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ON THE CONDITIONS FOR THE PARALLELIZABILITY
OF A COMPACT COMPLEX MANIFOLD

CHIA-CHI TUNG

Abstract. In this note certain analytic and geometric conditions for the trivialization of a
holomorphic vector bundle (on a compact complex space) are given. Applied to the holomor-
phic tangent bundle of a compact almost homogeneous complex manifold, these results yield
parallelizability criteria for such manifolds. Especially, it is proved that a compaact, homo-
geneous, hermitian manifold with semi-negative scalar curvature is Ricci-flat and paralleliz-
able. Similar results for manifolds admitting sufficiently many global holomorphic 1 -forms
are also oblained.

1. INTRODUCTION

An m-dimensional (complex) torus is a quotient space of €™ by a discrete subgroup of
maximal rank. As such 1t is a compact, homogeneous, Kidhler manifold whose holomorphic
tangent bundle is analytically trivial. A complex manifold with the latter property is called
parallelizable. According to Wang [37], a (connected) compact complex manifold is paral-
lelizable if and only if it is the homogeneous space of a complex Lie group by a discrete sub-
group, and complex tori are the only compact, parallelizable manifolds which are K#hlerian.
On the other hand, Auslander [3] showed that there exists a compact, 2 -dimensional K#hler
manifold whose curvature tensor vanishes but its first Betti number is 2. Therefore the «par-
allelizability» of a manifold 1s not a consequence of zero curvature. This gives rise to the
related question whether the <homogeneity» would be a consequence of zero curvature. That
this is not the case is shown by the following (Lemma 3.1): A compact, hermitian mani-
fold with semi-negative Ricci curvature is almost homogeneous if and only if it is a torus or
parallelizable but not weakly Kéhlerian (i.e., not a &-space in the sense of Fujiki [12]). Fur-
ther, it is shown that an almost homogeneous manifold with semi-negative first Chern class
is either parallelizable or not quasi-weakly Kéhlerian and has pseudo-trivial tangent bundle
(Prop. 3.2). In the presence of homogeneity, however, a compact, hermitian manifold with
semi-negative scalar curvature is necessarily Ricci-flat and parallelizable (Prop. 4.1).

A compact Riecmann surface of positive genus is characterized by the fact that it admits a
non-zero abelian differential of the first kind. In higher dimensions, it is natural to consider the
analogous situation where the holomorphic cotangent bundle of a compact complex manifold
is spanned at almost all points by global holomorphic 1-forms. Such a manifold is called, for
convenience, almost ample. Example are given by the proper modifications (or semi-analytic
coverings) of a compact parallelizable manifold. It turns out that an almost ample manifold
is parallelizable if either it is quasi-weakly Kahlerian with semi-positive first Chern class or
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its canonical bundle admits semi-negative Ricci curvature. As an alternative characterization
of the complex tori, it is shown that among all almost ample K#hler manifolds, the tori are
precisely those which admit an Albanese image of zero total scalar curvature with respect to

some pseudo-Kihler metric (Prop. 4.8-(2)).

In preparation for §§ 3-4, some trivialization criteria for a holomorphic vector bundle are
proved in § 2. As these might be of some use in other contexts (Cf. [27, p. 53] [15, Satz
1.1]), the base space of the bundle is allowed to have singularities (and this case is needed in
Lemma 2.4). The proof given here depends on a Gauss-Bonnet-Chem type formula of Stoll
[31, (7.3)]). This formula relates the current induced by the Ricci form of a hermitian bundle
E to the divisor associated to a holomorphic section of the determinant bundle of F (see

(2.6)).

The author is indebted to the referee for his valuable suggestions concerning the presenta-
tion of § 2. In particular, the idea of considering the family of induced bundles E, (p being
a polynomial representation of a general linear group) and the related isomorphism (2.7) was

due to him.

2. TRIVIALIZATION OF HOLOMORPHIC VECTOR BUNDLES

Let X be a (reduced) complex space of dimension m > 0,and E — X a holomorphic
vector bundle of rank r. A hermitian fiber metric A in E defines, in terms of a local frame
{sy, ,s,} of E,apositive definite hermitian matrix H = (h,g4) , where

hog = B(8,,85) = Kﬁa.

