ON VECTOR-VALUED SEQUENCE SPACES

L. FRERICK

Abstract. In tlzis paper we investigate tlze topological properties of vector valuecl seguence
spnces. After an introduction of normal Banach sequence spaces A we consider the vector
valuecl sequence spaces A(E), E d locally convex Hausdorff space and we prove some bcisic
facts concerning tIZis spaces. We give complete characterizations for barrelled vector valued
DF spaces and distinguished vector valued Fréchet spaces. At tlie end ive give sufficient
conclitioiis guaranteeing theit A(E) is bornological.

1. INTRODUCTION

Givenalocally convex Hausdorff space E and denote with cs(E) the system of all continuous
seminorms on E. The vector space /,(E) of all bounded sequences (x,)sex in E is naturally
equipped with the locally convex Hausdorff topology induced by the seminorms

(xn)neN = supp(x,,), PE CS(E)~
neN

If E is metrizable (or norined), then the same holds for /.. (E). The space co(E) of all zero
sequencesin E is a (closed) subspace of /., (E). Both spacesare part of a more general concept
of constructing vector valued sequence spaces:

Consider a normal Banach sequence space (A, || .|/.), i.e. a Banach space coiitaining ©
which is included in w such that its closed unit ball is normal. For every locally convex
Hausdorff space E this condition required for A guarantees that

AE) ::{(XII)HGN E EN : (p(xn))HGN EAforallp E CS(E)}

is a vector space. The seminorms

(Xdnen ¥ ”(])(XH))MGN“A) p € cs(E),

define a (quite natural) Hausdorff locally convex topology on A(E). Using this principle of
construction, one obtains a large class of vector valiied sequence spaces containing (besidesthe
above mentioned examples) e.g. the spaces /,(E) of the p-summable sequences, p E [, co).

In [17] we investigated completeness properties of this vector valued sequence spaces.

These notes are mainly devoted to the examination of the (topological) properties of the
spaces A(E) in dependence on properties of the spaces A and E. Since A(E) contains E as
a complemented subspace, it is clear that the behavior of A(E) is i.g. not "better”than the
behavior of E.

At the end of this introduction we recall some notations and the terminology which will be
used in the chapters 2-6.

The second chapter is devoted to the study of normal Banach sequence spaces. We
introduce some additional properties of normal Banach sequence spaces (see[41,§1), which
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will be important in the following chapters. Moreover, a connection to perfect sequence
spaces is obtained: A norinal Banach sequence space, whose closed unit ball is even closed
in w, is already a perfect space.

In the third chapter first we prove some fundainental properties of vector valued sequeiice
spaces A(£), using to some extent the results given in the previous chapter. At the end we
show (analogously as it is done in [15]) that A(E) contains a coniplemented copy of /..(E)
whenever ¢ is not dense in A and E is an arbitrary locally convex Hausdorff space.

Chaptei- four comprises a description of the bounded subsets of Frechet- aiid gDF-space-
valued sequence spaces. In this context we prove the following characterization of gDF
spaces:

A locally convex Hausdorff space E is a gDF space if and only if it contains a sequence
(By)uen of bounded and absolutely convex subsets satisfying 28, C B4, E N, such that
for every sequeiice (U,),en Of zero neighbourhoods in E the set Nyen(Un +B,,) is again a
zero neiglibourhood. In this case, the closures of the B,,’s define a fundamental sequence of
bounded setsin E.

Using this result, one obtains that A(E) is a gDF space (or a DF space), if sois E. Moreover,
we characterize the strong dual of A(E) in the case that ¢ is dense in A aiid E is either
metrizable or a quasibarrelled DF space. This result is essentially contained in [34] (with a
different approach). In the last part of chapter four we prove some permanence properties of
vector vaiued sequence spaces. For exainple, we show that the bounded subsets of A(E) are
inetrizable, whenever E is a gDF space satisfying the same property.

Barrelledness conditions concerning vector valued sequence spaces are investigated in the
fifth chapter. It is well-known (see [16], that A(E) is a (quasi)barrelled DF space, whenever
E is a (quasi)barrelled DF space and ¢ is dense in the normal Banach sequence space A. It
is also well-known that for a given DF space E the space /.. (E) is quasibarrelled if and only
if E satisfies the dual density condition, cf. [2). If, in addition, E is barrelled then /..(£)
is also barrelled, cf. [2]). We can show that this remains true if one replaces /. by any
normal Banach sequence space in which ¢ is not dense. Furtherinore, a characterization of
the distinguishedness of Frechet valued sequence spaces is obtained:

Let E be a metrizable locally convex space and let A be a norinal Banach sequence. If ¢
is dense in A and dense in the x-dual A* of A, then A(£) is distinguished if and only if E is
distinguished (cf. [16]).

If @ is not dense in A or A* the space A(£) is distinguished if and only if E satisfies the
density condition.

This last part of the described result contains clearly the cases A =1/, cf. [I],and A = /..

Sufficient conditions guaranteeing that A(E) is (ultra)bornological are given in the last
chapter. For example we prove that A(£) is bornological for every DFM space E whenever
the normal Banach sequence space (A, || . ||.) satisfies the following property:

Y) (e ren|lr = Slll\) 1(Cott k<, (O)x > )| x for every (xp)ren € A.
neN
In particular, ¢y(E) is bornological for every DFM space E (a result of S. Dierolf, un-

publishecl).
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Notations. For a locally convex Hausdorff space E :=(E,T) over the scalar field R or C we
denote by Uy(E) the zero neighbourhood filter of E or, equivalently,

Uo(E) :={U CE :U D p~'([0, i]) for somep E cs(E)}.

We write E for the topological dual of E and we write E* for the bidual of E, i.e.
E’ = (E’)B(£’,E))’ where we denote for a dual pair (EF) by o(£, F) the weak and by
B(E, F) the strong topology defined on E, respectively. A closed linear subspace L of E
defines a quotient E / L which we equip with the quotient topology. If || - || is a norm on E, we
denote this normed space with (E,|| .{]). Complete normed spaces are called Banach spaces
and complete metrizable locally convex spaces are called Frechet spaces.

Let B and C be subsets of the locally convex Hausdorff space E and let o be a scalar. Then

B+ C:={x+y:x€B,ye C}and
pB :={px :x E B}.

We denote by [B] the linear span of B and in a fixed dual system (E }=) by B® its polar:
B® :={f e F :suplf)| < 1}.
XEB

Moreover, we write ['(B) for the absolutely convex hull of B. If B is already absolutely
convex, we may equip [BJwith the Minkowski functional pg of B, which is defined by

pex) :=inf{p >0 :x E pB}.

