SOME COMMUTATIVITY THEOREMS THROUGH A STREB’S CLASSIFICATION
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Abstract. In the present paper we investigate commutativity of rings with unity satisfying
any one of the properties {1 — (x"y)g(x™y)} [x"y — XFx"y)x*, x] {1 — X" Wh(X"y)} = 0,
{1 = "y)g(c™y)} x™ — X Femy) x5, x] {1 — ")h("y)} = 0, X'[x5, vl = gWx, f()] h()
and [X*, yIx' = g(y) [x, fFO)1(Y), for some f(X) in X*Z[X) and g(X), h(X) in Z[X], wherem > 0,
r>0,82>0 k>0, t>0 are non-negative integers. Finally, under different appropriate
constraints on commutators, commutativity of R has been established.

1. INTRODUCTION

Throughout the present paper R will represent an associative ring (may be without unity 1),
Z(R) the center of R, N(R) the set of nilpotent elements of R and C(R) the commutator ideal
of R. The symbol [x, y] will denote the commutator xy — yx. As usual Z[X] is the totality
of polynomials in X with coefficients in Z, the ring of integers. Consider the following ring
properties:

(P)) For all x, y in R there exist polynomials f(X) in X?Z[X] and g(X), h(X) in XZ[X] such
that {1 — g(x"y)} [X"y — X"f"y)x*, x] {1 — h(xX"y)} = 0, wherem > 0,r > 0,5 > 0 are
fixed integers.

(P))* For all x,y in R there exist integers m > 0, » > 0, s > 0 and polynomials f(X) in
X?Z[X] and g(X), h(X) in XZ[X] such that {1 — g(x"y)} [x"'y —x"f(x"'y)x*, x] {1 = h(x"'y)} = 0.

(P>) For all x, y in R there exist polynomials f(X) in X2Z[X] and g(X), h(X) in XZ[X] such
that {1 — g(x"y)} ™ — X F(X"y) x*,x] {1 = h(x"y)} = 0, where m > 0, r > 0, s > 0 are
fixed integers.

(P»)* For all x,y in R there exist integers m > 0, r > 0, s > 0 and polynomials f(X) in
X?Z[X] and g(X), h(X) in XZ[X] such that { | —g(x"'y)} [y —x"f ("y) x*, x] {1 =h(x"y)} = 0.

(P3) For all y in R there exist polynomials f(X) in X>Z1X] and g(X), i(X) in Z[X] such that
XXMyl = g(y) [x, (O] Ay) and X' [x", y] = g(») |x,f(W)] h(y), for all x in R, where ¢t > 1,
m > 1,n 2> 1 are fixed integers with (m, n) = 1.

(P3)* For all x,y in R there exist integers + > 1, m > 1, n > 1 with (m,n) = 1 and
polynomials f(X) in X*Z[X], g(X), h(X) in Z(X) such that xX'[x",y] = g(») [x,f(»] h(y) and
XXyl = g(y) [x,fO]1Ay).

(P4) For all y in R there exist polynomials f(X) in X>Z[X], g(X), h(X) in Z[X] such that
X", yIx' = g(y) [x,f()] h(y) and [x", y]x' = g(¥)[x,f(¥)] A(y), for all x in R, where t > 1,
m > |, n > 1 are fixed integers with (im, n) = 1.

(P,)* For all x,y in R there exist integers + > |, m > 1, n = | with (m,n) = 1 and
polynomials f(X) 1n X*Z[X], g(X), h(X) in Z[X] such that [x", y]x' = g [x,f(M)IA(y) and
[, y1x' = gO)lx, f(M]AY).

(CH) For each x, y in R there exist f(X), g(X) in X>Z[X] such that [x — f(x), y — g(y)] = 0.

