GEOODULAR AXIOMATICS OF AFFINE SPACES

LEV V. SABININ!

Abstract. Any flat geoodular space can be treated as an affine space and vice versa. A purely
algebraic proof of the fact is presented here. It gives us a new axiomatics of affine spaces.
Moreover, such an approach permits us to consider affine spaces over arbitrary rings and to
regard an affine space as a universal algebra.

Any algebraic system M = <M, L, (w,),cg > equipped with a ternary operation L(x, a, y)
= L7 vy = x-yand a collection of binary operations w;,(a, b) = 1,b 1s called a geoodular space
if:

1. M 1s aleft loop [1] with respect to the operation x,y € M — x -y € M and a is its right
neutral element [1].

2. tx ux =+ uwyx,(xe M), (t,u € R),

3. ta(uax) = (U)o, (X € M), (t,u € R),

4, lpx=x,(x € M),

5. Lf;f; o Lj;}i =L, ,,(a,b € M), (t,u € R) (the first geoodular identity),

6. Ljot, =1t,0oL;, (a,b € M), (t € R) (the second geoodular identity).

Remark. The properties 1-4 mean that M* = <M, . @, (ta)ier > 1s a left R-odule.
A geoodular space M = <M, L, (w,)ecr > 1s said to be of trivial curvature (or of zero
curvature) if

Lol =L (a,b,c € M). (1)

This condition 1s stronger than the first geoodular 1dentity.

1. Definition. A geoodular space M = <M, L, (w;);ecr > of trivial curvature is said to
be flat, if for any a € M, M* = <M, -,,a,(t,):cr > 1s a vector space over R (with a zero

element a).

Remark. In the flat case it is more suitable to use the notation :: instead of H Henceforth

we tollow this convention. Due to our conditions we have evidently

7. g _ rd a _ rda . Td
LF O Lff —— Lf} o LP — ptg T gt - (2)

i L

From now and onward we consider flat geoodular spaces only.

1. Proposition.
=L < d=1Lc. 3)
Proof.
py =Ly <= Lyol, =L, 0L, <=

L, =Lj<=bic=d<=Lic=d.

a*

1 Proofs not corrected by the author.
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2. Proposition.
p o gu p -1 _ L}:F
L{; — Ly © Lq © ( ) Lﬂff (4)

Proof. We shall show that the first part of the equality (4) follows from Proposition 1. Indeed,

Proposition 1 shows Lj, = 7»» and in virtue of (2) we obtain
if
a Iz ay—1 __ -1 _ ya a ax—=1 _ ya _ yp
LyoLjo(L,) =1L,o LL” o (L}) 17q © Ly © (L) = e = L.

As to the second part of the equality (4) we can use (2) again. Then

—1 — —1 ~1
poljo(ly) ™ =LjoLgo(Ly)™ o(Lf)™ =Liy, o(Liy)™ =
b4 J
— —_— bi?

Ll’?"‘q LL qr

3. Proposition.
b Ole = trec 0 L. (5)

Proof. By means of Proposition 1 we have L = Lj... Consequently, due to the second

geoodular 1dentity
O le = L“";;C Ot = troc 0 Ly,

Remark. The properties

—1 WP ~1
LyoLio(L,) = L;iq} Lyot.o(Ly)” = frac (6)
are called identities of reductivity [1].

Let V = {L}},»em- Then we can introduce for any f, g € V the operation

f+g¥fog (7)

It is easily verified that f o g € V again. Indeed, if f = L}, ¢ = L?, then due to Proposition 1

g’
g can be represented in the form g = Li;, Consequently, f og=Lo =L, Y € V and,

E.‘IJ

moreover, f o g = g of. Thus, the operation + 1s commutative and evidently associative. We
have zero element Oy = L and for any f = L there exists an opposite element (—f) = L.
Thus, we obtain the proposition:

4. Proposition. The set V = {Lj;j}ﬁ:;}EM constitutes a commutative group with respect to the
operation f + g¥f o g(f,g € V) with zero element Oy = Ly(V,) and the opposite element
( );m L!:r

NDW we 1ntroduce the multiplication by scalars

tLy LY (a,b € M), (t € R). (8)

b

One should verify that this definition is correct. This means that L] = LY = L{

. = L 4 should
be satisfied. Due to Proposition | we have L, = L , <= t.d = L ;.. Ort.d = tab

to 2
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= c:.tab = L%t,b = t.Lib = rc(cjb) = c(bj;ﬂ) = t.Lyc. But in virtue of Proposition 1,
Ly = L{ <= d = Ljc. Consequently, we have shown L§ = L; = L?, = L{ , and our
definition is correct.

