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Abstract. Let S be an orthogonal polygon in the plane. For each point x in S, let V, denote
the sct of points which # sces via staircase paths, and let M, = {y : V; = V;}. For § simply
connected, S is starshaped via staircase paths (i.e., orthogonally starshaped) if and only if S
contains exactly one such closed set M., and when this occurs M, is the staircase kernel of S.
In general, if S contains exactly k such distinct closed set A, ,..., M, , then S is a union of
k (or possibly fewer) orthogonally starshaped sets chosen from Vg, ..., Vg,.
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1 Introduction

We begin with some definitions from [1]. Let § be a nonempty set in the
plane. Set S is called an orthogonal polygon (rectiinear polygon) if and only if
S is a connected union of finitely many convex polygons (possibly degenerate)
whose edges are parallel to the coordinate axes. Set S is said to be Aorizontally
convez if and only if for each z,y in § with [z,y] horizontal, it follows that
e,y € 8. Vertically conves is defined analogously. Set S is orthogonally conves
if and only if S is an orthogonal polygon which is both horizontally and vertically
convex.

Let A be a simple polygonal path in the plane whose edges [w;_1,w;],
1 < 7 < n, are parallel to the coordinate axes. Path A\ is called a staircase
path if and only if the associated vectors alternate in direction. That is, for an
appropriate labeling, for 7 odd the vectors w@_lwﬁ have the same horizontal di-
rection and for 7 even the vectors wi_lwi have the same vertical direction. Edge
lw;—1,w;| will be called north, south, east, or west according to the direction of
vector wi_lwﬁ. Similarly, we use the terms north, south, east, west, northeast,

northwest, southeast, southwest to describe the relative position of points.
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For points = and y in set S, we say = sees y via staircase paths (z is visible
from y via staircase paths) if and only if there is a staircase path in S8 which
contains both z and y. For each point = in 5, we define its visibility set in S by
V: — { ¥ : = sees y via staircase paths}. By |8, Lemma 1], orthogonal polygon
S 1s orthogonally convex if and only if every two of its points see each other via
staircase paths. Similarly, set S is starshaped via staircase paths (orthogonally
starshaped) 1t and only if for some point p in S, p sees each point of 5 via
starshaped paths, and the set of all such points p is the staircase kernel of 5,
denoted Ker 5.

Many results in convexity that involve the usual notion of visibility via
straight line segments have interesting analogues that employ the idea of visibil-
ity via staircase paths. (See [1] for a list of related references.) Results in [9], [4],
and [2] use points of locally maximal visibility to describe certain starshaped
sets and their unions in a linear topological space, and here we seek an analogous
result for an orthogonal polygon §. I'or set & the local property above is not
very useful, however, since every point z of S has locally maximal visibility in
S. That is, for each z in S, points near z see no more than z sees (via staircase
paths) and may well see less. Instead, we examine those points x whose visibil-
ity sets are mazimal in S. That 1s, those points z for which V, is not a proper
subset of V;; for any y in §. It turns out that, for such an z, the corresponding
set M; = {y : Vy; = Vz} is closed and (for § simply connected) orthogonally
convex. Moreover, these M, sets function as kernels for appropriate subsets of
S, yielding a decomposition of S into starshaped sets.

Throughout the paper we will use the following notation: int S, cl$, and
conv S will denote the interior, closure, and convex hull. respectively, of set
S. If A is a polygonal path containing points s and ¢, A(s,?) will represent the
subpath of A from s to 2. As discussed above, for point = in set S, V., will be 1ts
visibility set in S, with M, = {y: V, = V;}.

The reader may refer to Valentine [10], to Lay [7]|, to Danzer, Grunbaum,
Klee 5], and to Eckhoff |6] for discussions concerning visibility via segments
and starshaped sets.

2 The Results.

We begin with some preliminary lemmas.

1 Lemma. Let S be an orthogonal polygon in the plane. There are finitely
many distinct wisibility sets V., z wn S, and finitely many associated sets M, =

y:Vy =V}

Proof. As in (3], let £ be the family of lines determined by edges of S. Then
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L gives rise to a collection 7 of non-degenerate closed rectangular regions such
that each member T of 7 is minimal and U{7" : TinT } = cl(int 5). Let B be the
finite family {int7" : Tin7T } U {(s,t) : [s,t] an edge of T, TinT} U {(s,t) : [s, 1]
an edge of § and (s,%) Ncl(int §) — ¢}. Certainly for any I in B, all points of
B have the same visibility set. Moreover, only finitely many points of § fail to
belong to any B set. Thus there are finitely many distinct visibility sets V, z
in S, and finitely many associated sets M, as well. [QED]

2 Lemma. Let 5 be a ssmply connected orthogonal polygon wn the plane.
For each z in S, the associated set My = {y : V, = Vi } is orthogonally convex.

