A QUANTIZATION OF DIFFUSION PROCESSES ON MANIFOLDS

Y.G. LU

Abstract. Via the well known chaos decomposition with respect to the multidimensional
Brownian motion, we give a possible quantization of a diffusion process (in particular,
Brownian motion) on a Riemannian manifold. The quantized diffusion process on Riemannian
manifold is a quantum Brownian motion on a Hilbert space determined by the momentum
algebra.

1. INTRODUCTION

In the theory of stochastic processes (both in the classical and the quantum case), Brownian
motion plays a fundamental role. From a theoretical point of view, Brownian motion is the
milestone of stochastic calculus; from a practical point of view, Brownian motion and the
related stochastic calculus gives a good description of many interesting phenomena.

Quantum Brownian motion in a certain sense is a pair of classical Brownian motions. But
one can’t imagine this pair of Brownian motions as a usual 2-dimensional Brownian motion
since the two do not commute. A typical example of quantum Brownian motion is the pair:
momentum and position processes { P(1) },<o, { O(#) },>0 in the Fock space over L*(R..). Each
of these processes is a family of operators on the Fock space, and they do not commute but
satisfy the canonical (or Boson) commutation relation:

[P(s), Q)] = i min(s, 1) (1. 1)

The fundamental tool to establish a relation between the process {P(7)},<o (resp. {Q(#)}i<0)
and the classical Brownian motion is the so called chaos decomposition. In the 1-dimensional
case (the multidimensional case 1s similar), 1f {B(I)};gu 1s a standard Brownian motion on a
probability space (Q, F;, P), any element in the space L*(QQ), say F, has the representation:

E(F) + / H@OdB(t) + | folty, R)dB(1)dB(t) + . .. (1.2)
J() o Qs

where, for any n € N, A, denotes the n-simplex (i.e. the set {(r},... ,#,) 4 <1 <. I}
the family of functions {f, } ;= is determined uniquely by the function F and for any n € N,
fir € L*(R").

It is well known that there is an isomorphism 7tp (resp. 7tp) between the Fock space
F(LE(IR_F)) and L*(Q), such that if B(¢) is considered as an unbounded, self-adjoint operator
on L*(Q):

(B(t,)F)(w) = B, w)F(w) (1.3)

the induced map on operators sends P(r) (resp. Q(1)) to B(¢) for any r € R4.. Now a natural
question arises: how can one quantize a classical Brownian motion, or generally, a diffusion
process, on a Riemannian manifold?
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A simple and clear way to look a classical diffusion process on a manifold M is to consider
a stochastic differential equation:

dX(t) = Lo(X(1)) @ dB“(1) + Lo(X(2))dt (1.4)

where,

—{X(1) };>0 is a stochastic process on M;

—{B'(2),..., B“’(r}},zn is a classical d-dimensional Brownian motion on RY;

—{Ly,Ly,...,Ls} is a family of (smooth) vector fields on M;

— o dB(t) means the Stratonovich stochastic differential with respect to the standard
Brownian motion.

The solution of the equation (1.4) is called the L-diffusion process on the manifold.

A standard argument shows that the equation (1.4) can be rewritten in the form:

1
dX(t) = Lo(X(0)dB (1) + (Lu(X(r)) + 5 La(X (f)))) df (1.4)

where, the Stratonovich stochastic differential has been replaced by the Ito stochastic diffe-
rential.

The Brownian motion on the manifold is the solution of the stochastic differential equation
(1.4) (or equivalently (1.4)") by taking:

—Lo=0

— L., the canonical horizontal vector field on the orthonormal frame bundle O(M):

(1.5)

. e i3 ¢ i 0
LI'T .— Ln({;) . — f:l‘n 2 = r . Jf & -
; i3

I.j- e {3 d e,f:'

That is one has, first of all, a Brownian motion { r(r)},.g{} on O(M), then the process {X(1)},>0
is obtained as the projection (form the orthonormal frame bundle O(M) to the base manifold
M) of {I‘(.")};:_:-{].

