CONTACT CR-PRODUCT OF A TRANS-SASAKIAN MANIFOLD

M. HASAN SHAHID, MOHD. SHOEB and A. SHARFUDDIN

Abstract. We obtain a necessary and sufficient condition for a CR-submanifold of a trans-Sasakian manifold to be contact CR-product in terms of fundamental tensor of Weingarten with respect to the normal section as well as to the canonical structure. We have also obtained some results on CR-submanifolds of α -Sasakian and β -Kenmotsu manifolds.

INTRODUCTION

In 1978, Bejancu introduced the notion of CR-submanifold of a Kaehler manifold [1]. Since then several papers on CR-submanifolds of Kaehler manifolds have been published. On the other hand, CR-submanifolds of Sasakian manifold have been studied by Kobayashi [14], J.S. Pak [16], Yano & Kon [17] and the present authors [9]. Moreover, CR-submanifolds of Kenmotsu manifold have been studied by Bejancu and Papaghuic [3]. One has the notion of α -Sasakian and β -Kenmotsu structure also [12]. In 1985, Oubina introduced a new class of almost contact Riemannian manifold known as trans-Sasakian manifold [15].

A trans-Sasakian manifold is a generalization of both α -Sasakian and β -Kenmotsu manifolds. One of the present authors has studied CR-submanifolds of trans-Sasakian manifolds ([10],[11]). In this paper we study contact CR-product of trans-Sasakian manifolds.

1. PRELIMINARIES

Let \bar{M} be an *m*-dimensional almost contact metric manifold with structure tensors (ϕ, ξ, η, g) . Then they satisfy [4]

$$\phi^2 = -1 + \eta(x)\xi, \ \eta(\xi) = 1, \ \phi\xi = 0, \ \eta(\xi) = 1$$
 (1.1)

$$g(\phi X, \phi Y) = g(X, Y) - \eta(X)\eta(Y) \tag{1.2}$$

where X, Y are vector fields on \overline{M} .

An almost contact metric structure (ϕ, ξ, η, g) on \bar{M} is called trans-Sasakian if [5]

$$(\bar{\nabla}_X \Phi)(Y) = \alpha \left\{ g(X, Y)\xi - \eta(Y)X \right\} + \beta \left\{ g(\Phi X, Y)\xi - \eta(Y)\Phi X \right\} \tag{1.3}$$

where α and β are non zero constants, $\overline{\nabla}$ is a Riemannian connection of g and we say that the trans-Sasakian structure is of type (α, β) . In particular, a trans-Sasakian manifold is normal. From the above formula, one easily obtains

$$\bar{\nabla}_X \xi = -\alpha \phi X + \beta \left\{ X - \eta(X) \xi \right\} \tag{1.4}$$

Let M be an n-dimensional isometrically immersed submanifold of \overline{M} and tangent to ξ . Let g be the metric tensor field on \overline{M} as well as the induced metric on M.

Definition. An *n*-dimensional Riemannian submanifold M of a trans-Sasakian manifold \overline{M} is called a CR-submanifold if ξ is tangent to M and there exists on M a differentiable distribution $D: x \to D_x \subset T_x M$ satisfying the following conditions:

- (i) D_x is invariant under ϕ i.e. ϕ $D_x \subset D_x$ for each $x \in M$
- (ii) the complementary orthogonal distribution $D^{\perp}: x \to D_x^{\perp} \subset T_x M$ is totally real under φ i.e. $\varphi D_x^{\perp} T_x^{\perp} M$ for each $x \in M$ where $T_x M$ and $T_x^{\perp} M$ are the tangent space and the normal space at $x \in M$, respectively.

If dim. $D_x^{\perp} = 0$ (resp. dim. $D_x = 0$) then the *CR*-submanifold is called an invariant (resp. totally real) submanifold. The pair (D, D^{\perp}) is called ξ -horizontal (ξ -vertical) if $\xi_x \in D_x$ (resp. $\xi_x \in D_x^{\perp}$) for each $x \in M$ [14].

