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0. INTRODUCTION

For ordinq strong homology theories on compact metrizable spaces a clusteraxiom is part
of the detinition (cf. [7]).  In case of generalized  homology theories on compacta  the validity
of a clusteraxiom is still of importance for the corresponding extension theorems (cf. [3]).

A strong (generalized) homology thcory h, on a more general category of topologica1
spaces K (cf. definition 1.2) is also defincd by mcans of some kind of continuity property
(the SO-called chain continuity or c-continuity, cf. [2]  or definition  1.1. of this paper). Unlike
the clusteraxiom (definition 2.1) this c-continuity is depending on a subcategory p c  K of
«good spaces» (e.g. the category of polyhcdra of al1 ANRs).  For the pair K = compacta,
P = compact ANRs, a strong homology theory h, is characterized by the validity of a
strong excision axiom, a clusteraxiom and prescribcd h,lP (cf. [2]  theorems 4.1).

lhis  is not any more true in general. In the present paper we establish  a proof of the
assertion that under a mild assumption on the spaces of p, every strong homology theory
satisfies a clusteraxiom (theorem 2.2). The proof is surprisingly involved from the conceptual
as well as  from the technical point of view. This is the subject of 5 4 - Q 6.

1 do not know of any example  going bcyond the category of compacta  where a converse
holds (i.e. where c-continuity and a clustcraxiom turn out to  be equivalent).  Even for compact
spaces this problem is open.

In 0 3 we include an assertion about the extcnsion of a chain functor given on a category
p over a larger category K. This is done  although this assertion (theorem 3.3) is not needed
fora proof of the main theorcm 2.2, because it is a good example for dealing with problems
of homology theories through chain functors.

In $7 we give an example that even ordinary strong homology nel.  to a category of compact
ANRs fails to be additive nor does it admit compact carriers.

Some facts  and conventions about categories  of topologica1 spaces, as well as about chain
functors are relegated to an appendix 0 8. In spite of this, the reader is assumed to be familiar
with the more extensive treatment of this matcrial in [Il. We are exclusively dealing with
the concept of strong homology defncd in dcfmition  1.2. There  is (for ordinai-y homology
theories) another one  defined in [5],  [8].  We will brielly retum-to this in § 1 remark 6) resp.
0 2 remark 3).

1. STRONG HOMOLOGY THEORIES:

A homology theory h, = {h, ,8, 7~ E Z } on a category of topologica1 spaces K c Top

is a series of functors h,  : K2 -+ &, n E 2, K” the category of pairs associated with
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K, together with a natura1 transformation 8, : h,  + h,,  o T, T(X,A) = (A,0) = A,
satisfying 1) a homotopy axiom, 2) an exactness  axiom and 3) an excision axiom.

By a strong excision axiom we mean the statement: Suppose (X, A) , (X/A, *) E K2 ,
A c X closed,  then the projection p : (X, A) --P  (X/A, *) induces  an isomorphism

P,  : h,tX,A) = h,(XIA, *>.

Let p c K be a prescribed subcategory (referred to as category of “good  spaces») then a
strong homology theory h, on K rel. p is a homology theory on K, satisfying a strong ex-
cision  axiom and, in addition, a new kind of continuity  axiom (the so-called chain-continuity
or c-continuity which depcnds on the choice of the subcategory p. This concept has been
introduced  for the first time in [21 and will be explained now: According  to [l] theorem 8.1 (or
theorem 8.3) thcre exists to h, a chain functor C, related to h, . That means that H,( CJ ( ) ,
the homology of C, , is naturally isomorphic to h,(  ) (by means of an isomorphism commu-
ting with boundaries).

A chain functor C,  is c-continuous (rcl. p) whenever the following holds: Suppose

(X,4 E K2 and g E K2t(X,4,tP,Q)) ++ cg  E C,tP,Q),tJ’,Q)  E P’, is an
assignment satisfying

T#Cg, = cg*

whenever si E K2((X,A),(P,,Qi))y r : g1  -+ g2 in E2 (ie.  r E P2t(Pl,Q1),
(Pz,Qz)), wl = 92).

Then we require:
Cl) There  exists a unique c E C,( X, A) satisfying

9#(C)  = Cg, g  E  K2U,4,tP,Q)).

C2) We have  c E CL( X, A) whenever al1 cg  E CL< P, Q) .

Definition 1.1. The homology theory h, is called  c-continuous (rel. FJ whenever the fol-
lowing holds:

Suppose c is any chainfunctor related to h, IE (i.e. C, is only &jned  on 0) then there
exists I) a c-continuous  chain  functor “E related to h, (now on the larger category K) and
2) a weak equivalente  u : G* c “G*  12  of chain functors (rei. 0) (cf defmition 8.2).

We summarize:

Definition 1.2. A strong hamology  theory h, rel. E is a homology theory on K, satisfying
a strong excision axiom which is c-continuous rel. E.

Remarks. 1) As we pointed out in the remark  following definition 8.2 this concept of a strong
homology theory and in particular  of a weak equivalente tums out to be sufficient  for the
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purpose of theorem 2.2. An existence theorem for a strong homology theory allows a stronger
version of a weak equivalente. Moreover  one  can include the following assertion: let X :

‘G-f ‘G be a composition of weakly strict transformations

al1 * being c- continuous chain functors, o strict and

5
. c *

a full weak subfunctor. Suppose that h, is c-continuous and h, M H,( ‘G) , i = 1,2,  X,10
an isomorphism,  then X, itself  is an isomorphsm.

This specifies the statement «h, M H,(  ‘C+) » by telling more precisely what kind of
chain transformations are expected to induce this isomorphism. It applies in particular  to the
case that c,  is a c-continuous chain functor on K such that h, M H,(L)  , Y : G lp c “G
is a weak equivalente and V : H,(c) -+ H, “(c) an extension of Y (over K). However
this  property of a strong homology theory is not needed for theorem 2.2.

Conceming strong excision an existence proof  of a strong homology theory “h, rel. 0
(with prescribed p c K, “h, on p) requires some additional assumptions on the relation-
ship between p and K or some additional restrictions on the embedding A c X in the
formulation of the strong excision axiom. In the present paper we are not dealing specifically
neither with strong excision nor with the existence problem of a strong homology theory.

2) As pointed  out in [2],  ordinary singular homology (on K = Top with P = category  of
compact polyhedra) can be determined by a c-continuous chain functor (the flat chain functor
with C,( X, A) being the singular chains). However singular homology is nevertheless not
c-continuous .

3) Every homology theory h, detined on K is c-continuous rel. K.
4) Let p be the category consisting of a single point * , K c Top a full subcategory, then

every c-continuous homology theory (rel. p) is trivial (i.e. one  has always h,( X, A) = 0 ).

5) Suppose that to each (X, A) E Kz there  exists  a (P, Q) E p2 such that (X, A) c
(P, Q) (i.e. each pair can be embedded into a good pair) then it suffices in (1) to require
the mere existence of a c f C,( X, A) satisfying (2). The ur$ueness  follows because by
definition of a chain functor C,  the inclusion i : (X, A) c (P, Q) induces  always a mono-
morphism i, : C,,( X, A) + C,( P, Q) .