([B}s) is then a seminormed space. If B is bounded and absolutely convex and ([ B }z)
is a Banach space, we will call B a Banach disc. B is called a barrel if it is an absorbent,
absolutely convex and closed subset of E. We call B bornivorous if it absorbs every bounded
subset of E.

For a given sequence (E,),en of locally convex Hausdorff spaces we denote by [],cy E..
its cartesian product equipped with the product topology and by €D, < E., its locally convex
direct sum. We write E¥ :=]],. E and EM =@, E. ForK € {R,C} letw :=k" and
@ = KM,

Now let us introduce some well-known topological properties for locally convex Hausdorff
spaces E
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E is called barrelled, if every barrel in E is a zero neighbourhood. It is called quasibarrelled,
if every bornivorous barrel in E is a zero neighbourhood. We call E bornological if every
absolutely convex and bornivoroussubsetof E is a zero neighbourhood. E is ultrabornological
if and only if every absolutely convex subset of E which absorbs the Banach discs is already
a zero neighbourhood.

2. NORMAL BANACH SEQUENCE SPACES
For sequences & = (ct)nen and B = (B, )uen Of real numbers we define:
a< pifandonlyif x, <3, foreveryn EN,

a<pifandonly if a<p,foreveryn &N,

and for a = (o, neny E W let
I(X| = (|(Xn|)n€N-

Definition 2.1. We call n set A C w normal if

A=J{Bew:|pl<|xf}.

acA

Every normal set is clearly circled and the span of an (absolutely) convex and normal set
is again normal. A linear subspace of w is normal if and only if it is normal in the sense of
G. Kothe ([24], §30, [.). Now we introduce the notion of normal Banach sequences spaces
(cf. J. Bonet & S. Dierolf [4], §1):

Definition 2.2 We call n Banach space (A, || .||a) normal Banach sequence space if it satisfies
tiie following two properties:

a)o CACw.

(3) The closed unit ball By of (A, || - ||») is normal.

Property 3) is equivalent to:

Forall a E A, B E w satisfying || < |« it follows 3 € A and ||B]la < [|]lx-
Forp E [1,00) let

o0
[, ={aE w :Z|oc,,|”<oo}

n=I|

be the space of ali p-summable sequences equipped with the usual horm

1
oc »
Il <y — Ryoc— (Z |oc,,|"> :

n=1

Moreover, let
I = {a € w:sup|a,| <oc}
nenN
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be the space of all bounded sequences equipped with the norm

| lloc : lsec = R, & — sup |o,|
neN

and
¢ :={aew: lim a,50
> OC

N

be the space of all sequences converging to O normed by || . ||.. Then ¢q and |, are normal
Banach sequence spaces (p E [1, oo]).

Remark 2.3.
i) Let A be a normal Bnnnch sequence space. Then the projection

Pyiw — A oo — ((p)r<n, Q> 0)

is for every n E N welldefined ancl satisfies (because of property B) P, (By) C Py
(Bx) C By,n EN. Forevery aE A and k EN we have |Pr(0)|x < limy—ee | Pu(o)|lx =
sup,ey [|Pu(llx < [|e][x-

ii) If A is a normal Bnnnch, sequence spnce then the inclusions @ “— A ‘\— W nre
continuous. /ndeed, the first one is continuous, because @ cnrries the finest locally convex
topology on @. Property (3) implies |x,| :||(5,,k)ke,v||;' (b dien|r < ||(Z>,1k)k€,\:||;' [l ex|]
for every a € A ancl every n € N. S0 the second inclusion A “— W is also continuous.

Fora normal Banach sequence space (A, || .|lx) and 0< a = («,,),en E W let

ox-A= {(“uﬁn)nEN : B € 7\}7

”(CX)IBH)Hef\"”(\‘/\ = ||B”/\a B S A)

be the diagonal transform of A with respectto ««. Than (<A, || .||a-») is also a normal Banach
sequence space. The next result, due to S. Dierolf & C. Ferndndez [13), is a sharper version
of remark 2.3 ii):

Proposition 2.4. Let A be a normal Banach sequence space with closed unit ball By, and let

o == (/|G deen |z Duen- Then
B(\--I; C B/\ CB

-l

and hence all inclusions
o —all' = A a = w

are continuous.
Proof. If we define ™' :=(a;, !),en then the assertion is equivalent to

BI1 C BL\‘_I‘/\ - BIQ(; (*)

oc=' .Ais a normal Banach sequence space with ||(8,x)cen

|a=1.x = Lforeveryn € N,
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To prove the firstpart of (*) letx = (x,),en E B, be given. Then for every natural numbers
m >K the triangle inequality yields

m

[1Pu(x) = Pe@)lla=1x € D Wl = [|Pux) = P01 and
n=k-+1

m

I[PIH(-’\:)”(\_'V\ S Z 1-xu| = ”Pm(x)“l S 1.

n=|

Therefore (P,,(x))mey is a Cauchy sequence in ™" - A which convergesto some y E B, -1.y.
Because the spaces/; and oc™! . A are both continuously inculded in w we get that y coincides
with X, the limit of (P,,(x))men in I;. This implies X E By-1.y-

It remains to show B{«~' .A C B,_. But this is clear because property 3) guarantees for
every x = (x,)pen € Bao-1.y and every n E N that

I-xnl = I|(~x11651/\‘)k€/\"“r\—‘~/\ I ||(’\:”)”€/V”(\'—"A I 1.

The proof is complete.
Of interest are the following properties which can be satisfied by normal Banach sequence
spaces A.

Definition 2.5. We sny thnt « normal Banach sequence space (A, || . ||») satisfies

V) if || = sup,en [[Pa(0)||x for every oc € A,

Yi) if there exists p > 1such that ||x|[x < psup,ey [|Pa(x)||x for every « € h.

6) if for every @ E w with sup,cy |[|Pu(00)||x <oo it follows that @ E A and ||«|[y =
sup,ey [ Pu(e0)]|x.

b.) if there is p > such that for every & E W with sup,cy [|Pn(x)||x <oo it follows that
e Xand ||oc][x WP sup,cy [IPa()]|x.

E) if lim,— oo ||Pu() — o||x =0 for every a E A

We may remark that according to remark 2.3 i) one can replace in the above definition
"sup,, ¢y 1Pa()|[x" always by "lim, .~ ||Pu(c)||x"

Every normal Banach sequence space with property ) satisfies also property y). For
p E [1,) the space /), satisfies the properties 6) and ), the space /.. satisties 6) but not
£), and the space ¢¢ satisfies £) but not 6). Later we give an example of a normal Bunach
sequence space, which does not satisfy even conditiony,,.).

