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1. INTRODUCTION

Structures on differentiable manifolds by introducing vector-valued linear functions sa-
tisfying some algebraic equations have been studied by a number of mathematicians. K.L.
Duggal in [1] defined on a differentiable manifold the GF-structure which is more general
than almost complex, almost product and almost tangent structures.

Let M be a n-dimensional differentiable manifold of class C°. A vector-valued linear
function F of class C> is defined on M such that

F>(X) = o*X (1. 1)

where X 1s an arbitrary vector field and « 1s any real or purely imaginary number. Then, F
i1s said to give a differentiable structure called GF-structure on M defined by (1.1). If & # 0
we have the known 7t-structure [3], if @« = 0 we have an almost tangent structure. For
o = £1 or & = &/~ we obtain an almost product structure or an almost complex structure
respectively.

Suppose further that M admits a Hermitian metric g satisfying

g X, V) +x"e(X, V) =0 (1.2)

where X = FX and X, Y are vector fields on M. Then, we say that (g, F) gives to M an
H-structure and M 1s called H-structure manifold.

If the structure tensor F is parallel (i.e. VxF)Y = 0 where ¥V is the Riemannian connection),
then M is called K-manifold.

An H-structure manifold M will be called nearly K-manifold (briefly NK-manifold) if the
structure tensor F satisfies the condition (VyF)X = 0, for arbitrary vector field X on M.

In the present article we deal with some 2m-dimensional H-structure manifolds. In the
second paragraph we shall study an H-structure manifold admiting pointwise constant holo-
morphic sectional curvature. In the third paragraph we obtain the main result of the present
paper on NK-mantitolds.

2. ON H-STRUCTURE MANIFOLDS

On a 2m-dimensional H-structure manifold M we consider a (0, 2) tensor such that:
OX,Y) =gX,Y) = —gX,Y) (2. 1)
It 1s easy to prove the following results:

OX,Y)+ P, X)=0 (2.2)
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X, Y)+ *P(X,Y) =0 (2.3)
(Vx®P)Y,Z) + (VxP)Z,Y) =0 (2.4)
(Vx®)(Y,Z) = o (VxP)(Y, Z) (2.5)

We denoty by (W, X, Y, Z) = g((VwF)X, (VyF)Z) and because of (2.2), (2.3) we obtain:

(W, X,Y,Z) = (Y,Z,W,X),(W,X,Y,Z) = —*(W,X,Y,Z),(W,X,Y,Z) = —(W,X,Y,2).

(2.6)
We assume that the curvature tensor R is defined by
RX,Y)Z = VxviZ— [Vx, Vy]Z,
and
RW,X,Y, Z)=g(R(IW,X)Y,Z)
for arbitrary vector fields W, X, Y and Z on M.
The holomorphic sectionarl curvature H(x) is defined by
H(x) = R(x, X, x,X) / g(x, x)g(x, X) (2.7)

tor xeT,(M), (peM) where T,(M) is the tangent space of M, at p.

Theorem 2.1. Let M be an H-structure manifold of pointwise constant holomorphic sectional
curvature c(p). Then

4o c(P)2B(x, »)B(z, w) — B(x, w)B(y, 2) + P(x, ) D(y, W)+

+ag(x, w)g(y, 2) — o e(x, 2)e(y, w)] =
= —30*R(w,x,y,2) — 3R(W, %, 5,2) + 02R(W, X, ¥, 2) + 62 R(W, x, ¥, )—

7 — - — — _ — - -
—Df,‘-R(H—’, X, ¥, E) -+ 30:'11?(“”}'1?}};1 ':) + BC‘LER(]’Va A, Y, E) o DCER(H?m X, ¥, E)+

3&4R(W,y,x, z)+ 3R(w,y,Xx,2) — E{ER((ﬂ*,jﬁ,x, ) — mzﬁ(w,y,jf,, )+
+oR(W, y, %, 2) — 3&R(W, y,x,Z) — 3a*R(W, 3, %,2) + o> R(w, 7, x, 7). (2.8)

Proof. Since H(x) = c(p), (2.7) takes the form
R(x, X, x,X) = c(p)g(x, x)g(x, X). (2.9)
By linearizing (2.9) and using Bianchi identity we get
4o clglx, y)g(z, w) + g(x, Dg(y, w) + g(x, w)g(y, 2)] =

= R(w,X,y,2) — 2R(W,x,y,2) + R(w, x,y,2) + R(w, X, ¥, 2)—
—2R(w, X, y,2) + R(w, x,¥,2) + R(w, ¥,x,2) — 2R(Ww, y, %, 2)+
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+R(OW, v,x,2) + R(w, ¥,X,2) — 2R(w, ¥, x,2) + R(w, y, X, 2). (2.10)