6) Ju. Lisica and S. Mardesic (cf. [5])  resp. Z. R. Miminoshwili (cf. [8])  have developed
another concept of an ordinary strong homology theory. For compact metric  spaces (and
coefficients in an abelian group G) their homology theory coincides  with Steenrod-Sitnikov



76 Friedrich  W .  Bauer

homology theory, hence (in view of [2]  theorem 4.1) with our concept  of a strong homology
theory.

1 do not know under what more general conditions on the categories  p and K an iso-
morphism between the Lisica-Mardesic-Miminoshwili strong homology theory and the (or-
dinary) strong homology theory in the sense of definition 1.2 can be expected, cf. 5 2 remark
2). It should be noticed that both concepts are defined by means of chain complexes, however
a chain functor for a (non-ordinary) generalized homology theory is a rather involved instru-
ment in comparison to  the chain complexes which determine ordinary homology theories.

2. THE CLUSTERAXIOM

A confinuous  homology theory in general cannot exist because continuity and exactness are
not compatible  (cf. [4]). However it is well-known that there  are weaker forms of continuity
which do not collide with exactness. The most popular example is fumished by the cluste-
raxiom for metric  compacta  (cf. [7]): let ( Xi, sic,) , i = 1,2,  . . . be a countable family of
based spaces, then the cluster  (or strong wedge) of these spaces is the wedge equipped with
the strong topology:

00 - .cfCxi, xiO) - ‘l-r xl v *‘* v x , .

Altematively one can define  this space by requiring that a neighbourhood of the basepoint
contains almost al1 spaces Xi .

We have a natura1 transformation for any homology theory

’  ’ h*
(

CJ  (xi,  ‘$3) *
>

-+  fi  h*  (xi,ziCl)

i=l

induced by the projections pk : Clg, Xi --+ X,  .
Milnor’s clusteraxiom requires that X is an isomorphism (cf. [7]).
In general we can define  the cluster $\( X,, z,~) = (X, *) of any family of based

-
spaces (X,, z,~) in the same way as for countably many factors:

Let (X’, *) = VnEA X, bc the wedge, retopologized by requiring that a subset U c X’

is open whenever 1) U n X,  is open in X,  for al1 Q and 2) that * E U implies that almost
al1 X,  are containcd in U.

Altematively we can again dcfine  aE\( X,, erro) as lim-( ,,, )X,,V...VXam forany
- q.  30,

finite subset  {OQ  , . . . , CZ=}  c  A,  with obvious projections as bonding maps.
The fact that both definitions agrce is a simple exercise (cf. [9]  proposition 44 conceming

different delinitions of a cluster). Suppose that {(X,,  x~) ICY  E A} is such an indexed family
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of based spaces in K, (the category of based spaces in K) such that C’,( X,,  z,~) is again
-

a based space in K (hence  an object of K, ).
Let h, be any homology theory on K, then we have again a natural transformation

(1) x : h, (-uC,\ (x,, *eo)  9 * ) * n h* (xcd  %o)aEA

induced by the projections pa :a&xpxp.
-

Defìnition 2.1. A homology theory h, on K satisfres a clusteraxiom wheneverfor any in-
dexedfamily {(X,, x,~ ) Icy  E ,4} of based spaces such that CZC(X”,  xoo)  E K, the tran-

-
sformation X is an isomorphism.

Remarks.  1) Suppose that K = m, the category of compacta, then the condition on

KL x,0 ) Ia E A} that zf, X, E & is fulfilled if and only if A is countable.

2) Suppose K = &, thecategory  of compact spaces, then every family {(X,, zoo)  ICY  E
4) satisfies the condition C\Xp E K, , for any indexing set A.

-
3) It is well-known that the clusteraxiom is a weaker form of continuity.
4) Let K be the category Com , P the category of compact AN Rs , h, a given homology

theory on p. Then h, satisfies a strong excision axiom (because every inclusion in p is a
cofibration). According  to a result in [3]  there  exists a, up to an isomorphism, unique extension
h, of h, over ti, which satisfies a clusteraxiom. This homology theory is a (generalized)
Steenrod-Sitnikov  homology theory.

The following sections 4-6 are devoted to a proof of:

Theorem 2.2. Suppose E c K is a full subcategory of locally contractible spaces, h, a
strong homology theory rei. 0 on IC, then h, satisjies a clusteraxiom.

In view of the preceding remarks l), 2) and because ANRs  are locally contractible  we
have:

Corollary 2.3. Suppose K = ti, p = category of compact ANRs  , then every strong
homology theory h, on B rel. E satisjìes a clusteraxiom Cfor  countably many summands).

Corollary  2.4. Let K = &I,  0 as in corollary  2.3, then any strong homology theory h, on
& rel. p satisfres a clusteraxiom (without any restriction on the number of summands in the
cluster).
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Remarks. 1) For K = Com, P , as before,  we have  proved in [2]  Theorem 4.1 that a con-
verse holds: every homology theory h, on K, satisfying a strong excision axiom and a cluste-
raxiom is a strong homology theory. Hence strong homology theories and Steenrod-Sitnikov
homology theories coincide. The proof uses a non-trivial result from [3]  and the existence of
strong homology theories (for this particular  case). The proof given in [2]  for the fact that for
compacta  every strong homology theory satisfies a clusteraxiom (i.e. the proof of corollary
2.3) uses details of the construction of a strong homology theory. The present  proof of theorem
2.2 is independent of any explicit constructional devices fora strong homology theory.

2) Unlike c-continuity the clusteraxiom does not depend upon the subcategory p, nor
does it refers to any chain functor related to that homology theory.

3) In [9]  T. Watanabe  verifies the clusteraxiom for a strong homology theory in the sense
of Lisica,  Mardesic [5]  and Miminoshwili [S] on the category of compact spaces (even for
strongly paracompact spaces,  cf. [9]  p. 194 conceming the definition). The author de& also
with strong excision for this kind of homology. His results  might be regarded as an indication
that for ordinary homology theories on compact spaces both  concepts of strong homology
theories agree or are at least very closely related.

3. SINGULARISATION OF A CHAIN FUNCTOR

Suppose p c K is a full subcategory of a category of topological  spaces (for example the
category of ANRs  in the category of al1 topological spaces) and C,  a chain functor on

p, then we would like to find a chain  functor ‘G on K such that ‘f&]p  = G. The
solution  of this  problem  is not needed for the proof of theorem 2.2 but, since it deserves some
independent interest, includeci in this  paper. The process used to construct ‘c  is similar to
that of establishing singular homology. The additional difficulties appearing are due to the
fact that the homology theory associated  with C, is not necessarily  an ordinary one. In order
to proceed we are obliged to impose some restriction  on the relationship between C,  and p:

(*) Let (Xi,Ai)  E zz be pairs of good spaces, (X,A)  E K,  ci  E Cn(Xi,Ai),  fi E

Kz (( Xi, Ai), (X, A)) be given, k : (X, A) c (Y, B) an inclusion. Assume that

forany g EE~((Y,B),(P,Q)),  (P,Q)  cP2,~enwehave

(S’flhCl  = ts’fi)#cz

forw K2((X,.4,(P,Q)).
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lhis  condition is for example fulfilled  for any chain functor c,, whenever we can find to
any diagram

tX,A)  : (Y,B)

9’ I (P’,Q’)  E  PZ

tp’,  Q’)

a commutative diagram

tX,A)  : tY,B)

9’
/

1  9” 19 tP”,Q”),tP,Q)  EP’

(P’, Q’) + tP”,Q”)  : (P,Q).