Restricted to X . , the manifold of simple points of X, the bundle E' admits a unique
hermitian connection whose connection and curvature matrices are (locally) given by

w=(0H)H!

Q=dw—-wAw=0w.
It can be shown that the fotal Chern form ([9]{29])
c(E;h) =det(1+ (3/27)2)

does not depend on the choice of local frame ficlds and may be written

c(Eih) = ) c(Eih),

¢=0
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where ¢ (E; h) 1s aclosed, C™-form of type (g,¢) on X . The de Rham class of the Chemn

form ¢, ( E; h) , denote ¢,(E) ,is called the g-th Chern class of E ([30]).
The Chem polynomial

CILE;hl =1+ c;(E;h)t+ ...+ c (E;h)t

admits a formal factorization ([17, p. 64)):

(2.1) CLE; ) = [[(1+ ) (E)?).

g=1

It follows from this that, if (Ej, hj.) , J = 1,2, are hermitian vector bundles of rank T
on X, then

Also, for exterior powers of E, (2.1) implies that
—1
(2.3) C](AqE;Aqh) = (; ) c,(E,h), (1<¢g< ),

where A%h denotes the induced hermitian metric on A‘E.
Associated to a hermitian vector bundle ( E; h) , there is the Ricci form

Ric (h) := —(1/4m)dd“(log det (H)).

(where d€ = $(8 — 9) ). It s easy to see that Ric (h) is precisely the first Chern form of the
detcrminant bundle of E relative to the induced hermtian metric. Thus by (2.3),

Ric(h) = ¢, (E; h).
Let ¢ bea C?-form of type (m—1,m—1) on X.If g: X — € isofclass C?, then
(2.4) pANddg—gddd=d(¢ Adg—gdP).

In the following assume the space X is compact. If ¢ 1s dd ¢closed, the Stokes theorem
and (2.4) imply that the intcgral

(2.5) Ric( E; ¢) :=f Ric(h) A ¢

X
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1s defined independently of the choice of hermitian metric h.

If L — X is a holomorphic line bundle and o € H°(X, L) a holomorphic section of I
with o Z 0 on any branch of X, then the vanishing multiplicity of o induces a non-ncgative
divisor, D(o), and accordingly, a current, [ D(o)], on X (see [31, p. 52]). By Stoll [31,
(7.3)],if 0 € H°(X,det(E)) and o % 0 on any branch of X , then a Gauss-Bonnet-Chemn
type formula

(2.6) [D(0)](¢) = Ric(E; ¢) + (1/4m)dd[log || o |1(¢)

holds for all C?-forms ¢ on X of type (m — 1, m — 1). Here the left hand side of the
equation is defined to be zero if o is nowhere vanishing.

If U C HY%(X,E), let D(U) be the set of all z € X such that the evaluation map
n, : U — E,, 9,(0) = o(2), is not surjective. The bundle F is said to be semi-ample
(resp., weakly ample), if there exists a (finite dimensional) subspace U C H°(X, E) for
which the degeneracy set D(U) is nowhere dense (resp., empy) ([29]).

Let ?r_ﬁ be the set of all (non-constant) polynomial representations p of the general lincar

group GL(r; €) withvaluesin GL(N; €) ,andset &, = UR., P, . If p € &, and {g;;}
is a transition system of E relative to an open covering {U} of X, set gff] = p(g,;). The

system {gff]} defines a 1-cocyle and hence a vector bundle E, on X . The family of the

induced bundles Eﬂ, p € &, includes the tensor, symmetric, and exterior powers of E as
well as those vector bundles obtained by taking their compositions. In consequence of [22, p.
300], there exist, for each p € &2, a positive integer k = k(p) and an isomorphism

(2.7 det(E,) — (det(E))*.

In the following, assume that X is irreducible. Let A°( E) = dim H°( X, E) . For each
p € &, , define the p-genus of E by

g,(E) = h°((E"),).

If F is non-singular, denote by K, , the canonical bundle, and 7' X , the holomorphic

tangent bundle, of X .
Let L™ = Q"L be the n-th tensor power of a line bundle L — X . Notice that if

ho(L™) > 0 and K°((L*)P) > O for some positive integers n,p, then L — X is triv-
al.

Lemma 2.1. If E — X is a semi-ample vector bundle admitting a non-zero p-genus, then
E — X istrivial.