It 1s easily verified that the group <V, +, —( ), Oy >, equipped with multiplication by
scalars generates the vector space V = <V, +, Oy, —( ), (t);er >

a __ ya __ga __gya _
(t+uk, = LH'“)"'E’ o L{rﬂb) -: (tab) Lr,,b © Lﬁ“b o

(tLy) + (uly),

WLy + Lg) = HLy, + Lpp) = L4 1p ) = Ly 1y =

= L) ?rﬂLf;a} = (tLy) + (ILE*;’:::) = tLy, + 1L,
()L = Lipy p = Ly 5y = tLyy,p = tuly),

The vector group < V, 4, —( ), Oy > acts on M transitively, since, for any x,y € M, Lix=y.
Let us show, that this action is simply transitive. Suppose that I;a = b. Using the proposition
1 we can write L, = L{,, and fa = Li»,a = b, or I7a = b. Finally we obtain Ly = L¢. Last
one shows, that there exists one and only one transformation in V, namely f = L?, such that

fa = b. Thus, our action 1s simply transitive.
Taking into account (4) and (5), we have the following Proposition 5.

5. Proposition. The vector group <V, +, —( ), Oy > acts on M simply transitively and keeps
the structure of a flat geoodular space invariant, that is,

folhof™ =Lf,fot.=1tof(f € V).

Moreover, any flat geoodular space can be considered as an affine space.
Remark. One can reconstruct the flat geoodular space knowing its vector space

V =< Va +1 _01 Osz (I)I'ER >

Indeed, if fx = y(f € V), then L = f and £,y = (tL})x.

6. Proposition. Given any simply transitive action of the vector group <V,+, —( ), Oy >
of some vector space V = <V, +,(), Oy, (t);cr > on a set M, one can construct in unique
manner a flat geoodular space M = <M, L, (w,),cgr > such one that its vector space is the
same as originally given.

Proof. For this purpose we use the construction from the remark above. If fx=y({f eV),
then f = L and 7,y = (zL})x. In such a way we get the structure

M — {:Ma L}(wf)i‘ER }: L(xiaiy) — Lily}wt‘(ﬂ:b) — I{Ib'
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Let us check up that M is a flat geoodular space. The identity (1) is obvious since L? o L{
and LY translate a into ¢, both, and coincide due to the simple transitivity. In the same way

Lo L*EI = L""+ ‘ and Ljo L7 = L¢ o L implies L; + 0= L; +,8 O commutativity p q=49q, p.

Analﬂgﬂusly, Lio(LgoLy) = (LjoLy)oL, 1mplles L; gt = Lﬁﬁ

':(q )= (p:q)j;r. Further, (f + u)yy = ((t + w)L)x = (L] + uli)x = (L)) [(uLy)x] =
(tLuxy —Ly juyy = txy':uxy (we represented 7L = L, then t,y = (tL)x = L ,x = q, thus
tLi = Lj ). Further, tx(y"'z) = (IL*"" . ).1: = (flLy + LiDx = Ly + tL)x = (Lp+ L )x =

(L¥ . !Iz)x = rxy t.z. Further (tu)xy = (()L)x = (tluliDx = (1L ) )x = (L; )X = Lityy.
And ﬁnally, Dy =0-L)x=Liz=Y.
Now we shall show that the second geoodular identity 1s satisfied. Analogously to the case

of the proposition 1 we can prove that Lj = LS <= d = Ljc(Va, b,c € M). Further

o+ that 1s, associativity

a __ gyc¢ @ __ ,J¢ a __ ya
Lb—Lgl,::}"th——tL g€=Lfﬂb_Lf¢'Lgﬂ=

L} ,c=tLyc= Lit.b=1tLb= Liot, =1t 0L,

(that is the second geoodular identity).
Thus any affine space can be considered as flat geoodular space.

Remark. We note that in presentation above given one can take an arbitrary skew field
instead of R. All results will be correct in that case.

For the first time the idea to treat affine spaces as universal algebras was announced as
hypothesis by Malcev [2]. But at that time the concept of a geoodular space did not exist.
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