If (9’fl)WCl  +  (9’fi)#CZ  9then wc havc (9”  fi ),,  c1  4 (9”  f2)#  c2  , hence, because k’ is
an inclusion, (k’g”f,),  cr # ( k’g”f2)cz  , SO that

(gkfihcl #(gkf,),cz

follows.
The determination of ‘c  starts with the definition of two categories:

1) &X,A) : The objects are mappings g : (X, A) -+ (P, Q) E P”, the morphisms
commutativetriangles T : gr + g2,  gi : (X,A)  + (Pi,Qi),  r: (P,,Q,)  + (P,,Q,),

VI  = 92.

2) 2: The objects are chains c E C,( P,  Q) , (P, Q) E p2 , the morphisms are mappings
r as in 1) satisfying 7#  c1  = c2  , ci  E Cn(Pi,Qi)  . We define  F,(X,  A) to be the family of
al1 functors

4 : &X,A) --+  cn

such that $( g : (X, A) + (P, Q)) E C,( P, Q) . By setting

(41  + #d(9) = #Q(9) + 42(g),

F,(X,  A) is endowed with an abelian group strutture.  Let f E K2( (X, A) , (Y, B)) be
a functor, men the assignment
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tums

imo a functor.
By setting

F, : E2  -+ &I (= category of abelian groups)

d : F,tX, 4 + F,,  (X,4

4 i--+  tg ~dddg))

F,( X, A) = { F,( X, A) , d,} carries the strutture  of a chain complex and F,  : K2 -f &
becomes a functor into the category of chain complexes.

Suppose (X, A) E p2 , then

u: C,(X,A)  -+ F,(X,A)

c H 4,=tg~g#d

is a natural transformation v : C, ---P  F,  lp2 . Suppose cr  j CZ E C,(  X, A) , (X, A) E PZ,
men Y( q)( lcx,Aj)  = c1  $ c,  = Y( 9)( lcxdj)  implying that u is monic.

Weset Fn(X,A)  = (0 E F,,(X,A)l&g)  E CL, g E qxpj}.  Let ‘C,(X,A)  bethe

subgroup of F,( X, A) generated by al1 those 4 E F,(X, A) which are of the form f,+$,,

forsomecEC,(X’,A’),(X’,A’) E-,~EK~((X’,A’),(X,A)).

Correspondingly we defme ’ Cn(  X, A) c ’ C,( X, A) by means of FA<  X, A) and get a
natural inclusion e : l CL c l C, .

LetfEK2((X’,A’),(X,A)) beamappingthenwehavetheassociatedf’EK2  (X/,X)
and set

po, : ‘C;(X,A)  + ‘C,(X)
(1)

Let f E -(X’, X) be a mapping , X’ E p, (X, A) E K2 a pair, then we set 7 E

-((X’,f-l(A)),(X,A)) whenever  tX’,f-‘(Al) EP2 resp. ?E-t(X’,0),(X,A))
otherwise  as associated  maps. We defme

K# ** ‘ C , , ( X )  -$ ‘C;(X,A)

(2)
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Let f E K(  A’, A) , A’ E 0 be a mapping (X, A) E Kz , then we have  the associated
~E&((A’,A’),(X,A))  anddefine

4 .3 .  ‘ C , ( A )  -f ‘C;(X,A)

f#4, H ($7  b-9  (d)#W).

Il

Al 4;‘(c)

We observe that:

Lemma 3.1. 1) (1) - (3) akjine chain  mappings; moreover  i’ , .J! are natura1 trangormations.
2) We have

v(l( c)) = .ev( c)

dP#(C))  = P#dC)

d+(d) = K#dC)

Y(i’(C))  = i’Y(C)

whenever both sides are dejined.

We have

Po, % f# 4, = P# ft;  &,  (c)  = ( f>#  4pa  >c”  (c)

= f#4 Y+‘C*(C)’

because (7)’  = f . Since there  exists  a chain homotopy

dD(c)  + D(dc)  = ‘P#K,(c)  -c

we are enabled to define
(feA)(g) = (sf),+(Wc)),

f#A  E ‘Cn+,  (X), satisfying

d f#A + f,Ad= ‘P#n#f#4, - fd$

Similarly we have:

i#P#f#4, = (if’)#4,,(,)

= (fi’>#4,,(,,

= f#4jlpn(c) 1
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where j : X -+(X,A),j’:X’--+  (X’, A’) are the inclusions.  Since jk ‘ps E f2,  we have
again

jm+fd,  -~fd,.

&ause  (Q : C,(A’) -t C,(A’,A’)) = n,+T= i’, a= 1,, : A’ -+A’.

Lemma 3.2. *C,  as dejìned above  is a chain  finctor:

proof:  We have defined ‘C,,‘C:,4!,cp#,rc#i’,  and verified that ‘p#n#  E 1, j#cptt  E .fJ,
K#2# = i’.

Al1 other necessary details (like for example the existence of chain homotopies D, for a
homotopy H : (X, A) X 1 + (Y, B) are established  by the same methods. The verification
of the relations between these mappings, as required  in the definition of a chain functor (cf.
5 8) can be immediately accomplished. The fact that an inclusion /c  : (X, A) c (X, B)
induces  a monomorphism follows from (*).

We summarize:

Theorem 3.3. Let p c K be a pair of categories  of topologica1 spaces  c a chain functor

on p satisfying  (*). Then there  exists a chain  functor ‘C, on K such  that IGIp  FZ g.

Proo~  We have an inclusion u : &s  ‘C,IE’.  Let fN4, E ‘c(X,A)  be a chain,

(X,A) E Ez, f E P’((X’,A’),(X,A)), then weconclude

Hence v is surjective. Since u-l is also a transformation of chain functors, v is an
isomorphism, as asserted.

Remark. The classica1 process  of singularization  of an ordinary  homology theory is also
performed on the chain level. It fails for generahzed  homology theories defined on an arbitrary
category p to provide  us with a homology theory  on a larger category  K because of the
absence of a singular complex functor IS]  : K -+ 0. Moreover  there  has to be much more
strutture  of the chain functor c, to be the transported to the larger category K.

