THE 2-SUMMING NORM OF !:,j, COMPUTED WITH n VECTORS

A. HINRICHS

Abstract. The 2-summing norm of an n-dimensional Banach space computed with n vectors
is known to belong between n'/* / /2 and n'/ 2. It is shown that the 2-summing norm of
real I} computed with three vectors is 5/3. Some lower estimates for 2-summing norms of L,
computed with n vectors are stated, which are considerably better than the universal ones
and are based on the existence of certain block designs or Hadamard matrices.

1. INTRODUCTION

Let X be a finite dimensional (real or complex) Banach space and let X’ be its dual. The
2-summing norm 72(X) of X is defined as the smallest constant ¢ such that

m 1/2 " ]f?

>l <cesupd | Y [ a))? . ae X, |la <1
k=l k=1

for all positive integers m and all families x,...,x, € X. If the number of elements in the
above inequality is restricted to n we usually get another constant which we shall denote by
(X). It is known (see for instance [5]), that n' /2 /2 < m(X) < ma(X) = n'/2 if

dim(X) = n. For information on summing norms we also refer to [3].
As usual, for 1 < p < oc, we denote by [, the n-dimensional Banach space of all vectors

x = (x(k));-, of (real or complex) scalars with norm

" /P

p= (> b

k=1

x|

We sometimes write z';j(R) or [;(C) to indicate the field of scalars.

The paper deals with the quantities Tc[“”]([:,;). We will show that the general estimates stated
above can be improved in certain cases of this special situation.
It can be derived from the geometry of the maximal volume ellipsoid contained in the unit ball

of /) (which is actually a certain multiple of the standard euclidian ball), that " (1) = /n
in the complex case and for 2 < p < oo in the real case. The same holds in the real case for
I < p<2iff nis a Hadamard number, i.e. there exists a matrix A of order n with entries =1
that satisfies AA’ = nl,. Here /, is the unit matrix of order n. For convenience, we give an
analytical prove of this fact in section 2.

Theorem 3.1 gives a lower estimate for the remaining case of real scalars, 1 < p<2 and
n no Hadamard number. It is obtained from assumptions on the existence of certain designs.

Theorem 4.1 states that 75 (13) = 5/ 3.
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2. CASE OF MAXIMALITY

Proposition 2.1. Let n be a positive integer. Then

(i) iy (I(C)) = /n for1 < p < oo,
(ii) n”’(f”(ﬁ)) = /nfor2 < p < .
(iii) For 1 <p<2,@ ")(I”(R)) = /n if and only if n is a Hadamard number.

Proof. -Clearly, ’n:“”(!”) < /n in both the real and the complex case. Let 2 < p < oo and
choose x1,- .., X, as the standard bases of R" and C", respectively. Then we have

" 1/2
12
Dl ) = vn
k=1
and for arbitrary a € [,

" 1/2 n /2
(Zi(xmﬁ) - (ZIH(MF) < lall
k=1 k=]

Hence, 7," (%) > /.
Now, let us assume that 1 < p<2. In the case of complex scalars, we define vectors

X1y ey Xy DY

50 = exp(kt).

Then

" 1 /2
(Z ”XA”:,E,) —_— /241 /p
k=1

and, since the matrix (x({))x. ¢ 1 unitary,

n | /2 " n
(Z | {x, a)F) Z (Z I_{(E){J(E))
k=1 k=1 f=]

i 1 /2
| (Z |H(k)|2) =n'/?|lal|; < ”Ih}”ﬂ“ﬁ'f
k=1

Thus, ;" (1) > /1.

The same computation applies for real scalars, if we choose the vectors x, . .., x,; such that
(xi(£)) 1s a Hadamard matrix.

Finally, we have to show that ?t{"}(!;j) = /n for real scalars and 1 < p <2 implies that n is
a Hadamard number. The assumption enables us to find vectors xi, ..., x, € [, such that

" 1/2
(zum@) IRVE o

k=
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and
5

n 1/2
(Z | (X, a>|3) <n fp”“”;:-’- (2)
k=1

for a € I),. For fixed {, we choose a € [, with ||a||,» = 1 and ||x¢||, = {x¢, a).

p'

Therefore, | »
|xellp < (Z (-’fkmffﬂz) <n'/r
k=1

Now, (1) implies ||x¢||, = n'/Pfort=1,...,n.
Let us denote the set {—1, 1} by D,,. It is a well-known fact that