Connected with the properties introduced in the previous definitionare the following spaces
associated to a normal Banach sequence space:

Definition 2.6. Let (A, || . ||») be n normal Banach sequence space and let

A = LaE w :sup||Py(o)]|x <oo}
neN

equipped with the norm

I Lo : A — R, & — sup ||P(e)]| .
neN
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Moreover, define N7 to be the closure of A in AN, || .|| x)-
First we prove that these associated spaces are also normal Banach sequence spaces:

Proposition 2.7. Let (A, || . ||x) e d normal Banach seguence space.

i) Then A® || . ||a») is also ¢ normal Banaclz sequence space.

i)[f @ C[L] =L C Aisnormal, then the closure L equipped with the induced norma
| -|lx is d normal Banach sequence space.

Especially (@, ]| .||x) and A, || . ||xo) are normal Banach sequence spaces.

Proof. i) Property a)is clearly satisfied and it is easy to see that B, is bounded in w. Let
Joiw = R otr— ||Py(a)]|x, 7 € N.

Then the mappings f, are continuous for every # E N and Bys) = (,en /i ([0, i]). Hence,
By is a closed and bounded subset of w and therefore A® is a Banach space. To prove
property B) let a E By and B E w with || < |x| be given. Because A satisfies property 3)
we get sup,ey [[Pa(B)lx < sup,ey [[Pa(e)]|x and this implies B E Byo.

i) First we remark, that (L, || - ||) is a Banach space, which satisfies property ).

To prove that Byx = By N L* is normal we note that intersections of normal sets are also
normal. S0 it remains to show that Z* is a normal subset of w. Therefore let « E L* and
B E wwith |3| < || be given. Then there exists a sequence (a®)en = (), endien E L
with ||a«® — &]|x — O(k — oo). We definefor i,k E N: (B®)en = (B)uen)ien by

Bu if [Bal < [P

*) . — (k)
not [0 . :
U g, it 1> e
Bl
Since L is normal and |B%®| < |o¥)| we have B*) € L for all k € N.
Letn, k € N.
If [Bu] < o] then [BP — Bul = 0 < o — ox,].

&
||

If [Ba] > || then |BY — .| = (1 —m)lﬁnl = Bl =[] < Jotu] =[oP] < oty — (P
This implies |B% — B] < |a® — « for every k € N. Using that A is a normal Banach
sequence space we obtain:

IBY = Bllx < [la® = ][y — 0 (k — o0).

Remembering p* E L, this yields B € L* and we are done.

Remark 2.8. The proof of I) shows that for every normal Banach sequeizce space (A, || . ||»)
the closed unir ball By, is even closed in w.

Theorem 2.9. (¢f. [4], 1.1)Let (A, || . ||» be ci normal Banaclz sequence space.
i) T.f.a.e. (The following are equivalent)

L) (A || - 1)) satisfies property ).

20 1) = A, - [l

3) B, is closed in A equipped with the relative topology induced by w.
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it) T.f.a.e.

1) (A, || - l|5) satisfies property v,,).

2) A =X algebraically and the corresponding norms are equivalent.

3) There exists p > 1such that tie closure of By, in A equipped with tlte relative topology
induced by w is contained in pBj.

i) Tfa.e.

1) (A || - |a) satisfies property 8).

2) (A, “ . ”)\) = (}\(6)) ” . ”/\“")-

3) By isclosed in w.

iv) Tfa.e.

D) A |- () satisfies property 6.,).

2) A =\ algebraically and the corresponding norms are equivalent.

3) There exists p > 1such that the closure of By, in W is contained in pBj.
v)T.fae.

1) (A || - |In) satisfies property ).

2) @ isdense in (A || .||x)-

Proof. We only prove iii), iv) and v). i) and ii) can be proved siinilarly as iii) and iv).
iii) I (A, || . ||) satisfies property 6) then clearly (A, || .|[x) = A, || .[lxe).

IFA | llx) =A%, .|lxs) we have By = By and according to remark 2.8 this set is
closed in w.

If By, is closed in cw, we have for o E W with lim,—~ ||Pu()||x =a<cothata E aBy" =
aB., therefore & E Aand ¢ = lim,_os [|Pa(0))|[x < |lat|lx < ci. SOA, || .||a) satisfies property
).

iv) If (A, || .|l») satisfies property &,.) then clearly A = A algebraically and there exists p > 1
such that for every « E A

sup ||P,,(OC)“)\ < ”(X”)\ < psup ”P”((X)”)\.
neN neN

Hence || .|| and || . ||x are equivalent.

If A = A® algebraically and the correspondinp norms are equivalent then there is p > 1
such that Bx" C Byo» =Byo C pBy.

Hence, for o E W with lim,_ e ||Pa(c0)||x = < 0o we have a E By~ C apBay, therefore
« EAand |||y <ap. SO(A, || .||la) satisfies property &..).
v) If (A, || .]l») satisfies property ), then ¢ is dense in (A, || .|/x), because P,(c) E @ for
every a € A

For the converse, let a E A and £ >0. Then there is § E ¢ with [j« — B]|x <. Choose
m € N siich that P,,(3) = 3. Then |P,(x) — | < |P,(B) — ¢| =|B — x| implies

[[Pu(x) — ot]]x < |IB — x|lx<e,m<neN.

Remark 2.10. Ler (A, || - ||x) be a normal Banach sequence space. Since N7 = (N and
A® = A alhways we have that NV satisfies property v), N satisfies property 8) and
(@M || - |In) satisfies property ¢).



On Vector-Valued Sequence Spaces 9

For a given normal Banach sequence space A we have shown that A® A® and ¢* are
again normal Banach sequence spaces. Now we prove that AN and A +1 are normal Banach
sequence spaces, if both A and w are of that type.

Proposition 2.11. Let A and p be normal Banach sequence spaces with closed unit balls B,
and B,,, respectively. Let || .|[\ny, be the Minkowski functional of BN\ B, and || .||y, be the
Minkowski functional of Bx T B,,. Then A, || . |[any) and (A + w, || . [[x4-,) are normal
Banach sequence spaces.
Proof. In both cases property a)is clearly satisfied.

It iseasy to see that B, NB,, is normal and that its Minkowski functional definesa complete
normon A N . Hence A Nt is a normal Banach sequence space.

We define

g:AXpu—A+p, (o) — at+P.

This map ¢ is linear, continuous and open. Hence (A + i, || .]|x+,,) is a separated quotient
of a Banach space and therefore itself a Banach space.

It remains to show that B,y , is normal.

Let x(V E By, x® E B, and  E w with |B] < |ot" + )| be given. Forall n E N there
is a scalar Z,,, |z,| < i, such that B,, = z,]o"] +z,,|oc§,2’|.