We have a derived  prehomology theory  H,(  ‘cr)( ) on K (we do not investigate the
validity of any excision axiom, therefore in accordante  with the terminology in [l] the name
prehomology).
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Corollary  3.4. Let E,  be another chain funcfor  on p and

ti  : H*(C,)(  1 $3 H*(E*)(  >

an isomorphism of prehomology theories (i.e.  a natura1 isomorphism offunctors commuting
with the boundary operator). Then there exists  an extension

ji: H*(‘cJ > = H*CE*)( )

being dejined on K.

fiooL  Let  f#+, E  Z,(‘C,(X,A)), z E  Z,(C,(X’,A’))  > f E  ~z((ZA’LKA))  >
(X’, A’) E p* be given, then we take a Z E Z,(  E,(X’,  A’)) , Z E p( {z}) and define

This is obviously independent of the choice of the representative z, Z in their homology
classes and gives a natural isomorphism of homology groups. Suppose z = e(  z’) + q#  ( a) ,
z’ E Cn(X’, A’) , dz’ E im( i’ : C,, (A’) + CL,  (X’, A’)) , (cf. 5 8 conceming the
notation), then we have by detinition

a(z) = {i’-‘dz’} E H,, (g)(A’).

SO we take

and deduce (because p is commuting with boundaries)

{i’-‘dE’}  E p({i’-*dz’}) = +({z}).

Hence we have

fiA’ -+ A associated with f , and therefore jL3{f# 4,)  = jT{f+, +,,-Ldr,}  = {f,di,-ld=>},

ajT{f# 4,)  = a{f#  e} = {f, 4,,-ldy}  ensuring that ji und 8 commute.
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4. OUTLINE OF THE PROOF OF THEOREM 2.2

Suppose h, is a strong homology theory rel. p and G, any chain functor related to h, on
p. We find by defmition a c-continuous chain functor “G, related to h, (on K) as well
as a weak equivalente Y : C, c “C,. As a result we are allowed, by surpressing Y in

our notation, to talk about  chains c E C, on pairs (X,A) E Kz (for example by taking

f,v(c’)  E ‘C,(X,A),  c’ E C,(X’,A’),  (X’,A’)  E P”,  f E -((X’,A’),(X,A)).

Now assume that we enlarge for some reason the chain functor C,  to a chain functor ‘C+

(both  being defined von p) such that the inclusion G, c ‘C,  induces  an isomorphism of
homology theories on p. Again we can consider  ‘C,  as being defined on K. It may happen

that cycles *z in Z,(  ‘C,(X,A))  detcrmine homology classes (‘2)  in H,( ‘CJ(X, A)
which are not in the image of H,(  c,)  (X, A)) . Similarly a cycle z E Z,,( C,( X, A)) may

bound in ’ C,( X, A) but not in C,( X, A) . This observation is basic  for the detection of an
inverse to

Let {C,)  E ILEA  h,(X,,xao>  k an  element,  za E Ca, z, E Z,(C,(X,,x,,))  a-
farnily of cycles. If therc docs not cxist a «sum» .z = xoEA E, E Z,(uc3JXa,  zero), *)

-
satisfying paGt = z,,  p, : z;xa --f  X, the projection), then we invent such a cycle,

-
enlarging the originally given chain functor by these new «sums».  We must take care that on
PZ the homology is not changed by the introduction of these new cycles.

This is accomplished by observing that for a good space (Y, *) one has a contractible
neighborhood of the base point U. SO let f : CI X, + Y be a based mapping, then al1

MA
but a finite number of the cycles { f# z~} are lying inside U , hence they bound in (Y, *) not

contributing to the homology class of f# z . Therefore f#  z is homologous to cf=,  f# zai  for
a finite sum, which is alrcady present in Z,(  C,(Y,  *))  .

This procedure is to remedy the fact that X for H,(  C+) (instead of h, ) is eventually  not
epic.

Suppose that z E Z,(  C,( CZC( X,) , *) lies in the kemel of X , hence we have  X(z) =

-{za}, z,  = dxa,  5, E Cn-,  (X,, z,~) (now with X on the chain level). Then we pro-
ceed with {za} in the same way as before with {zo},  inventing (if necessary)  a «sum»

x = CaEA%  E- ’ Cn+,  (a$\  X,,  *) , satisfying p,,x  = z,,  dx” = z. While the new
-

cycles z = c oEA~a are counterimages of {z~) E naEA Z,(C*(X,,  xao)) , ensuring that-
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X(z) = {CyJ E IT~EAh,(X,,x~),thenewchains  x=  CorEAxa  E lCntlW\Xa,*)

have the property d z = z , SO that X (for H, c ‘Ga ) is now monic.
As a result the basic  issues in the proof  of theorem 2.2 are 1) inventing sums xuEA z,

in such a way that the resulting ‘& carries the strutture  of a chain functor (one  must  for
example determine induced  chains f# (CaEAx,) forvf: W\X,,*)  -+W,W EE_

-
in a canonical  way) and 2) to make sure  that by these new chains the homology of G (on E)
is not altered.

In this process we have to dea1 with  the following technical problem: it may happen that
for given { z~) there  exist already different cycles z’,  z” E Z,(  C,( CA X,, *) satisfying

-
pd Z’ = p&’ = z,.  If z,  = 0 unless q , . . . , cy,, then we have  always the finite sum
z = CZ1 zai (omitting inclusions  from our notation) and every other z’ with  p,,z’  = zi
must be (not necessarily qual but) homologous to z .

In particular  there  might exist a z f 0 in Z,(  C*(a$\X,,  *) such that p,#z = 0 for al1
-

(YE4.
This problem is treated in 0 6.

5. PROOF OF THEOREM 2.2 (FIRST PART)

We resume the notation  of 5 4 and consider  the functor C, originally defined on p as a functor
on K.

Suppose JZfsXa E &, is a cluster of based spaces {X,) in & and let (Y, B) E E2
-

be any pair.
A X-set {zp,  f,}  = {zo}  is 1) a family of chains 5, E C,(  Y, B) ,2)  a family f, :

(X,, x,a)  -t (Y,B)  such that f = S\fa : w&Xu,*’ + (Y, B) is defined and 3) a
- -

family {2,},  %a E C,(  X,,  x& ) satisfying f& 5, = 5,.
A X-set is called inessential, whenever there  exists a Z E Cm(z\Xa,  *) satisfying

p,5 = 5,. In this case the X-set {xol} and x = f# I are asscciated.  Notice  that although
3 c determins {x,} , the converse must not be true: there  might exist different z E C,(  Y, B)
which are associated  with the same X-set. In particular  a X-set {x,-J  with  %.  = 0 for

almost al1 (Y E A isa inessential and associated with Cf=, 5, = z,  where x, = 0 for
a + cq  , . . . > cyk.

A X-set which is not inessential is called essential.  If {x,} is a X-set, then SO is {dx,} .

If k#l and w%l are essential, we cali { XJ fuly essential.
In what follows we have to distinguish two cases:
In the course of this section we
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1) Assume that x1  , z2  E C,( Cf4X011  *) , p,, x1  = pd  x2  fora0  CY  E A implies  x1  = x2,
-

In particular  two chains associatcd with  the same X-set are equal.