Recently in an attempt to generalize famous Jacobson’s "x"* = x theorem" Searcéid and
MacHale [16] established commutativity of ring satisfying the condition (xy)"“") = xy with
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n(x, y) > 1. It is natural to consider the related ring properties like xy = p(xy) or xy = p(yx),
where p(X) € X?Z[X]. Tominaga and Yaqub [18, Theorem 2] obtained commutativity
results for such rings. Further, Bell et al. (cf. [4, Theorem 2], [5, Theorem 1]) studied
the commutativity of the rings with unity 1 satistying polynomial identities of the form
[xy — p(xy),x] = 0 and [xy — ¢g(xy), x] = 0, where p(X), ¢(X) € X>Z[X]. Our first purpose
in the present paper is to establish commutativity of rings with unity | satisfying either of
the properties (p;) or (P»). Next we shall consider the properties (P)* and (P,)", where
integral exponents are allowed to vary with the pair of ring’s elements x,y and ring also
satisfies the Chacron’s condition (CH). In fact our theorems generalize many known results
to mention a few [4, Theorem 2], |5, Theorem 1], [13 Theorem 1 (i)], [16, Theorem] and
[18, Theorem] etc. Our second aim is to investigate commutativity of rings with unity 1
satisfying any one of the conditions (P3), (Py), (P3)™ and (P4)*. There are numerous results
in the existing literature concerning commutativity of rings with unity 1 satisfying certain
special cases of these conditions (cf. [1, Theorem], {3, Theorems 5 & 6], |7, Theorem B],
[10, Theorem 1], [14, Theorem] and [15, Theorems 1&2]). In the present paper we shall
confine mainly our attention to the case when polynomials in the underlying conditions are
varying with the pair of ring’s elements x, y, which offer simultaneous extensions of these
results for rings with unity 1. Finally, some related cases of conditions (P3) and (P4) have
been considered and commutativity of rings has been investigated under appropriate torsion
restrictions on commutators. The method of the proofs presented in the last section 1s based
on some iteration techniques developed by Tong [19].

2. COMMUTATIVITY OF RINGS WITH UNITY

Theorem 2.1. Let R be a ring with unity 1 satisfying any one of the properties (Py) and (P»).
Then R is commutative (and conversely).

Theorem 2.2. Let R be a ring with unity 1 satisfying any one of the properties (Px) and (Py).
Then R is commutative (and conversely).
In order to develop the proofs of the above theorem, we consider the following types of
rings.
GF(p)y GF(p) " e
(a)) ( o 0 ) , P a prime,

0 GF .
@ (j ¢ rgﬂ), p a prime.

GF(p)  GF(p)
(@) (7 GF(p)

() Mo(K) = { (&
morphism o.

(¢) A non-commutative division ring.

(d) S = < 1 >+T,T is a non-commutative radical subring of S.

(e) S = <1 >+4T,7T is a non-commutative subring of S such that T[T, 7] = [T, T]T = 0.

) . P a prime.

; ) /a,p e K},, where K i1s a finite field with a non-trivial auto-

lat

Recently, Streb [17] classified non-commutative rings, which has been used effectively as
a tool by several authors to prove a number of commutativity theorems (ct.|2], [11], [12] &
[13]). It follows easily from the proof of [17, Corollary 1] that if R 1S a non-commutative
ring with unity 1, then there exists a factorsubring of R which is of type (a), (&), (¢), (d) or (e).
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This observation yields the following result which plays the key role in our subsequent study
(cf. [13, Lemma 1}).

Lemma 2.1. Let P be a ring property which is inherited by factor subrings. If no rings of type
(@), (b), (0), (d) or (e) satisfy P, then every ring with unity 1 and satisfying P is commutative.

For easy reference we present the following lemmas, which are essentially proved in [8],
[9] and [11, Corollary 1].

Lemma 2.2. Let R be a ring in which for every x,y in R, there exists polynomial f(X) in
X2Z[X] such that [x — f(x),y] = 0, then R is commutative.

Lemma 2.3. Let f be a polynomial in non-commuting indeterminates x,xa, ... ,X, with
relatively prime integral coefficients. Then the following are equivalent.

(i) For any ring R satisfying the polynomial identity f = 0, C(R) 1s a nil ideal.

(if) For every prime p, (GF(p)), fails to satisty f = 0,

(iii) Every semi prime ring satisfying f = 0 is commutative.

Lemma 2.4. Suppose that a ring R with unity 1 satisfies (CH). If R is non-commutative, then
there exists a factorsubring of R which is of type (a) or (D).
Now we prove the following:

Lemma 2.5. Let R be a division ring satisfying any one of the properties (Py) and (P»). Then
R is commutative.

Proof. Suppose that R satisfies (P}). If i is a unitin R, then for every y in R choose polynomial
FX) in X*Z[X]e(X), h(X) in XZ[X] such that {1 — g(u"u="y)} [W"u™"y—u'f (u"uy™"y) 1, u]
{1 = h"u™")}=0—ie {1 —gO} y—uf (W' ul {1 =h(y)} = 0. This implies that
either | — g(») =0, 1 — A(y) =0or [y — u'f(y)u’, u] = 0. In the first two cases we find that
y —yg(y) = 0, y — ya(y) = 0, and R is commutative by Lemma 2.2. Hence, we assume that
for unit « and arbitrary y,

[y — ' FOue, u] = 0, where f(X) € X*Z|X). 2. 1)

Now choose polynominal f(X) in X 2Z[X] such that |y — u~"f(M)u~*, u~'] = 0. This implies
that [y — u™'f(0u""*,u]l =0—i.e.