We call a CR-submanifold M proper if it is neither invariant nor anti-invariant.

For a vector field X tangent to M, we put

$$\phi X = PX + FX \tag{1.5}$$

where PX and FX are the tangential and the normal components of ϕX respectively. Then P is an endomorphism of the tangent bundle TM and F is a normal-bundle valued 1-form on TM and they satisfy the condition

$$P^{2} = P, F^{2} = F \text{ and } PF = FP = 0$$

Also, for a vector field N normal to M, we put

$$\phi N = tN + fN \tag{1.6}$$

where tN (resp. fN) denotes the tangential (resp. normal) component of ϕN . Then f is an endomorphism of $T^{\perp}M$ and t is a tangent-bundle-valued 1-form on $T^{\perp}M$.

The Gauss-Weingarten formulas are given by

$$\bar{\nabla}_X Y = \nabla_X Y + h(X, Y), \ \bar{\nabla}_X N = -A_N X + \nabla_X^{\perp} N, \tag{1.7}$$

for $X, Y \in T(M)$, $N \in T^{\perp}(M)$ and where ∇ is the Riemannian connection on M, $\bar{\nabla}^{\perp}$ is the connection in the normal bundle, h is the second fundamental form of M, and A_N is the Weingarten endomorphism associated with N satisfying

$$g(A_N X, Y) = g(h(X, Y), N)$$
(1.8)

If we denote the orthogonal component of ϕD^{\perp} in $T^{\perp}M$ by μ , then we have

$$T^{\perp}M = \Phi D^{\perp} \oplus \mu.$$

It is obvious that $\phi \mu = \mu$.

2. BASIC LEMMAS

In this section we deduce some results on CR-submanifold of α -Sasakian and β -Kenmotsu manifolds. We also prepare certain lemmas without proof for later use.

In [10] we obtained

Lemma Let M be a CR-submanifold of a trans-Sasakian manifold \bar{M} . Then we have

$$P \nabla_X \Phi P Y - P A_{\phi F Y} X = \Phi P \nabla_X Y + \alpha g(X, Y) P \xi + \beta g(\Phi P X, Y) P \xi$$

$$-\alpha \eta(Y)PX - \beta \eta(Y) \Phi PX \tag{2.1}$$

$$Q\nabla_X \Phi PY - QA_{\phi FY}X = Bh(X,Y) + \{\beta g(\Phi FX,Y) + \alpha g(X,Y)\}F\xi - \alpha \eta(Y)FX \qquad (2.2)$$

$$h(X, \Phi PY) + \nabla_X^{\perp} \Phi FY = \Phi F \nabla_X Y + Ch(X, Y) - \beta \eta(Y) \Phi FX \tag{2.3}$$

for any $X, Y \in TM$.

From the above Lemma, we have

Lemma 2.1. Let M be a CR-submanifold of a α -Sasakian manifold \bar{M} . Then we have

$$P \nabla_X \Phi P Y - P A_{\phi F Y} X = \Phi P \nabla_X Y + \alpha \left\{ g(X, Y) P \xi - \eta(Y) P X \right\}$$
 (2.4)

$$F\nabla_X \Phi PY - QA_{\phi FY}X = Bh(X, Y) + \alpha \left\{ g(X, Y)F\xi - \eta(Y)FX \right\}$$
 (2.5)

$$h(X, \Phi PY) + \nabla_X^{\perp} \Phi FY = \Phi F \nabla_X Y + Ch(X, Y) \tag{2.6}$$

for any $X, Y \in TM$.

Lemma 2.2. Let M be a CR-submanifold of a β -Kenmotsu manifold \bar{M} . Then we have

$$P\nabla_X \Phi PY - PA_{\phi FY}X = \Phi P\nabla_X Y + \beta \left\{ g(\Phi PX, Y)P\xi - \eta(Y)\Phi PX \right\}$$
 (2.7)

$$F \nabla_X \Phi P Y - F A_{\phi O Y} X = B h(X, Y) + \beta g(\Phi F X, Y) Q \xi \tag{2.8}$$

$$h(X, \Phi PY) + \nabla_X^{\perp} \Phi FY = \Phi F \nabla_X Y + Ch(X, Y) - \beta \eta(Y) \Phi FX \tag{2.9}$$

for any $X, Y \in TM$.