Then (z,|")uen E By and (z,|o¢?)uen E B, because B, and B, are normal. Therefore

2
(Xf,")|),,eN € By + B,,.

B = an(xf,”l)nel\’ + (2n

and this implies that By T B,, is norinal.
Since the intersection of normal sets is also norinal, we get that

Byt — ) p(Bx +B,)
p>1

is normal and we are done.

Example 2.12. Let cz,—1 :=1,00, :=n,n E N, and a :=(,)nen. Then (o0 cy) Niye is
R normal Banach sequence space satisfying property 'y ) but neither property 6) nor property
€).

Let fork E N be /u+, C I C N suchthat |/¢| = | \ [,4,| = 0.

We define

B := {(uuen € lc : [[(Ctdnenlloc + Kk limsup oy, | < 1}, k€ N.

n—oc.nel;

By is normal and it is the closed unit ball of a norm on /,, which is equivalentto || .||o.
Hence B := ﬂkEN By is normal and closed in | If we denote with A the linear span of B
(which contains ) and with || .||, the Minkowski functional of B, then (A, || .||») is a normal
Banach sequence space.

Example 2.13. (A, || .||x) does rot satisfy property v.).
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Proof. Fork E N let a«® = (a®), e be defined by:

b 1 nel\ILy
n *
0 . n ¢ Ik \Ik-H 0
Form,k E N we have
] ] m+1 : m<k
I+ Timsup (o= {
n—oc.n€l, 1 m>k.

This implies «® E A and ||[«®||y = k + 1,k E N. On the other side we compute
[|1P,(o®)||x =1 for every k,n E N and therefore (A, || .||») does not satisfy property v,,.).

We remark that the first example of such type was constructed by S. Dineen, see | 13].

In the remaining part of this chapter we examine the connection between normal Banach
sequence spaces and perfect spaces.

Definitioii 2.14. For a linear space A C w we define (tlie so-called «-dual)

A={Bfew: Z|oc,,[5,,]<ocforall x € A}

neN

A is called perfect if A = A*>.
The following elementary properties are taken froin [24], §30, 2.

Remark 2.15. Let A C w be c linear space. Then @ C A* = AN**> and N> is ¢ normal
subset of w.

If one assumes, in addition, that \ contains ¢ then A and N form in a canonical way «a
dual system (A, A*) with bilinearfomi (e, B) — Y02, &uBn. SO, for example, the strong
topology BN, A*) and tlie weak topology c(A, A™) on A are uniquely determined.

Now we prove a connection between normal Banach sequence spaces and perfect spaces:

Theorem 2.16. Ler (A, || - [|1) be a normal Banach sequence space satisfying property §,,.).
Then A is perfect and || . || » induces tiie strong topology B(A, AX) on A.

Proof.
[YForA CAlet

A" :={p EN* :IZoc,,B,,I < i forali « EA}.
nenN
If By denotes (as usual) the closed unit ball of A, we obtain (since B, is normal)
S={fecw: Z lo,Ba] < forall & € By}.
neN

3 is an absolutely convex, bounded and normal subset of w and its span [B%) contains .
,BS is inw:
Moreover, BS is closed in
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Let B = (B.)uen E B3 . Then thereis a sequence (B¥)uenien = (B*®)en in B such
that limy— . B =B, for alln EN.

Because B is normal, we have forevery N E N ,a E B, that Py(x) E B and hence for
everyk EN : Z”_l le, BP] < i, This implies for every a E By:

Z [OC”B”I _gupzlall[3ﬂ| —SUD lim Z |O(,,B(I\,I < 1

— neNk—
neN n 1 1EN n—l

. and it follows 3 E B5.

If we denoteby || - || x the Minkowski functional of B, we get that ([BS;]} .|| x) is a normal
Banach sequence space. Theorem 2.9 implies that this space satisfies even property 6).

Itis clear that [BS] C A*. In thenext step we prove that even [B;] =A% istrue. Assume this
is wrong. Then there eXiSt(Bn)neN =B E A% and asequence (((X”’ )nCN)Lc\—-((\”")&e\—(|Cl‘“|)k_\
in By with 3. o |8, > 2* forevery k E N. The completeness of (A, || . ||,) guarantees
that (ot,)weny = :—Z,\:] 27kx® ¢ By. Then

Z |‘X"B"| - Zzz A(X(I\)|Bn| = Zz Z “(A)|B11| 2 Zl = oy
"

n=| n=1k=]1 k=1 n=lI

a contradictionto g € A

So we proved up to now that (A", || .||x) is a normal Banach sequence space with closed
unit ball B$ which satisfies property 6). If we denote with || .||« x the Minkowski functional
of BS°® (the second polar taken in A**) we get that (\**, || - ||x x) is alsc a normal Banach

sequence space with closed unit ball B$° which satisfies property 6).
2)ForN EN letL, :={aEw :«, =0 forall » >N} aiid define for A C Ly:

N
Aoy = {B € Ly IZ o(”[_’)”| < i forali OCEA}.

n=|

Since B is normal, we have BS N Ly = (Bx N Ly)°™ and the same argumentalso yields
BS° N Ly = (B N Ly)°°Ly. The bipolar theorem impiies (B N Ly)°°ky = By N Ly and
therefore the norms || - [[x and || .||xx coincide on Ly. This is true for every N E A" and hence
both norms coincide on @(= {P.(x) :a E w, n E N}). With 1) we conclude that the normal
Banach sequence spaces (A, || .|[x) and (A**, || .||x x both satisfy property &,.). It follows

A= {x € w:sup|lPy()]x <oo} ={a € w:sup||Pu()]lxx <oo} =A"*
neN neN

and with theorein 2.9 we obtain that the iiorins || . ||, aiid || . ||x x are equivalent.
To prove that || .||\ generates the strong topology (A, A) on A it sufficesto show that BS°
(the closed unit ball of || .|| x x is a bounded barret in (A, a(A, A)).

° is clearly absolutely convex and absorbant. In i) we have shown that [BS] = A* and
therefore {>"°__, o, B, : @ E B} is bounded for every B E A.  Hence B°°* is 6(A,A*) -
bounded. Again from 1) we deduce that BS° is closed in w and this implies that it is o(A, A*)
- closed.
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Remark 2.17. i)The completeness of (A, || - ||x) is essential for the proof of theorem 2.16, it is
not sufficient to take A as « normal and dense subspace of a normal Banach sequence space:

Consider © equipped whith || .||1. Then this space is dense in (I, ,|| - ||1) and @ is iioriiial
but (@, ©*) = B(@,w)is the finest locally convex topology on ¢.

i) From tieproof of theorem 2.16 follows:

For every normal Baiiacli sequence space A tlie a-dual N* is @ normal Banach sequence
space satisfying property 8), if we equip N> with the Minkowski functional of B3*" .

iii) Analysing tlie proof & tlie above theorem one can give tlie following sharper result:

Let (A|| .Ix) be a normal Banach sequence space. Then N** = X&) and || .|| x» generates
the strong topology B(A™ X, A%) on A%,

iv) Let (A, || -]|») be o normal Baiiacli sequence space satisfying property €). With theorem
2.9 and tlie previous remark we obtain thar A is tlie regular subspace (in tlie sense of T.
Komura&Y. Komura[23))oftheperfectspaceN®. Confer also [36], p. 195.