Proof. By assumption, there exists a polynomial representation p € &, for which h°
((E*),) > 0. Thus by (2.7), h%((det( E*))*) > 0 for some k = k() . On the other hand,
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by the semi-ampleness of E, one has h°((det( E))*) > 0. It follows that the vector bundle
E — X is trivial. Q.E.D.

A continuous (1, 1)-form ¥ on X is said to be semi-positive (denoted > 0) if in terms
of local coordinates z,,..., 2, (at simple points of X ),

¥ = (i/27) ) 42, AdZg,
a,f

where the matrix (4, ﬁ) 1S positive semi-definite everywhere. If, in addition, at some point
of X g+ (1,4) is positive definite, then ¥ 1is said to be quasi-positive ([38, p. 403]). The
first Chern class ¢, ( E) 1is said to be semi-positive (resp., quasi-positive if c¢,(E) can be
represented by a closed, semi-positive (resp., quasi-positive) (1, 1) -form. A hermitian vector
bundle ( F, h) 1s said to have semi-positive (resp., quasi-positive) Ricci curvature if the Ricci
form Ric(h) 18 semi-positive (resp., quasi-positive). The notions of «semi-negative» (resp.,
«quasi-negative» form (or Ricci curvature) are similarly defined.

A hermitian metric h on an open subset X, of X .. is called a pseudo-hermitian metric

on X ifi) D, := X \ X, is thin analytic in X , and ii) the associated fundamental form of

h extendstoa (1, 1)-form w, of class C? on X . Further, a pseudo-hermitian metric A on
X is called a pseudo-K&hler metric, (resp., Kahler metric), if the form w, is d -closed (resp.,
locally induced from a C*, d -closed, positive (1, 1)-form defined on an imbedding space
of X).

A C?-form ¢ of type (m — 1, m — 1) on X is called a test formif i) ¢ is positive, and
i1) dd°¢ = 0. If, in place of 1), ¢ is positive off a thin analytic subset, then ¢ is called an
almost-positive test form. If X admits a Kihler form w, then w™~! is obviously a test form.
On an m-dimensional, compact homogeneous manifold, every invariant positive form of type
(m—1,m — 1) 1s atest form. For an arbitrary compact complex manifold the existence of
C°-test forms was established by Dektyarev [11].

Lemma 2.2. (1) If for some almost-positive test form ¢ on X and some p € &_, Ric
(Ep;t;b) < 0 (resp., = 0), then h”(ET) =0 (resp., < 1), VT € ?f,l' (2) If E —» X is
semi-ample and for some p € #°_, the bundle E, admits a hermitian metric of semi-negative

Ricci curvature, then E — X is trivial.

Proof. Assume forsome p € &, thebundle E, admits a hermitian metric h of semi-negative

Ricci curvature. Let w : X — X be a desingularization of X . Take a test form ¥ on X.

For the induced bundle E, = n*E,,

Ric(E,; ¥) =/;n*1zic(h)nw <0.
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On the other hand, by (2.3), (2.6) and (2.7),

Ric(E,; ¥) = Ric(det(E,); ¥)
(2.8) = Ric(det ((E),); ¥)

= k(p) Ric(E;¥).

Consequently, if E' 1s semi-ample, then Ric(dct(E); ¥ ) = 0, which implies that E' is
trivial.

Simillary, if Ric(E ; ¢) < O (resp., = 0) for some p € &°, and some almost-positive
test form ¢, then Ric(E,; ¢) < O (resp., = 0), V7 € &, . By (2.6), the first case implies
that h°(E,) = 0. Suppose now the bundle E,, 7 € &, ,, admits non-trivial holomorphic
sections ¢, and ¢, . Pick z € X g Near which the form ¢ is positive. If Ric(E_;¢) = 0,
then (;(2) # 0 for j = 1,2. If ¢ := (,(2)¢; — (;(2)¢, 1s not identically zero, then by
(2.6), Ric(E_; ¢) > 0, a contradiction. From this the assertion (1) follows. Q.E.D.

Remark. The above assertion (2) may also be proved using Kobayashi and Wu [20].

Corollary 2.3. Let L — Y be a holomorphic line bundle on a normal, irreducible, compact
complex space Y of dimension m. If L admits a hermitian metric of quasi-positive Ricci
curvature, then there exists an integer N such that H™(Y,@(L™")) =0, foralln> N.