Proof. Let y,z belong to M, to show that M, contains a staircase y — z path.
In fact, we will show that M, contains every staircase y — z path in 5. Since
Vy = V,, y sees z via staircase paths in .5, and we let A denote such a path. For
weA, we will show that weM;. That is, Vi, = V: Certainly V, = V, = V, C V4,
for if ¥ and z both see some point s (via staircase paths), then by |3, Lemma
2|, all points of A see s (via staircase paths) as well. To show that V,, C V,
assume that w sees some point ¢ of §. Without loss of generality, assume that
z is northeast of y. If ¢ is northeast of w, then y sees ¢ (via staircase paths),
and eV, = V, the desired result. Similarly, if ¢ is southwest of w, then 2 sees ¢
(via staircase paths), again the desired result. Hence without loss of generality
assume that ¢ is northwest of w. Let u be a staircase w — ¢ path, and let w’
be the last point of u(w,?) seen by ¥ and 2. (See Figure 1.) Observe that u is
west of the vertical line at z and north of the horizontal line at y. If w' £ ¢ and
p(w', 1) begins with a north segment, then y sees this segment, contradicting
our choice of w'. Likewisc, if w' £ ¢ and u{w’,t) begins with a west scgment,
then z sees this segment, again impossible. Thus w' = ¢,teV, = V, = V,, and
Vw € V;. We conclude that V,, = V... Hence 4 C M, and M, is orthogonally
convex. [@ED

r-_}w' H

Figure 1.
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It i1s easy to see that Lemma 2 fails when we delete the simple connectedness
requirement. Consider the following example.

1 Example. Set & be the boundary of a rectangle having vertices z;,1 <
1 < 4. Certainly M;, = {z;: 1 <3 < 4} is not orthogonally convex.

3 Lemma. Let § be a simply connected orthogonal polygon in the plane.
For pownt © n S, wmsibility set V, s mazimal iof and only if the associated set

My = {y : Vy = Vi } s closed.

Proof. The necessity 1s easy and does not require simple connectedness: If V,
is maximal, choose any y in cl M, to show that yeM,. Clearly V, C V,, (since
visibility sets are closed). and since V;; is maximal, V; cannot be a proper subset
of V. Hence V; =V, yeM,, and M, is closed.

For the sufficiency, we use a contrapositive argument. Assume that for some
z set V. 1s not maximal to show that M, is not closed. If V, is not maximal,
then for some y in 5,V is a proper subset of V. Since V, C V,,,y sees x via
staircase paths in S, and we let A(z,%) be a staircase x —y path in §. For future
reference, observe that for every ¢ in V., both z and y see i via staircase paths,
and by |3, Lemma 2|, each point s of A(z,y) sees ¢ via staircase paths as well.
Thus V; C V; for every seA(x, y).

Let A be the component of M, NA(z,y) at z. Then A is a subpath of A(z, )
(possibly degenerate) with endpoints z and p for some p in A(z, y). We will show
that p ¢ A and hence A is not closed: If p = y, then since V, # Vi, p = y € M,
and M. 1s not closed, the desired result. Hence we assume that p £ y. Then since
A is a component of M, NA(z,y), every % -neighborhood of p must contain some
point p,, in A(p, y)\M,. Moveover, since there are only finitely many visibility
sets Vp, in S, we may choose the sequence {p,} so that V,,, =V}, foralln > 1.
Since V,, # V;, one of these two visibility sets is not a subset of the other.
By an observation above, V, C V,,,, so we must have V,,, € V,. Thus for some
w ¢ V,,p1 (and in fact each p,,) sees w via staircase paths. Since {p,, } converges
to p, p sees w as well. Hence V, # V,,p &€ M;, and M, is not closed. This
establishes the sufficiency and finishes the proof of Lemma 3. [@ED]

The lemmas yield the following results for orthogonally starshaped sets and
their unions, with the M, sets functioning as staircase kernels.

1 Theorem. Let S be a simply connected orthogonal polygon in the plane,
and for each z in S let M, = {y : V, = V;}. Set § is orthogonally starshaped
it and only it & contains exactly one such set M, which is closed. When this
occurs, M, = Ker §.