3. VECTOR VALUED SEQUENCE SPACES

Let (A,]| .|la) be a normal Banach sequence space with closed unit ball Bx. For an
absolutely convex subset C of a locally convex Hausdorff space E = (E, 7 Jve denote by p¢
its Minkowski functional (defined on the linear span [C] of C). So we have that the system
cs(E) of all continuous seminormson E is equal to {py : LI E U(E) absolutely convex}. We
definethe vector valued sequence space

NE) =M, T)) :={" 1 (p(x,))nen E A for every p E cs(E)}
and for an absolutely convex subset C of E
AC) := MC(E,T)) == {x e NE)N[CIY 1 (pc)uen € Br}.

Then A(E) is forevery norrnal Banachsequencespacehand every locally convex Hausdorff
space (E,7) a vector space which we equip with the locally convex Hausdorff topology
admitting

{AU) : LI E Uy(E) absolutely convex}

as a zero basis. Equivalently, the topology on A(E) is induccd by the seminorms x =
Cdnen ¥ (|P))uen||x,p € es(E).

We note that A(E) contains E as a cornplemented subspace.

If E is metrizable, then so is A(E). Moreover, if (E,|| .||g) is a normed space, then the
topology of A(E) is induced by the norm

X = (f\'n)neN“(“-\'n”)MEN“/\ .

We will denote this normed space by A(E, || . [|£)) or by AE), || -||ae)-

Let the locally convex space (E,7) be coiitinuously included in the locally convex
Hausdorff space (F,S). Then A((E, 7)D) continuously included in A((F,S)). Hence, if
B is a bounded and absolutely convex subset of (£,7) we get A(([B],ps)) C A(E,T)) and
theiefore (algebraically) A(B, ([B],p5)) = AMB, (E,7)).
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We now prove that for every absoliitely coiivex C C E the set A(C) depends only on the
relative topology on C indiiced by (E, 7). We denote by 7¢ the finest locally coiivex topology
on the spari [C] of C which coincides with 7 on C.

Proposition 3.1. Ler (A, || .llx) be a normal Banach sequence space, (E,T) be d locally
convex Hausdorff space and C C E be absolutely convex. Then

MC(E,T)) =MC,(C), Te))

and the relative 1opologie induced by N(E, T)) and N([C), 7 ) Doincide on this set.

Proof. 1) Let V E ULy(([C], T¢)) be absoliitely convex.
Then there is U E Uy((£, T)) absolutely convex siichthati/ N C C 1 V.

Fors = (x,)uen E [CIY with (pu(x.))uen E By and (pe(x)uen E By we get for n E N:
X E @pue)U) N 2pex)C) € 2(puea) T pe))U NnC

1 o
C 2pylxy) + pc(x,,));1 % if pyxn), pe(x,) >0,

-

| .
X, € I)C(X")Z % if I7U(xn) =0< [)('(Xn)\
1 .
X, € I)U(X”)Z 1% lf])(‘(.\',,) =0< I)U(-\‘n)»
1
xn € {)Z V forevery p >0 if pelxy) = pylxy) = 0.

Forevery n € N thisimplies 0 < py(x,) < 2(1)U(.x,,)+pc(x,,))§ and therefore (pv(x,))nen €

B) since B is normal. Therefore we obtain
{-" € |C]N . (])U(xn))n(—j/\"(]7(‘(3'”));161\’ € BA}
C {-\' € [C]N : (])V(-ru))nGN € B/\}

2) Clearly one has A(([C), 7¢)) C A(E, T)) N [CIY. this shows A(C, ((C], 7¢)) C A (C,(E,
).

Let V € Uy(([C], T¢)) be absolutely convex. Because of 1) there is an absolutely convex
U € Uy((E, T)) such that

MC(E,T)) C {x € [CTY : puxaDnen, Pcln)nen € A}
C {«\' € [CIN : (I)V(v\'n))neN € )\}

Since V is arbitrary we get MC,(E,7)) C M(C], 7¢)) and therefore A(C,(E, 7)) C
A(C, ([C], T)). To prove the remaining topological identity we first note that A((E, T)) induces
on A(C, (E, T)) acoarsertopology than A(([C], T¢)). For the converse let an absolutely convex
V € Uy(([C], T¢)) be given. With 1) and A(([C], T¢)) D AMC,(E,T)) we get the existence of
an absolutely convex U € Liy((E, T)) such that

A(C» (E, T)) n {.\' € ’\((L» T)) . ([)U('\'n)nEN € B,\}
C {x € MUCLTe)) © u@)uen, Pcn)neny € B}
C {-\' € M(CL,Te)) (Pv)nev € B,\}
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and this yields the conclusion.

Corollary 3.2. Let (A, || - ||) be a normal Banach sequence space, E be a vector space and
C C E be absolutely convex. Moreover, let Fy, Fa be algebraic subspaces of E containing C,
equipped with locally convex Hausdorff topologie T)(T>, resp.). If both topologies coincide
on C we have

MC,(Fi, 7)) = MC, (F2, D))

and the topologies induced by N((Fy,Ty)) and N(F2,T2)) coincide on this set.

In the next result we consider properties of the sets A(B) if B is a bounded, closed and
absolutely convex subset of a locally convex space E. It is clear that then A(B) is again
bounded in A(E). We prove implications of additional properties required for A.

Theorem 3.3. Let (A, || - || 1) be a normal Banach sequence space and let E be a locally convex
Hausdorff space Moreover, let B C E be absolutely convex, I)ounded and closed.

i) Then /\(B) c [BY and for every x = (X,)uen € )\(B) and every m € N we have
((l)li(-\n))nfmv (O)n > m) - Pm((])[)‘('\n))HEN) S B,\~

i) IF O\ || - ||2) satisfies property y) then N(B) is closed in its span |N(B)) equipped with the
relative topology induced by EV.

i) If N || - 1) satisfies proepriy y,.) then there is p > 0 such that the closure of N(B) taken
in its span [N(B)] equipped with the relative topology induced by EN is contained in pA(B).

iv) If A || - ||2) satisfies property 8) then N(B) is closed in EV.

v IF O || - |6) satisfies property ,.) then there is p > 0 such that the closure of N(B) taken
in EN is contained in pA(B).

vi) If N\, || - ||n) satisfies property €) then EY) is large in N(E), i.e. for every bounded set
By in N(E) there is another bounded set By in AE) such that By is contained in the closure of
B> N E™. In particular EN) is dense in A(E).