Let us define the covariant differentiations of P and F as follows:

$$(\bar{\nabla}_X P)(Y) = \nabla_X P Y - P \nabla_X Y, \tag{2.10}$$

$$(\bar{\nabla}_X F)(Y) = \nabla_X^{\perp}(FY) - F\nabla_X Y, \tag{2.11}$$

for any vector fields X and Y tangent to M and any vector field N normal to M. The endomorphism P (resp. the 1-form F) is parallel if $\bar{\nabla}P = 0$ (resp. $\bar{\nabla}F = 0$).

Now from (1.3) and (1.5) \sim (1.8), one can easily prove the following:

Proposition 2.3. Let M be a CR-submanifold of a trans-Sasakian manifold \bar{M} . Then we have

$$(\bar{\nabla}_X P)(Y) = A_{FY}X + th(X, Y) + \alpha \{g(X, Y)\xi - \eta(Y)X\} + \beta \{g(PX, Y)\xi - \eta(Y)PX\}, (2.12)$$

$$(\bar{\nabla}_X F)(Y) = fh(X, Y) - h(X, PY) - \beta \eta(Y) FX \tag{2.13}$$

for all $X, Y \in TM$.

Thus using (2.10) and (2.11), equations (2.12) and (2.13) give

$$P\nabla_X Z = -A_{FZ}X - th(X, Z) + \alpha \left\{ \eta(Z)X - g(X, Z)\xi \right\} + \beta \left\{ \eta(Z)PX - g(PX, Z)\xi \right\} \quad (2.14)$$

and

$$F\nabla_X Z = \nabla_X^{\perp} F Z - fh(X, Z) - \beta \eta(Z) F Z X \tag{2.15}$$

for any *X* tangent to *M* and $Z \in D^{\perp}$.

From proposition 2.3, we have

Lemma 2.4. Let M be a CR-submanifold of a α -Sasakian manifold \bar{M} . Then we have

$$(\bar{\nabla}_X P)(Y) = A_{FY} X + th(X, Y) + \alpha \{ g(X, Y) \xi - \eta(Y) X \}$$
 (2.16)

$$(\bar{\nabla}_X F)(Y) = fh(X, Y) - h(X, PY) \tag{2.17}$$

for any $X, Y \in TM$.

Lemma 2.5. Let M be a CR-submanifold of a β -Kenmotsu manifold \bar{M} . Then we have

$$(\bar{\nabla}_X P)(Y) = A_{FY} X + th(X, Y) + \beta \{ g(PX, Y)\xi - \eta(Y)PX \}$$
 (2.18)

$$(\bar{\nabla}_X F)(Y) = fh(X, Y) - h(X, PY) - \beta \eta(Y) FX \tag{2.19}$$

for any $X, Y \in TM$.

Lemma [10] Let M be a ξ -horizontal CR-submanifold of a trans-Sasakian manifold \overline{M} . Then the horizontal distribution D is integrable if and only if

$$g(h(X, PY) - h(Y, PX), FZ) = 0 (2.20)$$

for any $X, Y \in D$ and $Z \in D^{\perp}$.

Lemma [11] Let M be a CR-submanifolds of a trans-Sasakian manifold \overline{M} . Then the leaf M^{\perp} of D^{\perp} is totally geodesic in M if and only if

$$g(h(X, W), FZ) + \alpha \eta(Y)g(W, Z) = 0$$
 (2.21)

for any $Y \in D$, and $W, Z \in D^{\perp}$.

Thus we obtain

Lemma (2.6) Let M be a CR-submanifold of a β -Kenmotsu manifold \overline{M} . The leaf M^{\perp} of D^{\perp} is totally geodesic in M if and only if

$$g(h(Y, W), FZ) = 0$$

for $Y \in D, W, Z \in D^{\perp}$.