An important fact is that the equation (1.4) is just a notation. Precisely, one must interpret
it as follows: for any f € Cg®(M),

df (X(1)) = (Lo )(X(1)) ® dB (1) + (Lof )(X(2))dt (1.6)

In particular, the Brownian motion on the manifold M is determined by the equation
. o - | _
df (X(1) = ej(qf WX()dB' (1) + E(zﬂf NX(D))df (1.7)

where, A i1s the Laplace-Beltrami operator on functions.

In the present note, we shall work with the stochastic differential equation (1.6) forgetting
the explicit form of vector fields. For the existence and uniqueness of the solution of the
stochastic differential equation (1.6), see e.g. [1]. Moreover, thanks to the Whitney embedding
theorem, one can suppose (if necessary) that our manifold M is a subset of multidimensional
Euclidean space and includes the origin.
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2. SOME PRELIMINARY DISCUSSIONS

Now let us do some preparations in order to quantize the diffusion process {X(#)},>0 on
the given manifold M, which is the solution of the stochastic differential equation (1.6) with
certain initial condition X(0) = x € M.

Clearly, the main problem now is how to interpret the following objects:

dX(1), dX(1))dX(12), dX(t))dX()dX(13), . .

The L-diffusion process (on the manifold M) {X(r)} >0 18 a stochastic process on a probabi-
lity space (€2, F;, P) takes values on M. On the same probability space, we have the classical
d-dimensional (d > 1) Brownian motion {B(#)},>¢. The chaos decomposition establishes an
tsomorphism between L*(Q) and

Col’\RuyeC'aLl’MaCieC s lP(A)eC aC oC! @

by the formula

F = fﬂ + Z Z / f“] h'}(fl yoeor ey f:r)dBjI(fl) . ~dBj"(fn) (2- I)

n=11 ofud =

Moreover, the system of the functions {f, 1522 ) >, is determined uniquely by F € L*(Q).
This shows that one can identify F to the ﬁ.ystem {fU'”“ n) <. In order to underline the

fact, we shall write {f' " ¥, 122, € L*(Q)
For each {f” ) >, € L*(Q), let consider a new object

Jo+ Z / f”(a’)(x{:(f‘((fl))ﬁﬁ!(?l)*F*"L (X(n'l))dh)

1<j<d"’

+- Z / U! J> } 1)

1<jy jr<d A2

‘ ., | 2
(Lﬂ;] (X(11)dB" (1)) + SL:;I(X(I]))(!ﬁ) =3 (L;:,(X(:'E))dgh(}'g) —+ ELJT:(X(J’E)){H2> +

' . ... s ) I R
T Z /fU"""“’“}(fw‘zvfﬁJ (Lh(X(fl))dle(-'I)—f*ELL(X(.’])){H;):5:

| i n s <d 7 3

. | ,
2 (L‘_,':(X(IE)JJB“UE) -+ isz(X(fg))(ffg) *

. |
9 (L:f.:(X(Ig))dB”(ffi) + -ia{:;(X(fs)de:t) +..0=

‘fﬂ+z Z f f;?l J](riu--  In)

n=11<ji.... ju<d
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. I
K| (L;L(X(Ik))dﬁ”(n;) + 3%@(&))*!’“&) (2.2)

where, for t| # t,

. | .
(L.h (X(1))dB'' (1)) + EL}, (X(n))dn) s

. l \
¥ (Lj:(X(Iz))dBf:(h) + ELE(X("'—’ ))df_‘g) =

= L;, (X(11)) ® Liy(X(12))dB" (t,)dB™(12) + L (X(11)) & Ljy(X(02))dt1dB" (12)+

+L;, (X(11)) ® L} (X(:2))dB (n)dtz + Lj, (X(11)) & L, (X(£2))dndr (2.3)

and in general, for any (¢y,... ,#,) € 4, and 0 € 5,

| 1 -
s (Lﬁ.(X(rmJ)dB“(rm) + ,—}-Lﬁ(X(fmm)Jfffrrm) =) 2.