VE
l >
(g D> ff)') = ||x]l2 (3)

de D,

/ . :
for any n-dimensional vector x. Since ||d||,r = n'/? for d € D,, the following chain of
inequalities holds:

7

n 1/2 " 1/2
(z uxknﬁ) < allrm1/ (z uxkug) _
k=1 k=1
1 " 1/2
n! 7S (2— )2 1<xﬂ-.d>3) <

deD, k=1

2
HI [p+1/2

|

9

, 1/2
1 ™ I"'-. !
| [ p—1/2 2/p.2/p 1 /p+1/2
< n /p (2”. _)_ Z n-'fn ) < n i

deD, k=l

Hence, we actually have equalities. This implies

eell, = ' 777 2l fork=1,...,n

and
¥

. 1 /2
(Z(fﬁ;,d)z) =n ford e D,.
k=1

By ([2], Theorem 16), we conclude from the first equation jx; ()] = 1 fork, (= 1,...,n.
Now, let ] <i<j<nandx € R". Let y1 € R*"~! be the vector

(x(1),...,x( — 1), x(0) £ x(),x@ + 1),...,x¢ — D), x( + 1),...,x(n)).
By (3), we have

1 , e »
21 2 (nd)’ = =T > {yerd) = |ly+llz = [lxllz + 2x(Dx().
d:i;lezt?.::j] dEDH—I
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Analogously we get with y_

1 2 2 Nl 3
o S ) = [ - 20)

dEDy,
i iy f)

Then

n " /
4wl =) -2—}_—, D g, d)? - % > (xd) | =0.

k: I A"= I IIEI.}" I';EI‘}”-
dtir=dij) PGS0

Thus, the matrix (x;(£)) 1s Hadamard.

Remark. This proof follows similar lines as a proof in [4].

3. LOWER ESTIMATES

From now we only deal with real scalars, 1 < p <2 and non-Hadamard numbers n. We
describe a method to obtain a lower estimate of ﬁg”(f;;) using certain designs.

We shall look for orthonormal systems xy, . .., x, € R" such that all x; are ‘close’ to vectors
with coordinates +n~17/2. Let us assume that the coordinates of x,,...,x, take only two
values, say x and y. Furthermore, x and y shall occur k and n — k times, respectively. To
handle the orthogonality conditions, we additionally require the following relations for every
pair of vectors x; and x; with i #

card{{: x;({) = x; () =x} = A
card{{: x;(Q)=x() =y} = u
card{l : x;({) #x ()} = v,

where A, 1L and v > 0 are certain nonnegative integers. Let us regard the matrix A = (x;;),i =
1,...,n,j=1,...,ndefined by

’

Lif x;(j) = x
0if I;(j) - Y.

9

D{,'j:‘i

Then we meet a well-known combinatorial concept: A is the incidence matrix of a symmetric
balanced incomplete block design. For this concept see e.g. [1] or [6]. We only need the fact
that A, . and v are determined by n and k:

k(= 1)

n— 1

A w=2k—=A), v=n—A—p.

Of course, n — 1 must be a factor of k(k — 1) ([1] p. 126). To formulate the next theorem let
us call such such a design an (n, k)-design.
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Theorem 3.1. Let n be a positive integer and 1 < p<2. Assume that there exists an
(n, k)-design. Let x,y be solutions of the system

—

kx* + (n — k)y?
A + vy +

|
=

where A = ‘E‘Ef:]”, u=2k—-A),v=n—A— W Then

klx|” + (n — k)|y|” o
nl—r/2 *

R = a2

Proof. Let us regard the incidence matrix A = («;) of the given (1, k)-design. We define

ip ya ’ (]
vectors Xy, ..., X, € [, by

( oy
xif ay == 1

xi(f) = <

¥ if iy == 0

.
From the assumptions on x and y one easily derives that the matrix (x;(j)) 1s orthogonal.
Therefore, we compute for arbitrary a € [

1/2

" /2 1
D lwa) | =D la@* ) = llallz < n'/P7H ¥ lally.
Furthermore,
N | XE
STlalE]  =n 2w + - o

i=|
This proves the theorem.