Corollary (2.7) Let M be a ξ -vertical CR-submanifold of a trans-Sasakian manifold \overline{M} . Then the leaf M^{\perp} of D^{\perp} is totally geodesic in M if and only if

$$g(h(D, D^{\perp}), \phi D^{\perp}) = 0$$

Lemma [11] Let M be a CR-submanifold of a trans-Sasakian manifold \overline{M} . Then P is parallel if and only if

$$A_{FX}Y - A_{FY}X = \alpha \{ \eta(X)Y - \eta(Y)X \} + \beta \{ \eta(Y)PX - \eta(X)PY \}$$
 (2.22)

for any X, Y tangent to M.

From this, we have:

Lemma (2.8) Let M be a CR-submanifold of a α -Sasakian manifold \bar{M} . Then P is parallel if and only if

$$A_{FX}Y - A_{FY}X = \alpha \left\{ \eta(X)Y - \eta(Y)X \right\}$$

for any X, Y tangent to M.

Lemma (2.9) Let M be a CR-submanifold of a β -Kenmotsu manifold \bar{M} . Then P is parallel if and only if

$$A_{FX}Y - A_{FY}X = \beta \left\{ \eta(Y)PX - \eta(X)PY \right\}$$

for any X, Y tangent to M.

4. CONTACT CR-PRODUCT

Definition. A submanifold M of a trans-Sasakian manifold \overline{M} is called a contact CR-product if it is locally a Riemannian product of M^T and M^{\perp} , where M^T , M^{\perp} denote the leaves of the distributions D and D^{\perp} respectively.

We now prove the following:

Theorem 3.1. Let M be a ξ -horizontal CR-submanifold of a trans-Sasakian manifold \overline{M} . Then M is a contact CR-product if and only if

$$A_{\phi W}X + \alpha \eta(X)W = 0 \tag{3.1}$$

for any $X \in D$ and $W \in D^{\perp}$.

Proof. If a CR-submanifold M of a trans-Sasakian manifold \bar{M} is contact CR-product then from (2.21) we have

$$g(A_{\phi W}X, Z) + \alpha \eta(X)g(W, Z) = 0$$

for $X \in D$, $W, Z \in D^{\perp}$. From this we get

$$A_{\phi W}X + \alpha \eta(X)W \in D \tag{3.2}$$

for any $X \in D$, $W \in D^{\perp}$.

As D is totally geodesic in M, we have for $Y \in D$

$$g(A_{\phi W}X + \alpha \eta(X)W, Y) = g(h(X, Y), \phi W) = -g(\phi h(X, Y), W)$$

$$= -g(\phi \overline{\nabla}_X Y - \phi \nabla_X Y, W)$$

$$= -g(\phi \overline{\nabla}_X Y, W)$$

$$= g(\nabla_X \phi Y, W)$$

$$= 0$$

for any $X, Y \in D$ and $W \in D^{\perp}$.

This means

$$A_{\phi W}X + \alpha \eta(X)W \in D^{\perp} \tag{3.3}$$

Thus (3.1) follows form (3.2) & (3.3).

Conversely, equation (3.1) gives

$$g(h(X, Z) + \alpha \eta(X) \phi Z, \phi W) = 0$$

for any $X \in D$, $W, Z \in D^{\perp}$, which means that the leaf M^{\perp} of D^{\perp} is totally geodesic in M. Next, suppose M^{\perp} be the leaf of D. Then from (1.3) and (3.1), we have

$$g(\nabla_X Y, Z) = g(\bar{\nabla}_X Y, Z) = g(\varphi \bar{\nabla}_X Y, \varphi Z) = g(\bar{\nabla}_X \varphi Y, \varphi Z)$$
$$= g(h(X, \varphi Y), \varphi Z) = g(A_{\varphi Z} X, \varphi Y)$$
$$= -\alpha \eta(X) g(\varphi Y, Z) = 0$$

for any $X, Y \in D$ and $Z \in D^{\perp}$, i.e. the leaf M^{\perp} of D is totally geodesic in M. Thus the submanifold M is a contact CR-product.