p=01<<bh <... < ."_,,‘f:_:u

L X(tzy)) & ... & L.?r. (X(foup)) & ... D Li X(tou)) & ... &
'ELJH (X(f,,—;.-{”}))dgh(fn{”) . {Hg[{” .. df‘n-”‘"} .. dB’f”(fn-{”}) (2 4}

i.e. corresponding to the /,-th, ...,/,-th positions we have the operator L? and the usual
differential operation df and corresponding to other positions we have the operator L and the
Ito stochastical differential operation dB(¢). The quantity (2.2) (in which fy 1s a constant)
will be defined as an operator from @, [C(M)]®" to PoolL* (M) L (Q)]%*: for any
C € C,gji,;- = CSC(M)(LJ e Nk < /)

folc, 811,821 822,831 8320 833,-..) = (cfo,£1.1,82.1 L 822,831 &0 8328 833, .- )

(2. 5a)
and foranyn > 1,0 € §,

L eene oJu)
/ .f;li:“ / (“1*'* ﬁ'rn)
* -'ju

- | 5 e e 1 1 &
Kl | (Lj;(X(ft:r{ﬁ:‘.l))dB”Un[k]) gLi(X(Fa:k}))fffn{k?) @[C{?(M)l”’ﬂ =

k=0
n—1
= PIcmn®e
k=I()

‘E’/ f;(,'“”“d"}(flw-- ufn)
d”

; [ 5 - on
{*E:] (Lj; (X(rﬂ[k])){fﬁ“'(fcr(k}) + EL}E(X“”(H)){””(“) [Cﬂ (M)Iw }:E-
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>
& D [CEOn® (2.5b)
k=n+1

where, on the subspace [C5¢(M)|®",

/ ﬁ;“ 'J”j(rl yoooeon :"‘n)
A,

: | "
ﬂ*_'g:! (Ljﬁ;(X(fﬂ-{m))dﬂﬂ'(fn[k}) ‘I‘ EL-;" (X(fﬁ(k]))dfg{m) (g”_] i@ .o @ g”!ﬁ,) .

11
= D [Jff"“’i“’](fli--- 1)

p=0 1<h < <h <..<l,<n

(legml)(‘){(rﬂ{l})) ... (Lj,:l (L:;}I En.i, ))(X(rc:r{h})) K. R

’X(Lj_;p (Lj;Pgr:.fj,))(x(fcr[fﬁ}))"'g: R2¢ (L',,S;L:;)(X(fa[m))

|

dBj](rr}'fI}) “u dfg[;” cen {,!fg{fﬂ} - {[B’;"(fg{”]) (2 6)

Denote by H,, the linear span of the set

‘ﬂﬂ

Iijg yeus .J”"'-':rf

_ l
"y (ij(X(rm;.))ﬂfBH‘(fcrtﬁ:l) + —L? (X(fa{k}))dfa*{k}l) ,

2 K
{fi}ozo € L(Q), 0 € S} (2.7)
and introduce inner products:
<Jo, 80> 1= fo&o (2. 8a)

Moreover, for any pair of measurable sets U, C R",V,, C R" which satisty the condition:
i # t;1f i # j; s, # s, 1f p # g, we define

o . 1.
< / F AR (ST 4 (Ljﬁ(X(fk))dﬁ“(&) ELJ};(X(&)M&) :
Ju,

. | | l
/ gt ey L ) e (Lm.(X(&))ch‘(fﬁ:) + ELﬁk(X(H;))dfk) > =
1;”?

=8, / / E (dB'(11) ... dB"(1,)dB" (s1) .. .dB™ (s))
S U

] 'I‘__.F"

1 seee ...y :
I )8 T (ST 80) (2.3b)
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where, E (dB'(1,) . ..dB" (t,)dB" (s)) .. .dB™(sy)) is understood in the following way: if the
U,, V, are such sets that there exists a variable #; which is never equal to a s;, the right hand
side of (2.8b) is defined as zero; otherwise which is defined as

h'r ~----.h'ru ] ...+.r”} ..!' _.t'” . .
6::: < / ;" | ]f‘fsl . .(fS,,ﬁ?1 / (S*rfl}., u})g“ j }(3] yoooe o a-""n) (2 SC)

J1geas o

where, T is a n-permutation determinated by the relation: f; = s;;V; = 1,2,...,n In
particular, it follows from (2.8b), by a trivial calculation, that

S : I,
“:/ FIvdn(y, o ) %o (ng(X(fk))ﬂ’B“‘(fk) + EL*’T"'(X(&)){!IQ )
dI‘]

I 5
/ gt gy L ty) # (L;;,,.(X(n;-))dﬁ*"*(rk) + EL;;k(X(rk))rirk) > =
ﬂ"

moidn | T i
= 6j’!'._'_j”" / Mo dngy o )g e d Ly, (2.8d)
| * -ﬂn

Thus, {H,, < -, >} becomes a pre-Hilbert space.