Proof. Let (Y, ) be adesingularization of Y ,and ¢ atestformon Y. Let L = n* L. Since
Ric(f; ¢) > 0, there exists a positive integer k& = k; such that
nRic(L; ¢) + Ric(TY;¢) >0, Vn>k.

In view of (2.2) and (2.3), the above inequality implies that

Ric((L™)* @ Kp3¢) <0,  Vn>k,

Hence
HY(Y,6((L") ® Ky)) = 0

by Lemma 2.2-(1). It follows from Serre’s duality thcorem that H™(¥, & L") = 0. Con-
sequently, by the normalityof Y, H™(Y,&(L")) =0,Vn > k. Q.E.D.

The transcendence degree (over @ ) of the field of meromorphic functionson X , tr( X),
is called the algebraic dimension of X . It is known that tr(X) < dim X ; moreover, if X
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IS projective algebraic, then {r(X) = dim X . The space X is called a Moushezon space
if tr(X) = dim X. A Moishezon space needs not be Kihlerian. According to Moishe-
zon [25], there exist for each Moishezon space X a smooth projective algebraic variety X*
and a modification = : X* — X such that 7 is obtained by a finite sequence of monoidal
transformations with non-singular centers. This leads to the notion of a weakly Kihlerian
space, i.e.,a &-space in the sense of Fujiki [12] (see also [13] [35]). According to [12, 1.1],
a weakly K#hlerian space is necessarily a holomorphic image of a connected compact Kéhler
manifold. More generally, an irreducible, compact complex space X is called quasi-weakly
Kihlerian, if it is a holomorphic image of a compact, irreducible pseudo-K#hler space (Y, h)
with codim D, > 2.

Let V = H'(X,E), X, = X\ D(V) and E; = E|X,. If E — X is semi-ample,
there is an exact sequence of holomorphic vector bundles on X :

0O 9N XyxV —-2E,—0.

If h%CE) =n+1>r,themap ¢, : Xy — G,(V) by ¢,(z) = P(N,), z € X,,
(here p = n—r and G (V) being the Grassmannian of (p+ 1) -planes in V'), is holomorphic
and has a meromorphic extension to X ([24, 4.1](29, 2.3]). The bundle E, is the pull-back
under (the classifying map) ¢,, of a universal quotient bundle QP(V) — GP( V).LetY be
the closed graph of ¢, ,and m, : Y — G, (V) the projection. Set W, := (ﬂv)'Qp(V) .

For convenience, a holomorphic vector bundle W of rank r over a compact complex
space Y is called pseudo-trivial if there exists a thin analytic subset S of Y such that with
Y' =Y\ S, either W is trivial over Y’ or there exist a holomorphic map « of a compact

complex space Y onto Y and a weakly ample bundle W — ¥ such that i) 7: 7 (Y -
Y’ is biholomorphic, ii) W|x=!(Y") is isomorphic to w*(WI|Y'), and iii) all the Chem

numbers C%( W) = 0 (where a = (a,...,a,), the cr}s being non-negative integers with
a;+2a, + ...+ ra, = m) (sce [24, p. 81]).

A criterion for the trivialization of a weakly ample bundle on a projective space was given
in {27, p. 53]. More generally one has the assertion (2)-(b) of the following:

Lemma 2.4. (1) If X is pseudo-Kdhlerian and if ¢,( E) is quasi-negative, then h®(E.) =
0,Vr € #,,. (2) Assume E — X is semi-ample. Then (a) either E — X is pseudo-
trivial or X is a Moishezon space and none of the bundles £, - X and W, = Y, p €

F_, where W = Wy, admits a semi-negative first Chern class,; (b) if X is quasi-weakly

Kdhlerian and if the bundle E admits a semi-negative first Chern class, then E — X is
trivial.