Next we have

Theorem 3.2. A ξ -horizontal CR-submanifold of a trans-Sasakian manifold M is a contact CR-product if and only if P is parallel.

Proof. Let M be a CR-submanifold of a trans-Sasakian manifold \overline{M} and P be parallel. Then from (2.12) we get

$$A_{FY}X + th(X, Y) + \alpha \left\{ h(X, Y)\xi - \eta(Y)X \right\}$$
$$+\beta \left\{ g(PX, Y)\xi - \eta(Y)PX \right\} = 0 \tag{3.4}$$

for any vector fields X, Y tangent to M.

In (3.4), if the vector field Y is in D, then using the fact that FY = 0, (3.4) can be written as

$$th(X,Y) + \alpha \left\{ g(X,Y)\xi - \eta(Y)X \right\} + \beta \left\{ g(PX,Y)\xi - \eta(Y)PX \right\} = 0.$$

From this, we obtain

$$g(th(X,Y),Z) - \alpha \eta(Y)g(X,Z) - \beta \eta(Y)g(PX,Z) = 0$$

for any vector field X tangent to $M, Y \in D$ and $Z \in D^{\perp}$.

This equation means that

$$g(A_{\phi Z}, X) + \alpha \eta(Y)g(X, Z) = 0$$

which gives

$$A_{\phi Z}Y + \alpha \eta(Y)Z = 0$$

for any $Y \in D, Z \in D^{\perp}$.

Thus by virtue of Theorem 3.1 the above equation tells us that the submanifold M is a contact CR-product.

Conversely, in a contact CR-product of a trans-Sasakian manifold, it is trivial that the endomorphism P is parallel.

Theorem 3.3. Let M be a ξ -horizontal CR-submanifold of a trans-Sasakian manifold \overline{M} . Then the following statements are equivalent:

- (i)M is a contact CR-product
- $(ii)A_{\phi D^{\perp}} \Phi D + \alpha \eta(0)D^{\perp} = \{0\},\$
- $(iii)(\bar{\nabla}_U P)D \subset D^{\perp}, U \in TM,$
- $(iv)(\bar{\nabla}_U P)D^{\perp} \subset D^{\perp}, U \in TM.$

Proof. The proof of $(i) \iff (ii)$ is given in Theorem 3.1. Here we give an alternative proof of the same. Assume that (ii) holds. Then making an inner product of this with a tangent vector U we have for $X \in D, Z \in D^{\perp}$.

$$g(h(X,U),FZ) + \alpha \eta(X)g(U,Z) = 0$$
(3.5)

which shows that the leaf M^{\perp} of D^{\perp} is totally geodesic in M by virtue of lemma 2.6. Similarly, putting $U = \phi Y(Y \in D)$ in the above equation, we get

$$g(h(X, \Phi Y), FZ) = 0$$

for $X, Y \in D, Z \in D^{\perp}$.

Thus (2.20) holds and consequently D is integrable. Let M^T be a leaf of D. Then for $X, Y \in D, Z \in D^{\perp}$ and using (1.3), and (2.4) we have

$$g(Z, \nabla_Y \phi X) = -g(\nabla_Y Z, \phi X) = g(\phi \nabla_Y Z, X)$$
$$= g(P \nabla_Y Z, X) = g(A_{FZ} Y, X)$$
$$= g(h(X, Y), FZ) = 0$$

which shows that M^T is totally geodesic in M and hence M is a contact CR-product. Then we have $\nabla_U X \in D$ for $X \in D$ and $\nabla_U X \in D^{\perp}$ where $U \in TM$.

Now from (2.14) we obtain

$$P \nabla_{U} Z = -A_{FZ} U - th(U, Z) - \alpha g(U, Z) \xi$$

for any U tangent to M and $Z \in D^{\perp}$.