Now we try to understand the pre-Hilbert space H,, as a symmetric n-fold tensor product
of a certain pre-Hilbert space. In fact, let consider the tensor pre-Hilbert space H; @ H, by
introducing the following inner product on the algebraic tensor product:

< / 00 (Lj[(xm)daf' () + %L}', (X(f))dr) ®
/0

& / @) (L,;I(X<r)>d8*‘!(r)+ %L;(X(rndr),
()

/ | g (1) (LL,(X(r))ch" (1) + ;LM(X(I))df)

J ()

1 Lﬁ.,(X(z))dr)

® / g¥(1) (L;. (X(D)AB (1) + = ;

= -c:/ f””(f) (Lj, (X(I))dBj' (1) + ;Lfl (X(r))fh)

/ g (L;, (X(D)dB* (1) + lL&I (X(r))dr)
/ 2p (Lj:(X(r))dBﬁ (f) + %Li (X(r))df> }

: LA,, (X (r))dr) > =

/ gy2(t) (La.,(X(r))dB’”(r) + 3
J)
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=55 | TP0gwd - [ AP wg w (2.9)

J1J2

On the other hand, the inner prﬂduct between

/ ' f FI DR (1)
() {)

(L;.(X(ﬁ))dB“(“) + ;Lﬁ()((;,))drl) ¥ (LJE(X(rz))dBf:(rz) + %Li()((!z))dfz) +

+ / / IO (1)
J () f

| ,,, 1,
(Lj] (X(1)dB'(t;) + %L}, (X(fl))fffl) * (ng(x(@))dﬁh(@) + ELEE(X(E)){HE>

[ [ e
JO S0

3 - 1 7
(Lj] (X(11))dB" (1) + lL;l(X(r,))dn) * (Lkg(X(fz))ch(fz) + ELE:(XUE))C#Q) +

2
+/'H / )8y (1)
() f

_ | , |
(Lk. (X())dB (1) + 5 L, (X(@ ))dn) . (Lkg (X())dB(12) + 5L, (X(F:z))ﬂ'fz)

and

is equal to, by (2.8b),

6M/ /jl”(r ) (1) (12)gy > (1) dty diy+

+82 / / 20! O (1)g (t)dn dia+
+ fffl/ / AR08y (1A (12)gy Y ()dndn =
;
= &1y / / g P )8 o) oo+
+877 / / TP g (P (1)g (2.10)

which 1s nothing but

< / FURENA (1)

- 1
T (ij (X(Utow))dB" (t54)) + ELi(X(fa{m))d&r{k}> :
TES,
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* ] . 1
/ g8y (1) Y Hi= (Lﬁ-(X(Tam))ffB”(fcrm) + - L; (X(fu-::m))dfn{m> > (2.11)
AL

2 Jk
ogES,

This gives the following:

Lemma 2.1. Under an isometry,

H’J H] O H]
and for any f, g € LE(]E_I_ ),

/ o (Lj, (X()dB' (1) + 5 oE (X(r))dr)
J0)

T 4 . ] )
o / a(1) (LjJ(X(r))ciB“(r) - ELE(X(I))(J’I) =
() =

|
/ f(rl)g(h) Z kA*“i ( Jm“(X(fﬂ[;_})){!)?r/m“(fmm) + L;{;_}(X(rn{.k}))d!n{i]> (2 12)
aeE S

where, as usual means the symmetric tensor product.
In general, we have

Theorem 2.2. For any n € N, under an isometry

1nHmes

et e
H, =H,o...0H (2.13)

and for any fy, ... ,Ju € LE(]R_]_),

/ () (Lj, (X(£)dB" (1) + '_i“[fi (X(r))dr) ©...0
J () v

oo | -
© / Ju(t) (Lj"(X(f))dB’”UJ + 3L;;(X(f)}df> —
0 2

I
/ A . fultn) Z K= ( iois XUty AB P 104)) + ZLE.:A}(X("H{M)WFJIM)

AW oES,
) (2.14)

Moreover, the Hilbert space H(:= €p, —, H,) is isomorphic to the Fock Hilbert space over
the Hilbert space H, and which will be denoted, as usual, by I'(H).