Proof. Let p € &, and s be a hermitian metric on E,. If ¢, (E)) < 0, then there exist
C*-forms £ and n on X such that £ is closed, semi-negative, and Ric(x) = & + dn.
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Assume at first that X is the holomorphic image (under w) of an n-dimensional, compact,

irreducible pseudo-Kéhler space (Y, h) with codim D, > 2. Denoting by E‘p the lifted
hermitian bundle on Y, one has

Ric(ﬁp; w,':"l) = /(*n'"{ + d(w*n)) Aw:‘l
Y

=/1T'Ef\w:"1 <0.
Y

—

Thus if E is semi-ample, (2.6) and (2.8) imply that F, hence also E, is trivial. Sim-
ilarly, if ¢, (F) is quasi-negative and X admits a pseudo-Kihler metric A, then one has
Ric( E; w:‘") < 0. Hence by Lemma 2.2-(1), h“(ET) = 0, Vr € ¢°,,. This proves the
assertion (1).

Assume now E is semi-ample but not pseudo-trivial. Then h°( E) > r, and the induced
bundle W = Wy — Y is weakly ample with at least one non-zero Chern number C*(W).
Thus for some branch Y, of Y, the restriction 7 : Y, — X is surjective and C*(W,) # 0,

where W, = W|YH. It follows from [24, 5.6] and [36, 3.9] that Y,-.; , hence also X, is a

Moishezon space. By the preceding, no bundles E, - X and W, - Y, p € &, admit a
semi-negative first Chern class. This completes the proof of the assertion (2). Q.E.D.

3. ALMOST HOMOGENEITY AND PARALLELIZABILITY

In the following, let M denote a connected, compact complex manifold of dimension
m > 0. M is said to be parallelizable if it admits m global holomorphic vector fields
linearly independent at every point. Such a manifold can be regarded, according to Wang
[37, Thm. 1], as the compact coset space of a complex Lie group with a discrete isotropy
subgroup. They are, in general, non-K#hlerian, In fact, Wang [37, p. 776] has shown that
a compact, parallelizable manifold is K&hlerian if and only if it is a torus. An example of a
non-K#hlerian parallelizable manifold is given by the Iwasawa manifold G/T" , where G is
the Lie group of all complex matrices

1 2z, 2
g=10 1 2z
0 0 1

and I’ C G is the discrete subgroup of all elements g whose entries are Gaussian inte-
gers. Note that the manifold G/I" has a non-abelian fundamental group I', hence it is not
a torus. Indeed, a non-Kéhlerian, compact parallelizable manifold 1s necessarily non-weakly
Kihlerian (Lemma 3.1).
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The manifold M is said to be almost homogeneous if the automorphism group of biholo-
morphic transformations of M acts transtively on M exclusive (possibility) of a nowhere
dense subset S; if S is empty, then M is homogeneous. By means of complex 1-parameter
group of holomorphic transformations one can show that M is almost homogeneous (resp.,
homogeneous) if and only if its holomorphic tangent bundle is semi-ample (resp., weakly
ample) (see [19, pp. 22-24] [28, p. 246)).

Every compact complex manifold admits a holomorphic map into a (possibility trivial)
torus. In fact, there exist a complex torus, Alb( M), the Albanese torus of M , and a holo-
morphic map a« : M — Alb( M), such that « is universal among all holomorphic maps
of M into complex tori ([4]). The construction of the Albanese torus shows that the dimen-
sion of Alb( M) is at most equal to thatof H(M,d @ » ) » the space of closed holomorphic

1-forms on M . If M is weakly Kihlerian, then dim Alb( M) = dim H“(M,dﬁy) ([36,
9. 22)).

Lemma 3.1. Assume M is almost homogeneous and one of the following holds:

(@) TM admits a non-zero p-genus,

(b) Forsome pe &, (T M) , admils a hermitian metric of semi-negative Ricci curva-
{ure.

Then M is either a torus or parallelizable but not weakly Kihlerian.

Proof. Obviously, under the hypothesis (a), resp. (b), M is parallelizable by Lemma 2.1, resp.
2.2. Hence, if M 15 weakly Kahlerian, then M is biholomorphic to a product AIb(M) xY,
where Y is a projective algebraic, rational manifold ([12, p. 255]). Consequently M is
Kihlerian. Thus the theorem of Wang ([ibid]) concludes the proof. Q.E.D.