Proof. i) Since B is closed, we get )\(B)” C HHE/\' 1Guren]|aB C [BIY. Letx = (X,)nen €

A(B)E and m € N be given. For arbitrary ¢ >0 there is X = (x{9),en € A(B) such that
pe() < pp() + ¢ forevery n € {1,2,...,m}. Hence

m

IPu(@sa)nem|n S [|1Pa(@s)) + nen)||a < 1+ ¢ Z 1@ renlx-

n=1

i) Letx = (tuwen € MB). N [AB)] be given. This implies x € ACE) and (2p(v)nex € A.
Using i) we get
sup ”Pm((l)li(v\'n))ue;\’”,\ <1

meN

and property y) implies (pg(xu)nen € Ba.
i) If (A, || - || 1) satisfies property v,,) theorem 2.9 guarantees the existence of an equivalent
norm on A which satisfies plOpCl ty v). The assertion follows with ii).

iv) Letx = (x,)uen € }\(B) . With i) we get

sup ”Pm((l)ll(f\'n))ne:\’”,\ <1

meN
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and property 6) implies (pp(x,))uen E Ba. It remains to show that x € A(E). But this is
implied by tlie boundedness of B.

v) Can be proved by the same arguinent used for iii).

vi) Let B, be a bounded subset of A(E). Theii we have for every p E cs(E) that p, =

max{1,sup.cp [[(PC)uenllr} is finite. Thus, ,\,[ ‘
By :={x EAE) : (p(x))uen E ppB. forevery p E es(E)} \\ﬁ&%d’
N /.‘{ .

is bounded in A(E) and contains B;.
Let x = (x,)nen € B be given. The construction of B, guarantees that it contains the
sections ((x,)u<m, (0), o) forevery m E N.Since (A, ]| - ||) satisfies property ¢) we have

li]]}’ ||((0)n§§nn(])(xn))n > m)”,\ = lim ”Pm((])(-\.n))u@\" - (]7(-\.11))/161\’”,\ =0
n— X n— 2

for everyp E ¢s(E). This implies that the sections ((x,)u<m, (0)r > ) CONverge to x (m — X))

and we are done.

Remark 3.4. In tlie previous theorem tlie boundedness of the set B is essential as the trivial

example E :=R,B :=R shows. In this case we have mh =EN ¢ ME)for every normal
Banach sequence space \.

In contrast to part ii) of the previous theorem we present a simple example of a normal
Banach sequence space (A, || -||.) satisfying property v), a locally convex space E containing
an absolutely convex, bounded and closed set B such that A(B) is not closed in A(£) (hence
not closed in A(E) equipped with tlie relative topology induced by E™).

Example 3.5. B, _ (the closed unit ball of |, ) is an absolutely convex, bounded and closed
subset of w, bur co(B;_ ) is itot closed in co(w).

|iid69d,fOl'” E Nlet Xy :=((O)u§m(1)u >n) E BIN‘ Theno = (&)nen E C()((U)\C()(B[_\ )
But for every m E N the sections & := (&t )u<, (0)y > ) are contained in co(B;..) and
o™ = x(n — ) in co(w).

Instead of w one can choose in this exainple diagonal transforms 3+ 1, of /. (if 0< B, —
x a2 X)).

The following result is an application of proposition 2.4.

Proposition 3.6. Ler (A, || . ||) be a normal Banach sequence space and let E be d locally
convex Hausdorff space. For o1 ::(H(é,,k)ke\r“;'),,e\r tlie inclusions

EN S (o h)E) \—= (& L E) — EY

are continuous.

In contrast to the previous result we will prove that for every locally convex Hausdorff
space E the space A(E) contains |, (E)as a coiiipleineiited subspace wheiiever the norinal
Banach sequence space A satisfies not the property ¢). A siinilar result, assuming in addition
that A satisfies property y) and E is a Banach space, was ali-eady given by C. Ferndndez [15].
Qur proof is mainly adapted from her paper. The technical part of the proof is done in the
following lemma.



i6 L. Frerick

Lemma 3.7. Let (A, || .||x) be a normal Banach sequence space with closed unit ball By and
let E be a locally convex Hausdorff space. Ler & = () uen E @ with ||&||x = 1. Then there
is a continuous linear map T : ME) — E which satisfies the following three conditions:

DP(Tx))S | CaDnen]|x for every x = (xnen E ME) and every p E cs(E).

l[) T((O(,,,\‘()),,e,\r) :.\'().ﬁ)l' all Xo E E.

iii) {(x)nen E ME) 1x, =0if o, # 0,n E N} is contained in the kernel of T.
Proof. Let « = (c,)en E @ with ||x|[x = | be given. We denote S :={n E N : a, # O}.
Then the spaceLs :={(B.)wen € A : 3, =0if n ¢ S}coiitainse and it is of finite diinensioii.
We equip Ls with the norm induced by || - ||». The dual of this spaceis isomorphic to Lg. Using
basic duality theory we get the existeiice of (e, ).enx E Lgs With the following two properties:

x x
lzanﬁnl < 1 for every (Bn)neN € LgN B, and Z ayoy = 1.

n=1 n=|

Since B is normal we even get

Z Ianf’nl S | for every (Bn)né/\’ € B,\-

n=I1

We definethe linearmap T : )\(E) — E by T((x)uen) := Zn_, ApXy.

Forevery xp € E we havez — @nCuXo =Xg. Thisimpliesii) and (a,)nen € Ls guarantees
iii). To prove i) let x = (x,)uen E A(E) and p E cs(E) be given. Using the properties of
(ay)nen proved before we get:

/)(T(\)) =P <Z an-\'n> S Z |an|]7(-\'n) S “(])(v\'n))nEN”)\-

n—=1 n—|1

This shows property i) and hence the continuity of T.

Theorem3.8. (¢f. [15],2.3)Ler(A, || .||5) be a normal Banach sequence space not satisfying
property e)and let E be a locally convex Hausdorff space. Then ME) contains o complemented
copy of [ (E).