Remark. The proof of the theorem (2.2) could be given by the same method as from (2.9) to
(2.11).
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3. A POSSIBLE QUANTIZATION OF DIFFUSION PROCESS ON MANIFOLD

Now we are ready to give a possible quantization of diffusion process on manifold: For a
diffusion process {X()},>0, a possible quantization is

{ f . 1 5
/ dX(t)) := / (Lj(X(f]))dH(ﬁ) -+ EL;(X(h))dh) =
J () ()

X ‘ l .
= / :{[u.n(h)(L;(X(n))dBf(nHEL;(X(rl))dr|> (3. 1)
J ()

where, the right hand side of (3.1) is considered as an operator on the Hilbert space H. In
order to insist the fact that the right hand side of (3.1) is an operator, we shall rewrite it as

Qq fo X0l }(Lj{}.’u. NABI(ty )43 L3 (X (1 ”d“) (3.2)
Suggested by the Ito formula, we define the operator by
QJ;JI x[:m(h}(L,-{xcr] NelBi (1) )+§f.;.3{x|:n }}dn) ¢ .=
50 | -
=c- [ o) | LX@)dB (1) + SLi(X@e))dn | € Hy (3.3)
0

oo

£ o : ke 2 .
Q_];Imxln.nfn}(Lij(n]}dBf{n}-I—%LE{X{h})r:H]) [ /u F(s) (L‘Q (X($))aB(s) + EL’E"(X(*&))IF!S)}

= l ) ]” “ X10,0{t)f (t2) (L;(an))dﬁf(r.) %LE(X(II))(H])
% (Lk(X(Ig))dBk(fg) + %LE?(X(@))J@) +

+ /n ) / ) X10.0(t1 )f (12) (Lj(xcnndef(r.) + %Lf(xm))dr.)
(Lk(X(rz))dB"(r:) + %Lﬁ(xmnmg) +-

4 /  XionEF()E (B (t)dB 1)) (3.4)
(0

By (2.12) and (2.8b), this 1s equal to

o0 | L.
/ X10,n(71) (L;(X(fl))df}’(fl) + EL}(X(M))JII) o
0

o / ) (Lk(X(s))dB"(s) + %Lﬁ(}f(.q))ds) +
0



66 YG. Lu

- o,
+< / Xi0.0(11) (LJ(X(" dB () + ELJT(X“')){M) ’

JO

O | l \
f() (LI:(XUI))dBK(f]) + ELE(X(fl))dh) > (3.5)
Jo

In general, with the idea of the Ito calculus, we define the action of the operator (3.2) on
the quantity

I
/ fl(fl) n(rn) Z "‘g:=| ( Jum(x(f{:r[ﬁ.]))dgj i““g(ﬁ})'i‘ La{“(X(f,;{”)){ffﬂ[“) (36(!)

2
agES,

as

/ Xjo.nEn) . fultesr) z
JA

=1 HE&‘.”.{-I

S ( o Xoy)AB S (1ouy) + = L {A}(X(’ﬂf*’:'))df"’f“’) +

LT / Xi0.0 SYi(EB (5)dB(s))

oes, =1

: | .
/ ][ fiw) 2, (L;c.m(X(rm-mszmumm)+ ;L;,m(xu._.,m)mm) 5

n=—1 1 <k<n
ks

. 1
K] (Ljam(X(fmfy))ffﬁl‘"“(fn{k}) T3 am(x(fﬂfﬂl))d"ﬂm) (3.60)

Thus, it follows from a quite simple calculation that

Theorem 3.1. The action of the operator (3.2) on the quantity like (3.6a) is equal to