Proof. When § is orthogonally starshaped, then visibility set V, is maximal for
z in § if and only if re Ker 8. By Lemma 3 it follows that A, is closed for z in
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S if and only if ze Ker §. For such an z, set M, = {y : V, = V, = 5} is unique
and is, of course, Ker §5.

The converse does not require the simple connectedness condition. We as-
sutne that S contains exactly one set M, which is closed, to show that 5 is or-
thogonally starshaped. Certainly &' is a finite union of orthogonally starshaped
sets, say Vg, ,...,V; . Without loss of generality, we assume that each of these
visibility sets is maximal and hence (by the first part of Lemma 3) the cor-
responding sets M, are closed, 1 < i < k. However, this means that all the
sets M, are the same and hence V,, =V, for 1 <7 < k. Thus § =V,,,5 1s
starshaped, and M,, = Ker S, finishing the proof. [@ED

The importance of the simple connectedness condition, both for Lemma 3
and for Theorem 1, will be addressed in Example 3. Without simple connected-
ness, Lemma 3 and Theorem 1 yield the following corollary.

4 Corollary. Let 5 be an orthogonal polygon in the plane. If for some
in S the corresponding visibility set V is mazimal, then the associated M, =
{y: Vy, = Vp} is closed. If § contains exactly one such set My which is closed,
then & s orthogonally starshaped with M; = Ker S.

Theorem 2 provides a similar result for unions of orthogonal polygons.

2 Theorem. Let S be an orthogonal polygon in the plane, and for each z
in S let M, = {y : V = V;}. If 5 contains exactly & distinct closed M, sets
Mg, ..., Mg, tor some £ > 1, then S is a union of £ or fewer starshaped sets
chosen from V,, ..., Vg, .

Proof. Certainly set § is a finite union of distinct orthogonally starshaped sets,
say Vi, - .- Vy,, where each set V. is maximal, 1 <7 < n. Hence by the first part
of Lemma 3, the associated sets M,,,... M, are closed, 1 <37 < n, and so each
M, is one of the k sets M, ,... M, _. Since the visibility sets V}, are distinct,
so are the associated sets M, and thus each M, is a difterent M,. Therefore
n < k, and we may relabel the M, sets if necessary so that M,, — M, for
1<i<n Clearly V, = V,,,1 <i<n,and §=V; U---UV,,, finishing the
argument. [@ED

In the proof of Theorem 2, certainly n < k. In fact, n may be strictly less
than &, as the following example illustrates.

2 Example. Let S bethe polygonal path in Figure 2. Using the terminology
in Theorem 2, set S contains exactly three distinct closed M, sets: M, =
lzi, ), 1 < 2 < 3. However, § is a union of two (and no fewer) orthogonally
starshaped sets V;, andV,.
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Figure 2.

We conclude with some other examples. First, we observe that without the
simple connectedness condition for set 5, portions of Lemma 3 and Theorem 1
fail. Consider the following example.

3 Example. Let 5 be the union of the polygonal paths in Figure 3. Using
our earlier notation, set M, = {z} is closed. However, Ker § = {y}, so V, is
a proper subset of V},, and V, is not maximal. Thus the sufficiency in Lemma
3 fails. Similarly, set S is orthogonally starshaped although S contains distinct
closed sets M, = {z} and M, = {y}, violating the necessity in Theorem 1.

Figure J.

Further, analogous results fail for visibility via segments, even for a set which
is closed and simply connected in the plane. Of course, using our previous no-
tation, when visibility (via segments) set V, is maximal, then the associated set
M, is closed by an argument like the one in Lemma 3. However, set M, may be
closed although V, is not maximal. For example, it S is the familiar five-pointed
star, then M, = {z} for every = in § outside the kernel. Thus M, is closed
for every z in S, while V, will be maximal only for r in the kernel. A more
interesting example (below) reveals a similar situation for nontrivial sets M.
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4 Example. In Figure 4, segments |a,b|, [c,d] are tangent to circle C at

xz,y, respectively. Let 5 be the closed, simply connected set whose boundary
consists of the minor arc from z to y in C together with polygonal path [y, c] U
[c, U [c,a’] U [d, a] U [a, z]. Then both sets M, — [a,z] and M, — [c,y]| are
nontrivial and closed. However, both V, = conv{a,d’, b} and V,, = conv{c, ¢, d}
are proper subsets of V; for any s in the kernel of S, conv{z,b,d}. Hence neither
Vz nor V,, 1s maximal. Moreover, set 5 1s starshaped although for every = in 5,
the corresponding M, is closed..
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