(2δ)

(
|x|a−1

ε2a + |x|2a

)n
xixjdx

+

∫
B(2δ)

(
|x|a−1

ε2a + |x|2a

)n
o(r2)dx

]
+ o(ε2).

Using the fact that
∫
Sn−1 xixjdσ =

{ wn−1

n r2, i=j
0, i 6= j

, we get

∫
M
f |φε|2

∗
dvg

= C(n, a)2∗εanwn−1

[
f(p)

∫ 2δ

0

(
ra−1

ε2a + r2a

)n
rn−1dr

+

(
1

2n
(∆gf)(p)− 1

6n
f(p)Scalg(p)

)∫ 2δ

0

(
ra−1

ε2a + r2a

)n
rn+1dr

+

∫ 2δ

0

(
ra−1

ε2a + r2a

)n
o(r2)dr

]
Noting that for n > 2

a , we have

εan
∫ ∞

2δ

(
ra−1

ε2a + r2a

)n
rn−1dr = o(ε2), ε→ 0,

and

εan
∫ ∞

2δ

(
ra−1

ε2a + r2a

)n
rn+1dr = o(ε2), ε→ 0.
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we obtain∫
M
f |φε|2

∗
dvg = f(p)

∫
Rn
|U(x)|2∗dx

+ C(n, a)2∗wn−1

(
1

2n
(∆gf)(p)− 1

6n
f(p)Scalg(p)

)
Ian+1
n ε2 + o(ε2).

and then(∫
M
f |φε|2

∗
dvg

)− 2
2∗

=

(
f(p)

∫
Rn
|U(x)|2∗dx

)− 2
2∗

[1− (3.41)

C(n, a)wn−1

2∗nf(p)
∫
Rn |U(x)|2∗dx

(
(∆gf)(p)− 1

3
f(p)Scalg(p)

)
Ian+1
n ε2

]
+ o(ε2).

3.4 Development of Qh,f (φε).

Using the expansions (3.37), (3.40) and (3.41), we get

Qh,f (φε)

=

∫
M

(
|∇φε|2 − h(x)

(ρp(x))2
φ2
ε

)
dvg(∫

M f |φε|2∗dvg
) 2

2∗

=

∫
Rn

(
|∇U |2 − h(p) U

2

|x|2

)
dx(∫

Rn f(p)|U |2∗dx
) 2

2∗
− Ian+1

n

 ∫Rn
(
|∇U |2 − h(p) U

2

|x|2

)
dx

2∗n
(∫

Rn f(p)|U |2∗dx
) 2

2∗+1(
(∆gf)(p)− 1

3
f(p)Scalg(p)

)
C(n, a)wn−1 +

1

2n
(∫

Rn f(p)|U |2∗dx
) 2

2∗(
1

3
Scalg(p)C1(n, a) +

(
(∆gh)(p)− 1

3
h(p)Scalg(p)

)
c2(n, a)

)]
ε2 + o(ε2).

Now, using the fact that∫
Rn

(
|∇U |2 − h(p) U

2

|x|2

)
dx(∫

Rn |U |2
∗dx
) 2

2∗
=

(1− h(p)K2(n, 2,−2))
n−1
n

K2(n, 2)
,

we finally get the expansion (3.30). QED

Now, we are in position to prove theorem 2.

Proof of theorem 2. By proposition 1, there exists a positive weak solution of
(Eh,f ) if condition (3.27) is satisfied and by lemma 4, this condition is satisfied
under conditions (1), (2) and (3) of the theorem. QED
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