' [, vt = [u, f(v)). (2.2)

Again in view of (2.1), we can choose the polynomial p(X) in X?Z[X] such that [f(y) —
W p(FON), 1] = 0, Thus for g(X) = p(f(X)) € X*Z[X], we find that

(10, f()] = w' [, g(3)]ur’. (2.3)

Compare (2.2) and (2.3), to get u”[u, ylu' = " [u, g(y)]u*. But since u 1s a unit in R, hence
[,y — g(y)] = O for g(X) € X*Z|X] Hence, again by Lemma 2.2, R is commutative.

Further, if R satisfies (P»), then let # be a unit in R and for arbitrary element y in R, we find
polynomials f(X) 1n X2Z[X], e(X), h(X) in XZ[X] such that {1 — g(u™u~"y)} [u="yu" — u'f
"y~ it u] {1 =h"u="y)} = 0—i.e. {1 — g} lu™"yu" —u'f(y) u*, u] {1 —h(y)} = 0.
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This implies that either y — yg(y) = 0, y — yh(y) = 0 or [u™"yu" — o’ f(y)u’,u] = 0. In the
first two cases R is commutative by Herstein’s theorem. Henceforth, we shall assume the
remaining possibility that (™" yu" — u'f(y)r',u]l =0 —i.e.

[, y]u = " [u, fO))’, where f(X) € X*Z[X]. (2.4)

Now, we choose polynomial f(X) in X>Z[X] such that =) y]u™ = gt [u=t fO0)] u™,
which yields that

", yet = (u, O] (2.5)

In view of (2.4), we can find a polynomial p(X) In X2Z[X] such that [u, f(y)]u™
u [, p(F))] u®. Thus, for ¢(X) = p(f(X)) in x?Z[X1, (2.5) yields that u"™" [u, ylu® =
W (u, g(y)]i’. But since u is a unit, hence we find that [u,y — ¢(y)] = 0. Again using
Lemma 2.2, we get the required result.

Lemma 2.6. Lett > 1,k > | be fixed integers and R a ring with unity I in which for every
y in R there exist polynomials f(X) in X?Z[X) and g(X), h(X) in Z|X] such that either X' (x5 ¥]
= o(y) [x,f()] h(¥) or |25, v] x' = g(y) [x,f(y), for all x in R. Then C(R) C N(R).

Proof. Suppose that R satisfies x'[x*, y] = g(3) [x,f()] h(y). Replace x by 1 + x in the given
property, to get (1 4+x)" [(1 +x)*, ¥] = x'[x*, ). This is a polynomial identity and x = ej2 — e,
y = ¢, fail to satisfy this equality in (GF(p))2, p a prime. Hence by Lemma 2.3, R has nil
commutator ideal.

A similar arguments can be used to obtain the result if R satisfies the property [, ylx' = g(y)
[x, fO)] R (y).

Proof of Theorem 2.1. Let R be aring of the type («). If R satisfies (£), thenin (GF(p))2, pa
prime, we see that {1 —g(e)1¢12)} [en1e12 —enf (enen) en,enl {1 —h(eyen)} = —epp #0
for every f(X) € X*Z[X], g(X), (X) € XZ[X].

If R satisfies (P2), then {1 — g(enen)} (€2 — enflenein) exn,en] {1 — hlexen)}
= ¢15 # 0 for every f(X) in X*Z[X] and g(X), /(X) in XZ[X]. Thus, in both the cases we find
a contradiction and hence, no rings of type («) satisty () and (P»).

Next, consider the ring M,(K), a ring of type (b). If R satisfies (P;), then choose x =

(ﬁ Hﬂ”) (a # o(a)),y = (H [i}) such that {1 — g(™y)} [x"y — XF("y) x*,x] {1 — h (&™)}

= a"(o(a) — a) e;» # 0 for all f/(X) n X?Z[X) and g(X), i(X) in XZ[X]. Also, if R satisfies
(P,), then with the same choice of x and y, we find that {1 — g(x™y) [wx" — X'f (x"'y) X, x]
{1 —hx"y)} = (o(a) — a) (o(a))" e12 # 0. Hence, in both the cases, R can not be of type
(b). Further, if R is of type (¢), then in view of Lemma 2.5, we find a contradiction.