Let fnn<  Y, B) be the set of al1 essential X-sets, thcn we definc

z associatcd with {d x0}
fully essential

Let g E z2 ( (Y, B) , (Y’, B’)) bc a mapping, thcn we observe:
{ xcI}  = (essential, fully essential) X-set +
{g#( CC,)}  = (essential, fully essential) X-set
x associated  with {x~} + g# x associated with {g# x,}.
Hence we are able to dcfine

g# : FJY, B) -f TJY’,  B’)

M H b#kJL

commuting  with boundaries.

From now on we writc I,(  (Y, B); {X,}) instcad of r,,(Y,  B) in order to spccify the

given family of spaces. Suppose we have another family of indexed spaces {Xp}  (samc
indexing set A) in K, , z\ XA E K, and a family of mappings

-

T, : (&,x,o) + CX~,&l) giving rise to a

We are defining an cquivalence relation in the union uI’,( (Y, B) , {XL}) (taken over al1
such families {XL}):

Suppose we have
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Then we set

whenever t, SL = 2; for al1 CZ  E 4.
This relationship generates an equivalente relation.
If { zk} is associated with z , then { zi} is also associated with z . We  cali r,(  Y, B)  =

Ur,((Y,B);{Xk})/  ~,observingthat:

formy  g c P((Y,B),(Y’,B’)).
By an abuse of notation  we still write {zn} E r,(  Y, B) for the equivalente class.
Let {z,} E r,(  (Y, B); {X0}),  i = 1,2,  be given.

Then we forni XL = XL V X2,  t: : (XL,  &-,)  c  (XL,  ~0~) (the inclusion) and fo :

(XL, z&) -t (Y, B) (defined by f: V fz ).  We conclude that with EL = tL  z$ , we have
{xb}  - {ZL}.

As a result we can assume without loss of generality that up to an equivalente,  every
finite set of elements in Ur,( (Y, B) ; {XL}) is lying in the same r,((Y, B); {Xp})  . Let
F,(Y,  B) be the free abelian group generated by the elements of r,(  Y, B) . We establish a
quotient group of F,(  Y, B) @ C,(  Y, B) by introducing the following relations:

Rl) Suppose {zo,  f,}  E r,(  (Y, B); {XL}) (same mappings fa!)  i =  1,2,  are such
that 3~: = zt unless ck! = LY~, . _ _ , cym, then we set

td>  - Cd} = 2 di - Zii E C,<Y,  B).
i=l

R2)  Suppose  agin  {z:, fa} E r, ( ( y, B)  ; { XA}) , i = 1,2  , men we set

provided the right-band  term is in l?,( (Y, B) ; {XL}) defined.

The quotient group i C,( Y, B) = F,(  Y, B) @ C,(  Y, B) /R has the following properties:

‘1) There exists a boundaty d :l C,(Y,  B) -+ ‘Cm-, (Y, B) which coincides  with the

boundaty on C,(Y,  B) whenever both are defined. One  has d2 = 0 , hence ’ C,(Y,  B) is a
chain  complex.
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*2)  There  a r e  induced  m a p p i n g s  g# :l C,W,B) + l CJY’,  B’) >
g E P((Y,B),(Y’,B’)), tuming  ‘C,  : E2 + & (= category of chain complexes) into a
functor.

*3)  The natura1 mapping C,(Y,  B) + F,(Y,  B) cl9 C,(Y,  B) -f lC,(Y,  El) is a
monomorphism, i.e. the equivalente relation  R does not identify different elements of
c,<y,  BI *

*4) An inclusion i : (Y, B) c (Y’, B’) induces a monomorphism i, : ’ C,(Y,  B) +
%,(Y’,  B’) .

‘5) ’ C, satisfies a homotopy axiom (cf. 5 8): TO each (Y, B) E E2 there  exists a natura1
chain homotopy Dcy,,) : ‘C,(Y,B)  + ’ Cn+,  (Y x 1, B x 1) between the inclusions

iwril# : ‘C,(Y,B)  -f lCn+l(Y  x I,B x 1).
‘6) We have

‘C,(Y)  = ‘C,<Y,0>  = C,(Y).

F!rooL  Ad * 1) : The boundary  d on l7, as well as on C,,  induces one  in r, @ C, , which is
immediately seen to respect the relations in R.

Ad *2) : Follows  by the same kind of argument.

Ad *3) : An identification of two chains x1 # x2 E C,(Y,  B) by means of R can only
happen if there  are different chains associated  with a given X-set, but this is in case 1 (with
which we are dealing now) excluded.

Ad*4):  Suppose {xp,fi}, {x~,f~} E rn((Y,  B),{XL})  areidentifiedunder  i,then

at first if: = ifz implies f: = fi . Hente i, ({x:})  = i, { xi}  implies {z:}  = {x2} and
T,(i)  : r,(Y, B) --+ r,(Y’, B’) is a monomorphism. Since i, : C,(Y,  B) + C,(Y’,  B’)
is a monomorphism by definition,

i, : F,tY,  BI @CJY B) --+ FJY',B')  fBC,(Y',B')

is a monomorphism. Now we have

hW',B)  = R(Y',B')  ni, (F,(Y,B)@C,(Y,B))

implying the assertion *4) .
Ad *5) : We have  DcyBj  = D already defined on C, and set

whenever this is essential resp.
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if z is associated with {Ds,). SO we obtain  a D = Dc,,)  for F, @ C, in a natural way.
Since this D respects obviously al1 the relations involved,‘the  assertion follows.

Ad ‘6) : IS  an immediate consequence of r,(Y, 0) = 0 .

In order to  complete the definition of a chain ftmctor we define  * Ck( Y, B) = Ck(  Y, B)

and resume al1 remaining items (like ‘p,  n, i’, p) from c,, endowing ‘CL,  with the strutture
of a chain functor, containing c as a subfunctor.

The most important  assertion about the inclusion u : C,  c ‘C, is:
*7): Y induces  an isomorphism of homology theories in 2.

Pro& We are obliged to prove that every cycle in ’ C,( Y, B) , (Y, B) E p2 , is holomogous
to a cycle in C,( Y, B) and that a cycle z E C,,(  Y, B) which bounds in ’ C,, (Y, B) is
already bounding in C,, (Y, B) .

Let to this end (Y, B) E p2 be a pair and consider  a cycle

z= &{qJ + c E ~,(‘C*w,m
i=l

ai E Z , c E C,(Y,  B) , then we can assume without loss of general@ @ecause of the
remark following the definition of r,) that, up to an equivalente, al1 {z~} are lying  in a
fixed r,(  (Y, B); {Xp})  . Using the relationships Rl),  R2),  Z can be written in the form

p= (5,) + {Y,) + c,

where {z~} is fully essential, {y,} is essential  but notfully  essential (i.e. one  has d {y,) =
.q  E~~~(C,(Y,B)))~~~~EC,(Y,B).

We have d Z = 0 , SO that d {z,} does not drop out against dc or d{y,}  . Hence we
conclude that { zo} does not appear; displaying a Z of the form

with not fully essential { y,}.
Since Y is locally contractible, there  exists a family {U,} of neighborhoods of the base-

point f( *) E B c Y such that 1) nU, = f( *) ,2) f( Xk)  c  ,Ua, 3) al1 but a finite number
of these U, are contractible.