As $\phi X = PX$ for $X \in D$, using (3.6) we have

$$g(\nabla_U Z, X) = g(\varphi \nabla_U Z, \varphi X) + \eta(\nabla_U Z)\eta(X)$$

$$= g(P \nabla_U Z, PX) + \eta(\nabla_U Z)\eta(X)$$

$$= -g(A_{FZ}U, PX) - g(th(U, Z), PX)$$

$$- \alpha g(U, Z)g(\xi, PX) + \eta(\nabla_U Z)\eta(X)$$

$$= g(\varphi A_{FZ}U, X) + \eta(\nabla_U Z)\eta(X)$$

$$= g(\varphi A_{FZ}U, X) = g(PA_{FZ}U, X)$$

where we have used the fact that $\nabla_U Z \in D^{\perp}$ for $Z \in D^{\perp}$ and $\xi \in D$. Thus using the above equation for $X, Y \in D, Z \in D^{\perp}$ and $U \in TM$.

$$g(\phi A_{\phi Z}U + \alpha \eta(X)Z, Y) = g(\phi A_{\phi Z}U, Y) + \alpha \eta(X)g(Y, Z)$$
$$= g(\phi A_{\phi Z}U, Y)$$
$$= g(PA_{FZ}U, Y)$$
$$= g(\nabla_U Z, Y) = 0$$

Hence (ii) holds.

Next, from (3.6), we have

$$(\bar{\nabla}_U P)(Y) = th(U, Y) + \alpha \left\{ g(U, Y)\xi - \eta(Y)U \right\}$$
$$+\beta \left\{ g(PU, Y)\xi - \eta(Y)PU \right\}$$

for any $U \in TM, Y' \in D$. Then, if $Z \in D^{\perp}$ we have

$$g((\bar{\nabla}_U P)(Y), Z) = g(th(U, Y), Z) - \alpha \eta(Y)g(U, Z)$$
$$= -g(h(U, Y), FZ) - \alpha \eta(Y)g(U, Z).$$

Thus (ii) holds if and only if (iii) holds. The equivalence of (iii) and (iv) follows directly as $\nabla_U P$ is the skew symmetric operator, which completes the proof of the theorem.

Definition [18]: A submanifold *M* is called contact totally umbilical if

$$h(U, V) = (g(U, V) - \eta(U)\eta(V))N_0 + \eta(U)FV + \eta(V)FU$$

 N_0 being some normal vector field.

Then from corollary (2.7), we have

Proposition 3.4. If M is totally contact umbilical ξ -vertical CR-submanifold of a trans-Sasakian manifold \overline{M} , then the leaf M^{\perp} of D^{\perp} is totally geodesic in M.

We now prove

Proposition 3.5. Let M be a CR-submanifold of a trans-Sasakian manifold \bar{M} . Then P is parallel if and only if M is an anti-invariant submanifold.

Proof. Suppose P is parallel. Then taking $Y = \xi$ in (2.2) and using (1.5) we get

$$0 = (\bar{\nabla}_X P)(\xi) = \nabla_X P \xi - P \nabla_X \xi$$
$$= A_{F\xi} X + th(X, \xi) + \alpha \{ g(X, \xi) \xi - \eta(\xi) X \} + \beta \{ g(PX, \xi) \xi - \eta(\xi) P X \}$$

Applying P on the above equation, we get

$$PA_{F\xi}X + Pth(X, \xi) + \alpha \{g(X, \xi)P\xi - PX\} + \beta \{g(PX, \xi)P\xi - P^2X\} = 0$$

i.e.,
$$Pth(X, \xi) - \alpha PX - \beta P^2X = 0$$

Now using $h(X, \xi) = -\alpha \varphi FX$, $P_0F = F_0P = 0$ and $P^2 = P$, $F^2 = F$ ([10]), we get
$$(\alpha + \beta)PX = 0,$$

which implies that PX = 0. Hence M is an anti-invariant submanifold. The converse is trivial.