If M 1s almost homogeneous and admits a Kdhler metric, then the Albanese map o
M — Alb (M) is a holomorphic fiber bundle whose typical fiber F' is a connected, almost
homogencous Kidhler manifold with vanishing first Betti number (see [26, 2.11 & 2.13]). Thus
¢, (F) is not quasi-negative. It turns out that, if ¢, (F") is semi-negative or a torsion (integral)
class, then F' is zero dimensional:

Proposition 3.2. Assume M is almost homogeneous with semi-negative first Chern class.
Then either M is parallelizable or M is not quasi-weakly Kdhlerian and has pseudo-trivial
tangent bundle.

Proof. This is an immediate consequence of Lemmas 2.4-(2). Q.E.D.

Remark. The above Proposition sharpens a result of Aeppli [1, Remark 3] (where, by as-
sumption, M is homogeneous under the action of a compact transformation group and c,

(M) =0).



296 C. C. Tung

Corollary 3.3. Assume M is homogeneous. (1)If M has algebraic dimension zero, then M
is a torus or parallelizable but non-weakly Kdhlerian. (2) If M is a symmetric spaace and
has either algebraic dimension zero or semi-negative first Chern class, then M is a torus.

Proof. By the structure theorem of Grauert and Remmert [14, Satz 3], M is a holomor-
phic fiber bundle over a projective algebraic variety Y with connected, parallelizable fibers;
moreover, the function field of Y is isomorphic to that of M . Therefore, if M has algebraic
dimension zero, then Y is a single point. Thus the assertion (1) follows from Lemma 3.1.
According to Borel {7, 2.4], a homogeneous, symmetric space M is biholomorphic to a
product, T' x B, where T is a torus and B is a projective algebraic, rational manifold. Thus
M is Kdhlerian. If, in addition, ¢, ( M) is semi-negative, then M is a torus by Proposition
3.2 and Lemma 3.1. If M has algebraic dimension zero, then the same is true by (1). Q.E.D.

4. SCALAR CURVATURE AND PARALLELIZABILITY

Let M be a complex manifold of dimension m > 0, and ¢ a hermitian metric on TM
with fundamental form w. An analogue of the Gaussian curvature in higher dimensions is
given by the scalar curvature x_ of the hermitian connection on TM . In fact, (using [9,
(7.25)]) it can be shown that

g

(4.1) ngm"" = m Ric(g) A w™ !

In the following, assume M is compact.

Proposition 4.1. A compact, homogeneous, hermitian manifold with semi-negative scalar
curvature is Ricci-flat and parallelizable. (In particular, it admits no hermitian metric of
quasi-negative scalar curvature.)

Proof. By [24, 4.2], on ahomogeneous complex manifold M there exists a hermitian metric A
of semi-positive Ricci curvature. (Such an A trivially exists if M is parallclizable.) Let g be
a hermitian metric on T'M (with fundamental form w ). Define an operator L : C*®(M) —

C*(M) by
L(w)w™=ddu Aw™ "

There exists a C*°-function ¥ on M such that
(4.2) Ric(g) = Ric(h) + dd°VY.

If Ky < 0, then by (4.1) and (4.2), one has

L(¥)w™ < —Ric(h) Aw™ ! <0.



On the conditions for the parallelizability of a compact complex manifold 297

Since the mapping L is a Hopf operator, it follows from [18] that ¥ = constant. Thus
one has Ric(g) = Ric(h) > 0, Ric(h) Aw™ ! =0, and Ky = 0. On the other hand, for
a test form ¢ on M, there exist a constant N > 0 with

Ric(h) A(Nw™ ' —¢) >0  on M.

Thus Ric(T'M; ¢) = 0. Consequently the non-positivity of & o implies that M is paral-
lelizable and Ric(g) = 0. Q.E.D.

Remark. The above Proposition and Lemma 3.1 imply that an almost homogeneous hermi-
tian manifold with semi-negative Ricci curvature is Ricci-flat and parallelizable.

Let Y be an m-dimensional compact complex space, w : ¥ — Y a desingularization,

and TY* the holomorphic cotangent bundle of Y. Let U be the subspace of Ho(Y, TY*)
consisting of all pull-backs #«*¥ of holomorphic 1-forms ¥ on Y. Set

Dy, =n(D(U))UY,

ing *

The complex space Y 1s called (1) almost ample if Dy is thinin Y ; and (2) weakly ample
if Dy, is empty.