Let g : (,ET U,, f( *) ) -+ (Y, B) be induced  by the inclusions  U, c Y and let
-

uq , * * - , Ua, be those neighborhood which are eventually  nof contractible. We split {y,}

into
{YJ  = {yLJ+ {Y”,l
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{

Y,  - * *
yo,=  0

a#q,...,  Dm
. .  . cY= al,...,  CY,

Y”, =
i

Y,  * * . ci=  cq,...,  Cu,
0 .  .  . Q$CYl,...,  c%&,

observing that {y”,} = cl  E C,U’,B),calling d{yL}  = .q  E Z,,(C,(Y,B)).
According  to *5) we have

dWy:N  + D(q) = {YO.I-  *,

* denoting a bounding cycle in C,( *, *) . SO we conclude that the cycle { yo} - D( z1 ) = d 5
is bounding (in i C,( Y, B) ) and that

z = D(z1) + c+ Cl E Z,(C*(Y,B))

is a cycle homologous to 7.
As a result u : C, c ‘C,  induces an epimorphism. The argument for verifying that v

induces a monomorphism is similar: Let z = dZ, z E Z,,( C,(Y,  B)) , jc = (5,) + c E

‘Cn+,tA,%~ en we tind  again {zQ} (as before {y:}), E = (~0) + c’, d{sk} = z’ and
deduce the existence of a 5 E Cn+,  (Y, B) suchthatE=s+dE,,hencez=dsisalready
bounding in C,( Y, B) .

In order to complete the proof of theorem 2.2 (stili for the case 1)) we argue as in 0 4:
Let $AXa E & be given, { za} E nuEA Z,(  C,( X,, 5&))  , being inessential, then

we find the  associated  z E Z,(C,(Y,B)) satisfying X(z) = {{p,#z}} = GJl E

I-LEA f4l(XCG  zdl ) . If however {z~} is essential, then we have a ZE Z,(’  C,(  sAXa,*))
-

such that X{zT  = {{z~}}.  SO X is epic. If z E Z,(C,(,C\X,, *))  has the property that

X(z) = {P,G)  = {dd,  5,  E Cn+,  txa,~~)  3 we argue with {xa} as before with { zo} .
This settles the tìrst case.

6. PROOF OF THEOREM 2.2 (SECOND PART)

We treat case 11) where the assumption of 1) is not necessarily  true. This will be accomplished
by 1) replacing the given chain functor c,  by a new one E+, giving the same homology
as G, and 2) restricting the class of X-sets (with &,) in such a way that on one hand 1) is
fulfilled and on the other there  are stili suflicientrly  many X-sets available to perform  the same
constructions as in case 1).
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The construction of E, is accomplished in several steps:
Resuming thenotations of 9 5 conceming {X,} , {XA} , r : ( (Z\Xa,  *) --f  (C!\  Xa, *) ,

- -
f,: (Xk,xh) -+ (Y,B) etc. wedefine

where we generally denote  by F( M) the free abelian group generated by the set M . Dealing
with pairs like ( c, p,) we agree to identify (0, p,) with 0.

For (Y, B) E K2 we Set:

where the union is taken over aIl families {XL} as in 5 5 (where {X,} plays a distinguished
role).

We have a boundary:

d . E(‘)(Y  B) + E(‘).n ) n-1  W, B)

(resp. for CL’)  ) by applying d to the first components  of the pairs (c, p,) etc. and preserving
theoriginal d on C,.

TO each g E K2 ( (Y, B) , (Y’, B’)) we have the induced

g+, : E;“(Y,B) --t Ei’)(Y’,B’)
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defmed by

Similarly we define:

G”‘(pn cl ) = p,  : Ge) + G;‘)(X,,  x,o)

c l--+  (GP,)

G”‘(p’ ) = p’n cl dl : G;” (C;X;,*)  + G:“<X;,&)

CI  E c,  ($x:,*) ++ GAP;)

resp. f#, r# .
We have a natura1 inclusion

G(l)  c  E(l)* *

whenever both sides are defined,  e.g.

G”‘(X’ x’n (II &> c ~~‘)(X~,x~,)

x0, H <x;, 1)

(c’,P;>  l-+ (C’JP~).

In a second  step we introduce certain connecting chains A , fumishing us with homologies
betwren  pairs ( x, f) and the element  f# x :

Gc2) (XTl+1 (Ij x,o) = G::‘l (X,,x,,> (&~{A(c,P,)))

where we require
dA(x,pa)  = (c,P,>  -p,,c-A(dc,pcJ
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and  throughout

A(c;) = 0.

dA(c,r)  = (c,T)  -r#c-A(dc,r),

G”’ (X’n+l (I) &,) = G$<X:,&,)  @WUC’,P;))U

u {A(c,P~~,P~)~  u {AL(G,~,)I

where the first and the third A -chain satisfies a relation as before while we require

Wc,p:v;)  = (c,P;~  - (wP:)  - A(dc,p:w(J

andinallcasesagainA(O,~,~)  =A(O,.)  =O.

U{A(C’,~,P~,P~)}U{A(~~,~,)}).

dA(c’,f,p;,p;)  = (c’,f,~;)  - (~u#c’,fJ  -Wc’J,p~,dJ,  (-Y,B)  EE’.

“fhe  boundary d in these new groups is obvious; let g E P”((Y,  B) , (Y’, B’)) be a
mapping, then we set

wW’,fag:)  = A(h&dJ

gd(c’,f,p:,p;)  = Wh4xph&)

and in a similar form for the remaining cases, providing us also with  induced mappmgs

P,,,P~J#P-#! f o r  GL2’ a n d  Ei2’.

Again we have an inclusion Gi2) c  Ec2)  whenever both sides are defined.
We recall the definition of an algebra; cone, cone( K,)  over a chain complex K,. In

part.icular  we have the possibility to erect the cone over the subcomplex  K, c L,: L, U

cone(  K,) (cf. [l] 5 4).

SO we define  for (Y, B) E E2

E,(Y,B)  = E!2’(Y,B)  ucone(D,(Y,B))
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where D,( Y, B)  is the subcomplex of Ei2) (Y, B) which is generated by al1 A chains (con-
taining for example chains of the form (z, fp,) - ( fp,)#  z , z E Z,(  C,( CI X,, *) ) ). Since
formation of the cone  is a natural process,  we have induced mappings

g#  : E*(Y,B)  -f  E*W’,B’),g  EK2tty,~),ty’,~‘)).

We claim:
* 1) There  exists a natura1 isomorphism

P, : ff*(C*(Y,B))  = H*tE*ty,m)

induced by the inclusion (on the category If)

PwofI  Let Z E Z,(  E,( Y, B)) be a cycle

z= c+
i=l j=l k=l

Ak a A-chain, p E coneD,  \ E, ,(2) then we can pull down al1 brackets by A-chains to
elements  in C, . By adding them up we find a 2’ - E, Z’ = c’ + C biA/ + p. We have

-dc’=xbidA;+dp.