Proof. A does not satisfy property ¢) and hence there is 1t E A with lim sup,_ . ||P.(1) —
ullx >0.  Hence (P,(wW).en is not a Cauchy sequence in A. This implies the existeiice
of a strictly increasing cequence (m)ren Of natural numbers and of 6 >0 with ||~,, +. (W) =

P""(u)”’\ > 6 foreveryk EN. We define (O‘Ezkj)n&\‘ = P ”P’"H-l (.LL)_PML(LL)ll,TI(PIH;-i-:
(1) = Pu (W) and (ot )uey = & := Y =, «'¥, the limit taken in w. (By construction,
Yo, o caiinotconvergein ). Foreveryn E N thereism E Nsuchthate, == of® =
o™ (ot uen < 87 (| 1kn] e implies & € A.
Forx = (xk)ken € b (E)we define

X
() en == i(x) 1= Z(a,(lk),\’k),,e,\r the limit taken in EN).
k=1
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, therefore

For p € ¢S(E), (xt)ken € [~ (E) and n € N we get p(i(x),) < [(pOo)en|l~ |
(])(i(v\‘)u))neN € A and ”(/)(’.(-\.)n))né/\””,\ < ”o‘”,\”(])(-\'k))kéz\’” ~. This iITlPliCS that

i I (E) = ME), x = i(x)

is a welldefined, linear and continuous inap. It is easy to see that i is also injective.

Now we construct a continuous linear mapping T : A(E) — [~ (E) suchthat T oi is the
identity on /. (E).

For each k € N we have that (o{®),ey = a® € @ and [|J«®|]y = 1. Fork € N let
Ty :A(E) — E be the continuous linear inapping associated to o® constructed in lemma 3.7.
Wk define:

T:ME) = [ (E),x — (Tp(0)ken.

T is welldefined, linear and continuoiis, because for every k E N, x = (x,).en € A(E) and
p E ¢s(E) we have p(Ti(x)) < ||(p(x))nen]|» (by coiidition i) of lemma3.7).

By condition iii) of lemma 3.7 we have

Tk({(-\-u)n&\’ E A(E) Xy = OlfCX,(,L) 75 O}) . {O} and therefore Tk (Z"T:I_,”j_:k (a:(:“)-\‘m)né,’\")
=0foreveryk E N. Thisand conditionii) of lemma 3.7 imply forevei-yx = (x;)reny E |, (E):

X xX
TG) =T (@ xmhen = (Te(Y_ (@ xuhuewDren

m=l1 m=|\

= (Tk((O(ff)v\'k)::e.a\"))kel\’ = (xpken = X.

So, Toiisthe identity on I, (E).Recalling thati :1, (E)— A(E) is a continuous inclusion
and T :A(E) — |, (E)is linearand continuous, this proves the assertion.

Remark 3.9. Let (h)] - lx) be ¢ normal Banach sequence space satisfving not property )
and let E be a locally convex Hausdor(f space. Then §ME) contains i complentented copy
of co(E).

To see this, we rise the maps i : | (E)— ME) and T : ME) — | (E)constructed in the
proof of 3.8. From i(EY) ¢ E"))T(EM) = E™ and T 0 i|oyg) = ideye) we obtain that
i(co(E)) C q‘)'\(E) and T(@*(E)) = co(E). With tlie same argument used at tlie end of the
proof of 3.8 we get the desired statement.

4. BOUNDED SETS AND DUALITY IN VECTOR VALUED SEQUENCE SPACES

Let (A, || -{[») be anormal Banach sequence space and let E be alocally convex Hausdorff
space. In this chapter we will consider descriptions for bounded subsets of the space A(E)
especially if E is metrizableor a gDF space. It will turn out that there is a coiiiiectioii betweeii
these descriptioiisaiid the topological dual of A(E) provided A satisfies property ).

Definition 4.1. Let E be o locally convex Hausdorff space and let B be a subset of the
powerset P(E) of E. We call B « fundainental systein of bounded sets(in E)if it contains only
absolutely convex and bounded sets and if every bounded set is contained in some element of

B.
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A sequence (B,),en of subsets of E is called a fundamental sequence of bounded sets f
{B,, :ti EN} is a fundamental system of bounded sets in E.

With this definition B(£) :={B C E : B bounded and absolutely convex} is a fundamental
system of bounded sets. If E possesses a fundamental sequeiice of bounded sets (B,),cn,
then (C)uen :=(2" > i—, Biuen is @ fundamental sequence of bounded sets in E satisfying
2C, C C,4, foreveryn EN.

Itis easy to see that for every locally convex Hausdorff space E the sets {I, (B): B E B(E)}
and {BY :B E B(E)} are fundamental systems of bounded sets in /..(E) (cf. M. Florencio &
PJ. Paul [16],2.5). Now we give an example that for general normal Banach sequence spaces
h such a description of bounded sets in A(E) is not possible. We may even choose A =1,.

Example 4.2. Consider cq equipped with the weak topology. Then every bounded set in
E :=(co, 0(co, 1)) is absorbed by tlie bounded and closed set B,, (tlie closed unit ball in cy),
hence (nBe,)nen s U fundamental sequence of bounded sets in E(= (cy, 0(co, 11))). We have

(1B # 1, (E) and therefore (], (B
setsin/|(E).

Indeed, x :=(x)ueny = (O <, 1, (Ol > 2))nen is contained in /, (E),because for every
f EL =cywehave ) v < [Iflli. On the other hand 3°, .y [lxull~c = o0, SO x is not

contained in the span of /,(B,,). Using that /,; satisfies property 6) we can apply 3.3 to
conclude that /;(B,,) is closed in EY and therefore closed in /,(E). Hencex ¢ [11(3(“['@],

If E is a metrizable locally convex space, the situation looks much nicer. We prove the
following lemma to get a canonical description for a fundamental system of bounded sets in
AE).

(E) , .
U en s not a fundamental sequence of bounded

44)

Lemma4.3. Let (A, || . |5) be a normal Banach sequence space and let E be a locally convex
Hausdorff space. If (Ci)ren is U sequence of absolutely convex and closed subsets of E and
0<(xdren = € 1y, then

(YNC) < [ledllin([) o' o

kEn kEN

Proof. Set V :=ﬂkEN ock_'Ck. Let (x,)uen E mkeN ACy).
For every # EN and every k E N with p¢, (x,) =0 we have

X € oupe, () (o Cr).

Heiice, forn E N:

%, E (Z ape,())eg G k E N, if there isj E N with p¢,(x,) >0

=1
and

X, Ep ﬂ +Cr,p>0, if pc(x,) =0foreveryjEN.
keN
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This implies py(x,) < Z;, &;pc;(x,) for every n € N and therefore (py (X,)Dnen <
(Z;;, &ipc; (n)wen = Z;l oi(pc;(xy))wen. The completeness of A and (e, u)nen €
By,j € N, guarantecs Z}Z, &; (Pc, ()wen € ||e]| 1By and so we get (py(x,)nen € || ||iBa.