In (2.10) we replace ¥ and W by Y and W and in the resulting equation we replace X and Y
by ¥ and X respectively. Adding the last two equations we obtain (2.3).
We can choose an orthonormal frame field {E,, ... ,E,, Ems1, ..., E2y such that £, =

V—1E; /o, i=1,... ,m}.
We denote by r and rx the Ricci tensor and the Ricci *tensor of M, respectively. The Ricci
*tensor 1 1s defined by
rx(x,v) = traceof (z — R(Z, X)y),

for x,y,z € T,(M).

Lemma 2.2. [f M is an H-structure manifold and {E;} is an orthonormal frame field, for
arbitrary vector fields X, Y on M we have:

21l 2m

> RX,E,Y,E)=—o ) RX,E,Y, E),

=1 =1

2m 2m

Y RX,E,Y,E)=-) RXE,YE).

= i=]

Proof. The proof depends on the above way of the determination of the orthonormal frame
field {E;}.
We can easily prove the following.

Lemma 2.3. Let M be an H-structure manifold. Then, for arbitrary vector fields X, Y, on M
we have:

XN =rY, X),rx(X, V)= —or=(Y,X), r+(X,Y) = —r=*(Y,X).

We denote by s and s* the scalar and the *scalar curvature of M respectively. Then, using
the theorem 2.1 and the lemmas 2.2 and 2.3 we obtain.

Proposition 2.4. Let M be a 2m-dimensional H-structure manifold of pointwise constant
holomorphic sectional curvature c(p). Then, for arbitrary vector fields X, Y on M, we have.

r(X,Y) — r(X, V) = 3[r* (X, Y) +r+ (Y, X)] = 40m + De(p)og(X, Y),

s — 35k = dm(m + I)E{EC(}J).
The main results of the second paragraph (thm 2.1 and propos. 2.4) for & = —1 have

been obtained by G.B. Rizza in [4] (fundamental identity (11) and thm 1).

3. ON NEARLY K-MANIFOLDS

We denote by (W, X,Y,2) = g((VwF)X,(VyF)Z). By deﬁnitiﬂn_nfmthe NK-manitfold
and the curvature tensor R we obtain that: R(W,X,Y,Z) — R(W, X, Y,Z) depends on the
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quantities: (W, X,Y,2),(W,Y, X, 2),(W,Z, X, V),(W,X,Y,Z),(W,Y , X,Z) and (W,Z,X,Y).
Applying the fundamental properties of R(W, X, Y, Z) we obtain.

Proposition 3.1. Let M be a NK-manifold. If W, X, Y and Z are arbitrary vector fields on M,
then

RWW,X, Y, Z) =

2

=

l 3[2(14’,1}(1 Y,Z)-{—(W‘ Y*}sz)_"(wtsz} Y)]}

N | , -
R(W!X! }/'IZ)_ - 3!'1'-[2(W,X, Y}"—-{)_(W& Y&X}Z) -+ (W'FZ}X‘.I- Y)]

Using the proposition 3.1 and the definitions of the Ricci tensor and Ricci #tensor we get
the following.

Lemma 3.2. For arbitrary vector fields X and Y on a NK-manifold it holds:

2

I
(X Y) = ——= ) (X.E.Y,E),

=]

MX,Y) = —arX,Y), rxX,Y)=r=(,X),

(X, Y).

rx(X,Y) =

x? —3

By virtue of the first relation of proposition 2.4, the lemma 3.2 and [2] (p.292) we can
obtain the main result:

Theorem 3.3. If M is a 2m-dimensional connected NK-manifold of pointwise constant
holomorphic sectional curvature, then M is an Einstein manifold.
For NK-manifolds of small dimension we can state the tollowing.

Proposition 3.4. A NK-manifold M of dimension n = 2,4 is a K-manifold.

Proof. It is clear that a 2-dimensional NK-manifold is a K-manifold.
If M is a 4-dimensional NK-manifold, we choose an orthonormal frame field on an open
subset of M to be of the from

v—1_- v—=1_
{EI:EL Ey, 2}-

X X

We can easily prove that (Vg F)}E; 1s perpendicular to £} and E>. Because of:

(VxP)Y,Z) = o7 (VxP)Y,Z) = —a*(VxP)Z,Y).

V=LE and "’?Eg.

] (

it 18 proved that (Vg F)E> 1s perpendicular to
Hence:
(Ve FE, =0 | ((,j=1,2).
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