Since p q! E,(2)  , dp does not contribute  summands in E!‘) hence al1 brackets b( c, f) ,

b E Z , appearing in 1 b,d Ai + d p must sum up to zero. On the other hand every summand

Cl  E G-1 in this sum comes together with such a bracket.  Therefore also these c1  sum up
to zero, implying that -dc’ = 0 and that C biA/ + p E Z,(  coneD,) where it is bounding.

Therefore we obtain  a 2’ = c’ E Z,(C,(Y,  B)) , 7’ - Z, ensuring that p+ is an epi-
morphism.

The proof that ~1,  is a monomorphism is similar:
Suppose z E Z,(C,(Y,  B)) , z = dZ,

then we have again
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where al1 sums are finite and Ak , Ai,  Ae”  are A -chains.
SincedZ=zinZ,(C,(Y,B)) wededucez-dc’=Cb,dA/+ddpandbythesame

argument as before that C b,A( + p is a bounding cycle, implying

z = dc’.

Hence z is already bounding in C,( Y, B) .
By setting $(Y, B) = CL(Y, B) , taking  vo, n,  p,  i’ from  C+ and by observing that (by

definition) E,(Y,  0) = C,( Y, 0) , we turn E, imo a chain functor, giving the same homo-
logy as  C,  . The validity of a homotopy axiom is immediate. Now we proceed almost  as in
§ 5: A restricted  X-set (X,-set) is a X-set {e,} such that the associated Z, E E,(X,L, &,)

are already contained  in the subgroup Gn (XL,  &,  ) (and not in the tirst summand C, ). We
have

‘2) Let {e,} be an inessential  X,-set, associated with .zl , e2 and suppose that Z1 , Z2 E
E,( pEf4  Xg,  &,) are the corresponding elements satisfying

f#&2,  i= 1,2,

then  we have
-1e =2.

In other words: The X,-sets satisfy the assumption of case 1).

Roof According  to the definition of induced maps we have:

Po,(b9  = P;,tc27)

implies

hence

cc’,  PI-J)  = tc2,  Pu4

(cl,r)  = (c2,r).

In the same way we obtain

pk(c’l) = pL(c’2) =s c” = C’è, p;#  = E,(p;).

resp.  for the A -chains.
Now we repeat the argumentation of case 1) in $5:
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Let  El f rIIaEA%A~*tx,41x0 )) be given, then we can according  to * 1) replace

Za in its homology clk by a z,  E Z,(C,(X,, zoo)) . By setting (Y, B) = (XL,  zLo) =

tx,, %o) ? we have  (z 1) E G(‘)(X
{(z,,  1)) to which theriexists  a i E

Q,  ZC,~) c  E,(X,, z,~),  providing us with a X,-set
‘&( Cl X,,*)  suchthat X(Z) = {(z,, 1)). Let Z?E

CGA
Z,,(E,(zf4X,,  *) bea cycle such that E,(p,)z- = d Fa. According  to * 1) we find a cycle

z E C,( C$ X,, *) such that (z, 1) N z N Z andd chains j?a E E,,+  i (X,, zao) satisfying

di?, = C,( p,) z . As in the proof of * 1) we detect chains Z, E Cn+ i (X,, zero)  such that
dz, = C,(p,)z.  As aresult wededuce E,(p,)(z, 1) = d((A(z,p,, 1) + (z4,  1)) = dya.
Since (5,)  is a X,-set, we Sind a c E ’ E,( C\X=, *) such that

-

,Z--  (z, 1) = dc.

SO

is an isomorphism.

7. ADDITIVITY AND COMPACT CARRIER

We can use the considcrations of Q 4 to settlc  the following two questions below:
Suppose K is any category of topological  spaces containing  1) the category p of compact

AN Rs 2) the category of finite dimensiona1 locally compact spaces as subcategories. Let ‘H,
( ) be ordinary strong  homology theory rel. p with intcgcr  coeflicients.

Question 1: IS  SH, additive?
Question 2: Does s H, have compact carricrs?
The answer to  both questions is negative. More prccisely:

Proposition 7.1. There exist compact metric spaces X, E K,  an index  n and an element

< E ‘H,(Crl  Xi>  fCz1  X1 d enot ing the free  union of the spaces Xi)  such that

(1)

for any finite N .

proof:  For conveniente we rcplace Xi by the bascd space X+ = (X,?  , *) and CZ1  Xi by
the wedge

x = (X,*)  = (y(Xt,*).
i=l
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We have

aH*(X,*)  M

‘H,(Xf,*)  M ‘H,(XJ

Let “C, be any c-continuous chain functor related to 3H,.  On compacta  “C, coincides
with a c-continuous chain functor giving ordinary  Steenrod-Sitnikov homology theory. It
is well-known that there  exist compacta  Xi and cycles zi E “C,(X,?, *) ti + 0 , such
that zi - 0 on each (Xt , *) c  (P, *) E &, . On the homology leve1 that amounts to the
assertion that ci  = {zi} E “H,,(  XT,  *) is not trivial but k,& = {IC, zi}  E  SH,(  P, *)  ,
k : (Xt , *) c  (P, *) , vanishes. Take for example the Sitnikov chain functor (cf. [l] 5 9)
and a cycle z in the solenoid Y = Xi which bounds on each enveloping ANR uncoherently,
i.e. without bounding a chain z E 8Cn+l  (Y) . The fact tbat this exists is standard.

In the same way in which we invented «sums» in 0 4, we get a cycle z = CZ1
zi E “C,,(X,  *) which has the property that pi, z E Z,,(‘C,( X,?, *))  (pi : X + (Xt , *)
the projection) is notbounding. Hence ( = {z} E ’ H,(  X, *) is a homology class satisfying
(1).

It is immediately clear, that 7.1 provides us with a negative answer to both questions.

Remark. 1) SH,  was probably the candidate where one  would most likely expect a positive
answer to the two questions.

2) In [6]  the authors come to the conclusion that for strong  homology in the sense of J.
Lisica and S. Mardesic [5]  the questions l), 2) are undecidable.

8. APPENDIX

We collect some definitions and conventions which are constantly used in the course of the
present paper:

a) category  of topological  spaces:  A full subcategory K c Top such that:
1) 0 E &,  2) X E K =+ X x 1 E K, by &,  we denote  the category of based spaces

(X,s0),X~K,andrequire3)(Xi,ziO) ~&,i=  l,...,m=+VEr  (Xi,Zio)  E&.

b) chain  fwctors:  The explicit definition is contained  in [l] to which we refer. A chain
functor is a functor

(1) c, : K -f & = (category of chain complexes)

with much additional strutture:
there  are functors

(2) c*,c::-  -+&,
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natural inclusions  1 : c: c c*,

i’ : C,(A) c C:(X,A),(X,A)  E K2

and non-natura1 chain mappings

‘p#  : C:W,A) - C,(X)

tcc# : C,(X) - C:(X,A)

togcther with chain  homotopies resp. relations:

Dl> : po,l$  E 1 : C*(X) - C*(X)

j#p,Ee,j:x c (X,  4

t$a## = i’ , i:A c (X,4.