Now suppose that R is of type (d). If R satisfies either of the properties (P)) or (£>), then a
careful scrutiny of the proof of Lemma 2.5 yields that there exist unit « and arbitrary y in R
such that either y — yg(y) = 0,y — yh(y) = O or [u,y — g(y)] = O for all ¢(X) in X*Z[X] and
2(X), h(X) in XZ[X]. Now in the present case if #;, t» € 7, then # = 1 + £, 1$ a unit and there
exist g(X) € X*Z[X] and g(X), h(X) in XZ[X] such that either o — fg(t2) = 0,1 — 12h(12)
= Qor [t» — g(t), | + 1] = 0. Hence, in every case T is commutative by Lemma 2.2, a
contradiction.
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Finally, assume that R is of type (e). Let t;,#, € T such that (¢, 2] 7 0. If R satisfies (P),
then there exist polynomials f(X) in X*Z[X] and g(X), h(X) in XZ[X] such that

0 = {1 —g(+t)")}HA+1)"t2—
(1 +0) (A + )"0 +6), (1 +){1 = k(1 +1)")}
= {1 — g((1 + )"t} + 1)"t2, 1 +1,]{1 = A((1 + 1))"' 1)}
= {1 —g((1 + )"} +1)"[t2, 1 ]{1 — h((1 + 1))"22)}
= [f2, 1],

a contradiction. Similarly, we get a contradiction if R satisfies (P,).
Thus we have seen that no rings of type (@), (b), (¢), (d) or (e) satisfy (P,) and (P») and by
Lemma 2.1, R 1s commutative.

Proof of Theorem 2.2. In view of Lemma 2.3 and 2.6, R can not be of type (¢) or (d).
Now, if R is assumed to be of type (a), then in (GF(p))», p a prime, we find that e;,[e;;, €3]
—g(ep)len, flen)] h(en) = en # 0, for all £(X) in X*Z[X] and g(X), h(X) in Z[X]. Thus in
both the cases we find a contradiction.

Next, consider the ring M,(k), a ring of type (b). Let R satisfy (P3). Then note that
N(M,(K)) = Ke>. Thus for any a in N(M,(K)) and arbitrary unit « there exist polynomials
F(X)in X*Z[X] and g(X), h(X) in Z[X] such that u'[u", a] — g(a) [u,f(a)]h(a) = 0. But ¢ 2 =
and u be a unit, hence [, a] = 0. Similary, it can also be shown that [¢", «] = 0. But, since
(m,n) = 1, we find that [u,a] = 0. Hence for non-central element @ = ¢)» and arbitrary
unit # we get [u,e;»2] = 0, which forces a contradiction that ¢, 1s central. Using a similar
arguments we get a contradiction, if R satisfies (Py).

Finally suppose that R is a ring of type (¢). Let R satisfy (P3). Assume that r),#; € T such
that [#;,7] # 0. Then there exist polynomials f(X) in X?Z[X] and g(X), h(X) in Z[X] such
that m[#;, ] = (1 + 1) [(1 + )", ] = g(12) [1 + £1,f(r2)] h(r2) = 0. Similarly, 1t can be
shown that n[t), ;] = 0. This implies that [¢#;, 2] = 0, a contradiction. Similarly, we can find
a contradiction if R satisfies (Ps).

Thus no rings of type (a), (b), (¢), (d) or (e) satisfy (P3) and (P4) and hence by Lemma 2.1,
R 1s a commutative.

a b c “
Remark 2.1. Let R = { (U a d ) /a,b,c,d € GF(2) ;. Then R 1s a non-commutative
0O 0 a )

ring with unity, and it can be easily verified that for n = 4, R satisfies the conditions x'[x", y]
= ¥[x,y']y* and [x", y]x' = y"[x, "]y’ for any integers ¢t > O, r > 0, s = 0. This shows that
in the hypotheses of Theorem 2.2, the existence of both the conditions in the properties (P3)
and (p4) is not superfluous.

A careful scrutiny of the proofs of Theorems 2.1 and 2.2 reveals that if R satisfies any one
of the properties (P))*, (P2)*, (P3)*, and (P4)* then in every case R has no factorsubrings of
type (a) or (b). Hence, combining this fact with the Lemma 2.4, we have the following:

Theorem 2.3. Let R be a ring with unity 1 satisfying (CH). Suppose, further that R satisfies
any one of the properties (P,)* and (P2)*. Then R is commutative (and conversely).
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Theorem 2.4. Let R be a ring with unity | satisfying (CH). Suppose further that R satisfies
any one of the properties (P3)" and (P4)*. Then R is commutative (and conversely).