To illustrate the theorem let us state some examples. It is easy to show (see again [1] p.
239) that n + | is a Hadamard number iff there exists an (n, ”E[ )-design. Then

|
XY = —\vyn+2-=-2vn-+1
7

| (2 —=n4+24+2n—-1)n+1

1‘ — e

1 n-+ 1

satisfy the equations of the theorem. Thus,

x{? + (n + 1)|_v|"’) e

nYy s m 2 (”_ 1)
T[El }({;;) 2 ”]f- ( 2”1—,”;’2

The case n = 3 is a special example for this situation. Then & = 1 and we have to consider
the matrix
/ XYy

yXxy

\yyX
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The equations
x> 4+2y* =1 and 2xy4+y* =0

are satisfied forx = 1 /3 and y = —2 /3. This yields 7 3}(33) > 5 /3. We prove in the next
section that this is the exact value. A good estimate for the next interesting case n = 5 18
provided by the trivial (5,1)-design, which gives the matrix

[XYYYY)
YXYyy
YYXyy
YYYyXy
\yyyyx/

Hencex=3/5,y=—2/5 and

) N\ L/ P
s (Y12) 1
- 5 5

In view of section 2, it is rather clear that the behaviour of the sequence ’ﬂ.'z (l”) 1S signifl-
cantly influenced by the frequency of Hadamard numbers.
If we choose the positive integer k such that 2¢ < n < 2%*! then already the Hadamard-Walsh
matrices for powers of 2 provide us with the Tomczak-Jaegermann bound for /:

TTZ(!;;) — HIJIE{ZLQ-I—”!?- — \/E’ﬂ‘{zk](fg ) < \/_TT”]()fH

If even the Hadamard conjecture were true, i.e. apart from 1 and 2 exactly the multiplies of 4
are Hadamard, then we would even have that \/n — 'I’T{z”](f”) tends to zero (with order n=1/2),

4. THE CASE OF REAL /]

Theorem 4.1. For real scalars 75’ (B) = 5/ 3.

Proof. We already obtained 75 }(f‘) > 5 /3. The reverse inequality is proved using a definite
asymmetry which we pm::luc:e at first. Let x1, X2, X3 € 53 It remains to show that

Skl sy s Z

loo<1

To this end, we arrange these vectors as a matrix
x1(1) x1(2) x1(3)

x2(1) x2(2) x2(3)
x3(1) x3(2) x3(3)
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Observe that both sides of the above inequality are invariant under the following manipula-
tions:

¢ permutation of rows or columns

¢ multiplication of a row or a column by -1.
Therefore, it 1s enough to verify the inequality for the cases

] | |
| | | |

- | ++ - |,
| — + — +

where + and - means that x;(j) = 0 and x;(j) < 0, respectively.
Now, let

ay=(1,1,1),a2 =(1,1,-D,a3 = (1,-1,1),a0 = (1, -1, -1) €

and

3
fy =3 (x,a)* + (x,a0)’
j=1

for x € I;. We show that
76 > el
for every vector x = (x(1), x(2), x(3)) which satisfies one of the following conditions:
@Hx(1) 20 x(2)=>20 xB3)=>0

G)x(1) >0 x(2)>20 x(3)<0
N x(1) >0 x(2)<0 x(3)>0.

Since f(x') = f(x) for x' = (x(1), x(3), x(2)), case (iii) reduces to case (i1). Let us treat case
(1). By the Cauchy-Schwarz inequality,

Xl = &) = (x,a2) + (x,a3) — (x,q0)
11 1\'/? 1 /2
< (ptzts) (Gma)+Gma) +3maw?)"
Hence ,
f&) = 3l + 5 (B a2y’ + Bx, a3))” + 3(x, a0)?)
> 2l
— 5 -
Now, let us assume (11). Again by the Cauchy-Schwarz inequality,
Ixl = (xa2) = (x,a1) — (x,a3) + (x,q0)
| 1 1 1/2

1/2
< (31 "3z 5) (B¢x,@1))* + (3(x, a3))” + 3(x,a0)°)
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Hence

3P + 5 (Bl an))? + (3, ) +3(x,a0)’)

18, s
>
R

We define the function g in [ by

J(x)

3
g(a) := Z(Xf,ﬂ)z
i=1

Clearly, we have

3
|
sup (@) > 7o : 3§ 8@+ slan) | = 75 S
=1

lall co< 1 =

But now we are done:

Z “-fo2 ~ 18 Zf(«":e) < - Sup Z -xnﬂ}z

9 lalloo<1
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