Finally, we have

Proposition 3.6. Let M be ξ -horizontal contact CR-product of a trans-Sasakian manifold \overline{M} . Then for unit vector $X \in D$ with $\eta(X) = 0$ and $Z \in D^{\perp}$, we have

- (a) $g(h(\nabla_X \phi X, Z), \phi Z) = -\alpha^2$
- (b) $g(h(\nabla_{\phi X}X, Z), \varphi Z) = \alpha^2$
- (c) $g(h(\phi X, \nabla_X Z), \phi Z) = 0$
- (d) $g(h(X, \nabla_{\phi X} Z), \phi Z) = 0$

Proof. As M is a ξ -horizontal contact CR-product so the leaf M^{\perp} of D^{\perp} is totally geodesic in M. Thus using (3.5), by virtue of (1.4), we have

$$g(h(\nabla_X \phi X, Z), \phi Z) = -\alpha \eta(\nabla_X \phi X) g(Z, Z)$$

$$= -\alpha g(\nabla_X \phi X, \xi)$$

$$= \alpha g(\nabla_X \xi, \phi X)$$

$$= \alpha g(\bar{\nabla}_X \xi, \phi X)$$

$$= \alpha g(-\alpha \phi X + \beta X, \phi X)$$

$$= -\alpha^2 g(\phi X, \phi X)$$

$$= -\alpha^2$$

Similarly we can prove (b), (c) and (d).

REFERENCES

- [1] A. BEJANCU, CR-submanifold of a Kaehler manifold, I Proc. Amer. Math. Soc. 69 (1978), 135-142.
- [2] A. BEJANCU, CR-submanifold of a Kaehler manifold II, Trans. Amer. Math. Soc. 250 (1979), 333-345.
- [3] A. BEJANCU and N. PAPAGHUIC, CR-submanifolds of Kenmotsu manifold, Rend Mat. (7) (1984) 4, 607-622.
- [4] D.E. BLAIR, Contact manifold in Riemannian geometry, Lecture Note in Math. Vol. 509, Springer Verlag N.Y. (1978).
- [5] D.E. BLAIR and J. OUBINA, On conformal and related changes of metric on the product of twoalmost contact metric manifold, Publication Mathematique. 34 (1990) 199-207.
- [6] B.Y. CHEN, CR-submanifold of a Kaehlarian manifold I, J. Differential Geometry, 16 (1981), 305-322.
- [7] B.Y. CHEN, CR-submanifold of a Kaehlarian manifold II, J. Differential Geometry, 16 (1981), 493-509.
- [8] B.Y. CHEN, Geometry of submanifolds, M. Dekker, New York, 1973.
- [9] M. HASAN SHAHID, A. SHARFUDDIN and S.I. HUSAIN, CR-submanifolds of a Sasa-kian manifold, Review, Research Fac. Sc. Yugoslavia 15 (1985) 203-178.
- [10] M. HASAN SHAHID, CR-submanifolds of a trans-Sasakian manifold, Indian J. Pure and Appl. Math. 22 (1991). 1007-1012.
- [11] M. HASAN SHAHID, CR-submanifolds of a trans-Sasakian manifold II, Indian J. Pure and Applied Maths. vol. 25, n. 3 (1994), 299-307.
- [12] D. JANSSENS and L. VANHECKE, Almost contact structures and curvatures, Kodai math. J. 4 (1981) 1-27.
- [13] K. KENMOTSU, A class of almost contact Riemannian manifold, Tohoku Math. J. 24 (1972), 93-103.
- [14] M. KOBAYASHI, CR-submanifold of a Sasakian manifold, Tensor N.S 35 (1981) 297-307.
- [15] J.A. OUBINA, New classes of almost contact metric structures, Publ. Math. Debrecen, 32 (1985) 187-193.
- [16] J.S. PAK, Contact 3 CR-submanifold, J. Korean Math. Soc. 19 (1982) 1-10.
- [17] K. YANO and M. KON, Contact CR-submanifolds, Kodai Math. J 5 (1982) 238-252.
- [18] K. YANO and M. KON, Generic submanifolds of Sasakian manifold, Kodai Math. J. 3 (1980), 163-196.

Received April 22, 1994
Department of Mathematics
Faculty of Natural Sciences
Jamia Millia Islamia
New Delhi - 110 025 - INDIA