3. COMMUTATIVITY OF TORSION-FREE RINGS

In view of Remark 2.1, 1t 1s natural to ask that what additional hypothesis is required to
prove the commutativity of ring R, if we merely assume x'[x", v] = ¢(¥) [x, /()] [x, f()] h(y)
and [x7, ylx' = g(¥)[x,f(¥)]a(y) in the properties (P3) and (P;) respectively. To this end, it
1s tempting to conjecture that an m-torsion free ring with unity | satisfying any one of the
above properties must be commutative. However, under certain appropriate constraints on
the commutators involved in the underlying conditions, we can establish some interesting
cases of the conjecture. In fact, we shall consider the following related ring properties:

(Ps) For all y in R there exist polynomials f(X), g(X), A(X) in Z[X] such that [x", y"]
= e(Mx,f()]A(y) for all x in R, where m > 1, n > 1 are fixed integers.

(Pg) For all y in R there exist polynomials f(X), ¢(X), A(X) in Z[ X] such that either x"'[x, y"]
= 2(y) [x,f()] h(y) or [x,y"] ¥ = ¢(y) [x,f(¥)] h(y) for all x in R, where m > 1, n > 1 are
fixed integers.

(P7) For all y in R there exist polynomials f(X), g(X), #(X) in Z| X]| such that either y"[x", v]
= g(y) [x,f ()] A(y) or [x",y] ¥y' = g(y) [x,f(y)] A(y) for all x in R, where m>1,n > 0O are
fixed integers.

To establish the commutativity of ring R with the above properties we shall assume some
extra conditions on commutators in R, like the following property.

Q(d) For all x,y 1n R, d|[x,y] = O 1implies |x, y] = (), where d 1s a positive integer.

Our method of the proof uses some iteration techniques, which 1s based on the following
lemma due to Tong [19, Lemma 1].

Lemma 3.1. Let R be a ring with unity I, and Ij(x) = x". ifk > 1, let [[(x) = I, _,(x+ 1)
—I,_ ) forallxinR. Then I _(x)=1/2(r—=1)rl 4+ rlx; I'(x) = rl and [:[(x) =0 forj>r.

Theorem 3.1. Let R be a ring with unity 1 satisfying any one of the properties (Ps) — — —
— — (P7). Further, if R satisfies Q((max{m, n})!), then R is commutative.

Proof. Suppose that R satisfies (Ps). First we shall apply iteration to x”'. Following notations
of Lemma 3.1, we set [,(x) = ['(x), forp = 0,1,2,3,.......... Then property (Ps) can be
written as

[Io(x), y"'] = gO)x, FONA(Y). (3. 1)

Replace x by x + 1 in the above expression and use Lemma 3.1, to get [[o(x) + 1) (x), y"]
= g¢(y)[x,f(¥)] h(y), and hence in view of (3.1), whe have

[7,(x),y"] = O for all x, yin R, (3.2)

Againreplacing x by x+1 and using Lemma 3.1, we obtain [/, (x+ 1), y*] = [[1(x)+ 1 (x), y"]
= (0. This in view of (3.2) implies that [/>(x),y"] = 0. Thus it is now clear that replacing x
by x + I and iterating (/m — 1)-times, we have [/,,—;(x),y"'] = 0— i.e.m![x,y"] = 0. Finally,
replacing y by y + 1 and using the same techniques as above, we get m!n! [x, y] = 0, and thus
by the property Q((max{m,n})!), we establish the commutativity of R.
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If R satisfies the property (Pg), then using the above notations we find that either Jo(x)[x, y"]
= g(y) [x,fO)] A(y) or [x,¥"] lh(x) = gx) [x,f()] h(y). Replacing x by x + | and using
Lemma 3.1 we find that either 7,(x) [x,y"] = 0 or [x,y"] I,(x) = 0, proceeding in the same
way, we finally get either 7,,(x) [x,y"] = O or [x,y"] 1,,(x) = 0. Hence, 1n both the cases we
have m![x, y'] = 0. Now, using a similar technique of replacing y by y+ 1 and iterating (n — 1)
-times we find that m'n![x, y] = 0, and the property Q((max{m, n})!) yields the commutativity
of R.

Similarly in the remaining case of (P7), we can easily get the required result.
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