Weakly ample manifolds were studied, €.g., in [5] [23] [24]) [32]. It was shown, among
other things, that a compact Kihler manifold is weakly ample if and only if it admits a holo-
morphic immersion into a complex torus ([23] [24]). Note that a proper modification of a
wcakly ample manifold is almost ample. In particular, if the manifold M has Albanese di-
mension m and has algebraic dimension zero, then by [36.13.7], the Albanese map of M is
a modification, hence M 1s almost ample.

By Lemma 2.2 (or Wu [38, p. 406]), an almost ample manifold admits no hermitian
metric of quasi-posituve Ricci curvature. If such a manifold carries a hermitian metric of
semi-positive Ricci curvature, then it is necessarily Ricci-flat and parallelizable. This is a
consequence of Lemma 2.2 and the following;:

Proposition 4.2. A weakly ample hermitian manifold with semi-positive scalar curvature is
Ricci-flat and parallelizable. (In particular, it admits no hermitian metric of quasi-positive

scalar curvature.)

Let A be a pscudo-hermitian metric on Y. (Y, h) is said to be of positive (resp., zero)
total scalar curvature (with respect to a desingularization (}7’, 7) of Y') if and only if the fotal
scalar curvature

(4.3) R, (Y] := m Ric(TY; (m'w,)™ ")

IS positive (resp., zero).
The next Lemma shows that a weakly ample manifold admits no closed pseudo-Kahlerian
subspace of positive total scalar curvature.
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Lemma 4.3. Let X be a compact complex space of dimension m. Assume X admits a
holomorphic map ¢ of rank m into an almost ample complex space Y . If $(X) ¢ D, ,
then i) X is almost ample; ii) X admits no pseudo-Kdhler metric of positive total scalar

curvature.

Proof. Let z be a point of X, =: X \ ¢~'(Dy) such that ¢ attains rank m at z. There
exist open neighborhoods U C X, of z,and V C Y of y = ¢(x), such that the map
f'=¢:U — V haspurerank m and theimage Z = ¢(U) is a pure m-dimensional analytic
subsetof V' ([2,1.21]). Let f= f': U — Z and D,, be thesetofall ¢ € U, N f~'(Z,,)

such that the Jacobian rank of f at g islessthan m. Thenthe set E = "ﬁmu)f-‘(zm) UUging

is thin analytic in U ([33, p. 106]). Accordingto [2, 1.26],theset T = {z € Z|ENf~1(2) #
@} is almost thin in Z. Take z, € f~'(Z\T). Then Y, = f(z,) € Z., and f has
Jacobian rank m at z, . It follows that the map ¢ is an immersion at z, . Consequently there
exist global holomorphic 1-forms #,,...,n, on Y such that the cotangent bundle of X . is

spanned at z, by the 1-forms ¢*n,,...,¢*n,. . Thus X is almost ample. Suppose now X
admits a pseudo-Kéhler metric A. Then it follows from (2.6), (4.3) and [34, 2.1] that, for any

desingularization (X,n) of X, R, ,[X]<O0. Q.E.D.

If M is Kéhlerian and if either ¢, ( M) is semi-positive or M is almost homogeneous, then
the Albanese map a : M — Alb( M) is a holomorphic fiber bundle with connected fibers
(see [26], resp. [21]). Therefore, the map « is a biholomorphism provided the irregularity of
M is equal to the dimension of M . In the absence of a Kihler metric, one has the following:

Corollary 4.4. Assume either the canonical bundle of M admits semi-negative Ricci cur-
vature or M is almost homogeneous. Then M is parallelizable if and only if M admits a
holomorphic map ¢ of rank m into an almost ample complex space Y with ¢(M) € D,, .

Proof. The sufficiency part of the conclusion follows immediately from Lemmas 4.3 and 2.2
(resp., 2.1). Q.E.D.

Corollary 4.5. Assume M admits a holomorphic map ¢ of rank m into an almost ample
complex space Y with ¢( M) € Dy . (1) If M is Kdhlerian with zero total scalar curvature,
then M is atorus. (2) If c,(M) > O, then either M is parallelizable or M is not quasi-
weakly Kdhlerian and T'M* is pseudo-trivial. (3) If c,(M) > 0 and Y is a Moishezon
space, then M is an abelian variety.