Wc have a diagram with exact upper row

(3) 0  --+ C , ( A )  -,  C;(X,A) 0,  C”,(X,A)  -+O

Il PO, li Q 4

(SI C , ( A )  3 C,(X) % C,(X,A)

and a (natura]) mapping

$ : H,(C”,tX,A))  -+ H,tC,tX, 41,

dcfìncd by

dz’ E im(i’  : C,(A) + C:(X,A))

p( z’) = z’(, q : t-44 c (X,4, a E C,(A,A)

such that da = -s#i’-‘dz’,  s : A c (A,A).
We require:
D2) $J is an epimorphism; there  exists  a p : im j, -f H,(  C”,( X, A)) satisfying $~p =

l:imj,-+imj,and

P*E  = Pj*, tc = n#,  : H,tC,tX)) + H,tC:tX, 4).
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Let 2 : H,,(C:(X,  A)) - H,, (C,(A)) be the boundary operator  associated with

(3) , then we have
k e r  $ c kera.

Moreover
*) Al1 inclusions  f : (X, A) c (Y, B) induce monomorphisms
**) The complex C,( X, X) = Q(X) is acyclic.
If C, : Kz -+ & or altematively c, : K + & carries al1 this strutture,  then it is called

a D-functor.
A D-functor is called a chain fmctor  whenever it satisfies
Cl) TO each homotopy H : f,,  2 fi : (X, A) + (Y, B) in Kz there  exists a natura1

chain homotopy
mm : C*(frJ)  = C*<f,).

C2) Denoting by 0 E K resp. 0 E & the zero objects one  has C,( 0) = 0 .
The following axiom of camier  is not explicitely used in this paper although it would be

quite  easy to endow al1 chain functors ‘C,  , &, constructed in 5 3-6 with carriers:

C3) TO each c E a(X) there  exists a space x c X (nof necessarily x E K) satisfying
a) to each subspace  X’ C X , K 3 X’ > x there  exists a c’ E C,(X’)  such that

j#c’ = c, j : X’ C X.

b) Suppose that X’ E K, X’ c  X , c’ E &( X’) such that j# c’ = c holds, then we have

XCX’.
One  can replace
1) Cl) by the appearently weaker:
Cl’) TO each (X, A) E K2 there  exists a chain homotopy D(X,A)  : C,(X,  A) --P

Cn+, (X x 1,  A x 1) between i, , i,, , tt’ : (X,A) c (X x I,A x I),  t = O,l, which
is natura1 in the sense that g E K2 ( (X, A) , (Y, B) ) renders the diagram

C,<X, 4 %) Cn+, (X x 1,A  x 1)

9# 1 1 (9 x l)#

c,<y,  BI %? c,, (Y x 1,B x 1)

commutative;
and
2) the existence  of g in D2) by the requirement

ker j, C  kerp, k .
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Definition 8.1. 1) The derived homology H,(CJ( ) of a chain  funcor & is defined by
H,(C,)(X,A)  = H,(g(X,A)) while the boundary  operator  8 : H,(G)(X,A) -t

H,-, (CJ ( A) stems from 2 in 02).
2) A given homology theory h, = {h,, a} is related to a chain  functor C, whenever

there  exist3 a natura1 isomorphism H,(c) ( ) fi:  h,(  ) of homology theories (i.e. a natura1
isomorphism of functors commuting  with boundaries).

We need the concept of a transformation between chain  functors:
Let ‘C, , i = 1,2 be two chain functors on K and let

hA) = x : ‘C:KA) + 2C:(X,A),

x;,,,  = x ’ * ‘C:(X,A)  + 2C:(X,A).

be families of chain mappings which are additive, natural, compatible  with e and i’ but only
up togiven chain homotopies in 2 C, such that every cy cle formed by these chain  homotopies
is bounding in 2 C, .

Then we talk about a transformation of chain functors X : ‘c*  + 2 g.
We cali X strict whenever the chain homotopies associated with  naturality, additivity and

1, i’ are trivial.
This concept of a transformation is 1) sufficient  to ensure that there  exists an induced

natural transformation X,  : H,( ‘G,) ( ) --f  H,( 2(J,)  ( ) of homology theories, 2) general
enough to comprise  al1 transformations appearing in practice.

Strict  transformations are in particular  valuable whenever 2G, is c-continuous (rel. p).
In this case a strict transformation XIp  allows a unique extension over K. The fact that most
interesting transformations are not strict can be remedied in the following way: A family

c = {C!,,  Ci : K2 --t eh; (o#,  K#, p*, i’, 1) satisfying al1 requirements  of a chain functor
with the exception of the condition *) and the condition that i’, 1 are monic  is called a weak
chain functor.

Such a weak  chain functor appears only as full weak subfunctor a, of a chain functor
C,  , which means that mere exist transformations

satisfying 1) (7 = identity (i.e. q is monic, 2) n induces  an isomorphism of homology

groups, 3) < is suict. 4) C, is c-continuous whenever c* is.
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It turns  out that many interesting tmnsformations X : ‘G -f 2C,,  with c-continuous
2g, although not being strict themselves, factorize over full weak subfunctors by means of
strict transformations (so-called weakly strict transformations).

Definition 8.2. A weak equivalente  Y : ‘g  C 2c  is a monk trantiormation  of chain
jiinctors together with a lef inverse ~1  : 2c  + ’ G , PU  = 1, inducing an isomorphism of
homology theories.

Remarks. 1) For the purpose of an existence theorem of a strong homology theory one  is able
to enhance the concept of weak equivalente by requiring that Y is weakly strict. However in
our context the weaker concept of 8.2 is sufficient.

2) The relationship between different chain functors ‘g, 2C, which are related to the
same homology theory (cf. definition 8.1, 2)) is rather complicatcd and cannot be described
simply by natura1 transformations between these chain functors.

3) For establishing an existence theorem for strong homology theories we have  to restrict
ourselves to closed pairs (X, A) E K2 . In our context, i.e. for deducing theorem 2.2, this is
unnecessary.

The main objective of [l] is to  presenta proof of

Theorem 8.3. Each  homology theory h, on K is related to a chain  jììctor G.

It tums out that we can say much more about special properties of G, e.g. C+ can be
assumed to be a free chain complex.

The basic  issue of theorem 8.1 is nor  simply to find a canonically defined chain complex
C,( X, A) such that h,(  X, A) M H,(  C,( X, A)) ; this can be achieved in a trivial way (de-
fine C,(X,  A) = h,(X, A) and let al1 boundaries d : C, --+  C,, be trivial). The additional
strutture  of a D- resp. at last of a chain functor is introduced  to ensure that this isomorphism
becomes an isomorphism of homology theories, i.e. it must commute  with boundary ope-
rators a : h,(X,A) + h,-, (A) resp. for H,(  CJ . For ordinary homology theories (i.e.
those satisfying a dimension axiom) we can confine ourselves to Aat chain fuuctors  which
are characterized by the property that $J : H,( C”*( X, A)) + H,( C,(X, A)) is always an
isomorphism.
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