20 | I A
/ X10,0(5) (L,;(X(s)wu) + EL}(X(S)}:!.?) o
J () rd

o0 | 1,
O /” f](f) (le (X(t)H)dB' (1) + 5.[.;' (X(I))d.’) 0...0

oC + |
o / Ja(1) (L;,,(X(r))dﬁ’"(r) + ;L;,(X(r))dr) +
J () -~

" ) VOC oC . | ,
+y 8 /ﬂ X10.0(S Vi (5)dls / fi() (le(X(r)):fo'(r)+ L (X(r))dr) :
h=]|

4 ()

o | |
0 /ﬂ Jn=1(2) (Lj;,_.(X(f))dB“*"(r) + EL;_I(X(r))df) o
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oo | L.
D/ﬂ ﬁ?—f—l(f) (‘[ffh+1 (X(f))dﬂjh—l—l(f) + Eifﬁa-i-l (X(f))d_f) o...0

o0 | l ;
o / £ (L;,,(X(r))dﬁf”(r)Jr EL;r(X(r»dr) (3.7)
W

Definition 3.2. The operator Q will be called position operator and the family

{Qf

~e R ¥
o X10.00) (Lj{X{.‘i]]{”ﬂf{.‘-‘}—F%L}{X{ﬁ}}fﬁ) }IEU

will be called position process on the Fock space 'H.

Definition 3.3. For any f € L*(R..), the operator which maps the quantity (3.6a) to

/ ) (LJ(X(S))dBf(s) + %Lf(){(s))ds) :
()

o0 . ] S
o / £(8) (Lj,(X(r))dB“(r)+ L (X(r))dr) 0...0
J 0

o / A0 (Lj”(X(r))dB"”(f)-l— %Lﬂ,%{(X(r))dr) (3.8)
o ()

will be called the creation operator (or creator) with respect to

/n f(s) (Lj(X(S))dBf (8) + éLI (X(S))dg)

and denoted by
Afm (s MBI L 126Xt e0els
.]” f(s) (LI,-(X[A}}H’B (5)+ if‘j {X{_g}){;ﬁ)
The operator which maps the quantity (3.6a) to

il

] o _ » O . 1 5
5 / F()fn(8)ds / H1(®) (Lj. (X(0)dB" (1) + > L (X(f))df> 0...0
| J () 0

=

o f fom1 () (Lm_](){(fj)dﬁf““‘(r) + %Ljf_p((r))dr) 0...0
0

o | I i
° / fir1 0 (L;H.(X(f))dﬁ”’“(r) + ELj,+|(X(r))dr) 0...0
/()

: /{} G (Lj”(X(r))dBf"(r)-i— %Li(}f(r))dr) (3.9)

forn > 1 and maps a constant to zero will be called the annihilation operator (or annihilator)
with respect to

N 1 -l )
/ £(s) (L;<X(s>)d3f(s) + EL;(X(S))dS)
)
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and denoted

A (= -
I 0 Js) (Lf (X(3)dBI(5)+ %f‘} (X [.i]}d.*-')
The family
A+. ' 1 =0
{ jﬂ’«‘ﬂ X10,n(5) (Lij{.ﬂ}dBf{:;H_gfdf{x[,ﬁ.”m.) } ot

will be called creation process on the Fock space K, and the family

{A l"}‘: Xj0.1(5) (LJ.'[X{.':}}H’B"'[:-:}—}— %fj-:{X(.T)]d.';) }Il‘_?(}

will be called annihilation process on the Fock space H.

Remark. It is clear that Q = AT + A.
With the same argument used in [2], one can easily obtain

Lemma 3.4. On the Hilbert space H, creators and annihilators are well defined; they have
a common dense domain and with respect to the same element in 'H, the annihilator is the

essential conjugate of the creator.
Lemma 3.5.

_I_

A poo, . , A7 |
), T (L;{X{.-:ndﬁf{x}+%L;{X{.v]}ds)’ |7 e (Lj{}{{ﬁ})dﬂ*[x}+%LE{X{.'..‘]}:E?)]

= < / f(s) (L_;(X(j‘))dﬁf (s) + %Lf()((s))ds) ,
JO

/ 2(8) (Lj(X(.'i'))dB’f (s) + %LE(X(S))E!S) >
40

(3. 10)
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