Proof, By Lemma 4.3, M is almost ample. (1) If M is Kihlerian with zero total scalar
curvature, then by (2.6) and (4.3), TM* is trivial. Hence Wang [37] implies that M is a
torus. (2) This i1s an immediate consequence of Lemmas 2.4-(2). (3) If Y 1s a Moishezon
space, then so is the image space ¢( M) . Since ¢( M) is irreducible ([2, 1.27]), by [24, 5.1],
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M is a Moishezon manifold. Therefore, Lemma 3.1 implies that M is a torus, and by Grauert
and Remmert [14, Satz 1]}, M is projective algebraic. Q.E.D.

A proper, surjective, holomorphic map w : X — Y is called a semi-analytic covering of
the complex space Y, if there exists a thin analytic set S (possibly empty) in Y such that the
set A = w~1(S) is thinin X and the restriction M x\4 defines an analytic covering of Y'\ S.

Corollary 4.6. Assume M is a semi-analaytic covering manifold of an m-dimensional, al-
most ample convex space Y ,and c,(M) > 0. If either TY* is not pseudo-trivial (for some
desingularization (Y, m) of Y )or Y is non-singular with irregularity ¢ > dim M and ad-
mits a holomorphic 1-form with a non-degenerate isolated zero in Y — D, , then M is an
abelian variety.

Proof, If TY* is not pseuod-trivial, then by Lemma 2.4-(2) and [36, 3.9], 17, hence also
Y, is a Moishezon space. Supppose now Y is non-singular with irregularity ¢ > dim M,
and Y admits a holomorphic 1-form with a non-degenerate isolated zeroin Y — D,,. Let
U:= H(Y,TY*). By Cowen [10, p. 7 6], the classifying map of TY*, ¢y Y — Dy —
G,_n-1(U), 1s an immersion at some point. Hence it follows from [24, 5.3] that Y is a
Moishezon manifold. Therefore the conclusion follows from Corollary 4.5-(3). Q.E.D.

According to A. Borel [7, 3.5], if the projective space P*(TC) (»n > 2) is blown up
at one point, the resulting manifold is a symmetric space, and as such is necessarily almost
homogenecous ([7, 2.2]). For a compact parallelizable (resp., weakly ample) manifold, the
almost homogeneity (resp., weak-ampleness) of the manifold is, however, not preserved by
monoidal transformations in codimension > 2 :

Corollary 4.7. Assume Y is a weakly ample manifold of dimension n > 2. Let M be the
manifold obtained by blowing up Y along a closed submanifold Q of codimension > 2 .
Then i) the degeneracy set D,, = ¢~ (Q), where ¢ : M — Y is a modification defining
M ;ii) M neither admits a hermitian metric of semi-positive Ricci curvature nor is almost
homogeneous.

Proof. Observe that the fiber ¢~1(2), z € Q, being biholomorphic to PY(C) with ¢ =
m—dim Q — 1, carries a (Fubini-Study) Kédhler metric of positive Ricci curvature. Therefore
Lemma 4.3 implies that D,, = ¢~'(Q) . The assertion ii) is then an immediate consequence
of Coro. 4.4 and Lemma 4.3. Q.E.D.

Proposition 4.8. (1) Ifthe Albanese image of M admits a pseudo-Kdhler metric of zero total
scalar curvature, then the Albanese map o« : M — Alb( M) is surjective. (2) An almost
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ample, Kdhler manifold is a torus if and only if its Albanese image admits a pseudo-Kdahler
metric of zero total scalar curvature.

Proof, (1) By [2, 1.27], the image space Y = a( M) is irreducible. As a complex subspace
of AIb(M), Y is almost ample. Assume Y admits a pseudo-Kdhler metric A of zero total

scalar curvature with respect to a desingularization (¥, 7) of Y. Let w, be the associated

fundamental form of h. Then Ric( Ky ; (w*w,)™ ') = 0. Hence it follows from Lemma
2.2-(1) that Y has geometric genus 1. According to Ueno [36, 10.3], Y is non-singular and
has Kodaira dimension 0. Hence by [36, 10.6], the Albanese map « is surjective. (2) Assume
M is an almost ample, Kdhler manifold. By Matsushima [23, p. 312], the Albancse map
a of M is an immersion at some point. Consequently, if a( M) admits a pseudo-Kahler
metric of zero total scalar curvature, then m = dim Alb( M), which implies that « is a
biholomorphism. Q.E.D.
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