The following result is due to C. Fernandez and can be found in [28], 2.1.

Corollary 4.4. Let (A, || . ||x) be a normal Banach sequence space and let E be i metrizable
locally convex space. Then {\B) : B € B(E)} is a fundamental system of bounded sets in
A(E).

Proof. E possesses a zero basis (U,),en consisting of absolutely convex and closed sets. Let
B be a bounded subset of A(E). Tlien there exist p, >0 such that p C p,A(U,,) for every
neN. If C:(),cy2"pnUn then Cis boiinded in E and lemma 4.3 implies B C A(C).

Remark 4.5. For A =1, the above corollary has been proved by A, Pietsch (see{32]) and
it means that the space E satisfies the property (B)of Pietsch. If A is perfect, the previous
corollary is covered by ci result of R.C. Rosier [34] and he called locally convex Hausdorff
spaces E fundamentally A-bounded if {\(B) : B € B(E)}is a fundamental system of bounded
sets in A(E).

As the example 4.2 shows, an analogous description as proved in corollary 4.4 for the
bounded sets in ME) is not possible in general. Even in tlte case of DFM spaces (the strong
duals of Frécher-Montel spaces) there are counter examples:

For the DFM space E constructed by Kéthe [24], §31, 5. we have ¢o(E) ¢ ﬂl,é B €o(B).
(But later we will see that in this case one has to use the closures of the sets cp(B) to get a
Sundamental system of bounded sets in co(E).)

Now we consider tie situation on the dual side of metrizable locally convex spaces. We
recall some defirittions:

Definition 4.6. Let (E,l )be o locally convex Hausdorff space possessing c fundamental
sequence of bounded sets (B, )nen. E is called ci

i) gDF space if T is the finest locally convex topology on E whose restriction to each B,
coincides with 1 .

ii) DF space f (E, B )s Ro-quasibarrelled, i.e. whenever U is the countable intersection
of absolutely convex and closed zero neighbourhoods and U is bornivorous then U is again
a zero neighbourhood.

Remark 4.7. i) Let E he d locally convex Hausdoiff space which possesses o fundamental
sequence of bounded sets (By),en satisfving 2B, C B,4,, n € N. Then E (¢f. e.g. [29]
8.1.12) is a gDF space if and only if for every sequence (U,)nen of Z€Y0 neighbourhoods the
set (N, en(Un + By is again a 2er0 neighbourhood.

ii) Every DF space is o gDF space (¢f. e.g. [29], 8.3.3) and every ¢DF space is quasi-
normable (¢f: e.g. [29], 8.3.37), i.e. for every absolutely convex zero neighbourhood U in E
there exists an absolutely convex zero neighbourhood V in E such that for every p >0 there
isc bounded subset B in E with V C pU TB.

iii) Every gDF space satisfies the countable neighbourhood property, i.e., given any se-
quence (Up),en of zer0 neighbourhoods in E, there are p, >0 for every n € N such that
Muen PaUn is a zero neighbourhood InE (see e.g. [29] 8.3.5).
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iv) The strong dual of d mertrizable locally convex space is a complete DF space (¢f. e.g.
[29], 8.3.9)and the strong dual of a gDF space is ¢ Fréchet space (cf. e.g. [29], 8.3.7).

Now we improve remark 4.71). The idea is due to J. Bonet and A. Peris (personal
communication). Compare part ii)with [3], 5.A, p. 579.

Theorem 4.8. Let E be ci locally convex Hausdorff space.
i)E is a gDF space if and only if E contains ¢ sequence (B,),en of bounded and absolutely
convex subsets satisfying 2B,, C B, 4 ,jOr each n such that for every sequence (U,), ey 0f Z€10

neighbourhoods /e set (¢ (U +B,) is again c zero neighbourhood. In this case, mE),,E,\/
is o fundamental sequence of bounded sets in E.

i) E is ¢i DF space if and only if E contains d sequence (By)pen of bounded and absolutely

convex subsets satisfying 2B, C B4, for each n such that for every seqiieiice (U,)uen of
zero neighbourhoods and very (py)aen E (0,00)" the set [, cn (U, +§:Z=| prBy) is again a
Zero neighbourhood.
Proof. i) If E is a gDF space, then remark 4.7 i) implies the existence of the required sequence
(Bi)nen- FoOr the converse, let (B,),en @ sequence of bounded and absolutely convex subsets,
satisfying 2B, C B, 4, for each n, be given such that for every sequeiice (U,),en Of zero
neighbourhoods the set (1), y (U +B,)is again a zero neighbourhood. Using again remark
4.7 i) it remains to show that (B,,l Jaen is a filndamental sequence of bounded sets |n E.

Assume the existence of a bounded subset B of E which is not contained in B,, for every
n E N. Since 2B, C B,y there exists a bounded sequence (x,).ex in E with x, & nB,,
for every n E N. Hence, for every n E N there are zero neighboiirhoods U, in E with
x, & nU, +nB,. Thisimplies x; €k Myen(Un+B,) foreveryk E N, acontradiction, because
(Xt)xewn is bounded and and ﬂné/\’(U” + B,,) is a zero neighbourhood.

ii) Let E be a DF space. By definition, E possesses a fundamental seqiience of bounded sets
(Binen (satisfying2B, C B,4,,n EN). Let a seqiieiice (U,),ey Of zero neighbourhoods in
E and (pu)wen E (0, 00)" be given. We have to show that U :=(",cx(U + > i—=, PeBy) isa
zero neighbourhood. There exists absolutely convex zero neiglibourhoods V,, in E such that
2V, c U, for everyn E N. Heiice

—_—
=\ Vat+ > exB) CU.

nenN k=1

Then V absorbs each B,, and thereforeit is bornivorous. By definition, E is Rg-quasibarrelled
and this yields that V is a zero neighbourhood in E (whichis contained in /).

For the converse, let a sequence (B,),cn Of bounded and absolutely convex subsets of E,
satisfying 2B, C B, for each », be given such that for every sequence (U,,),en Of zero
neighbourhoods and every (Pwlnen E (0, 00)" the set(),cy (Un + > iy PxBi) i aadm azero
neighbourhood. If p, =4, 7 E N ,we get with i) that E is a gDF space and that B, Ve 19
a fundamental sequence of bounded sets in E.

It remains to prove that E is Rg-quasibarrelled. To see this, let a segiience (V,,),en Of
closed and absolutely convex zero neighborhoods in £ be given such that V :=, .\ V,
is bornivorous. There are p, >0 with 2"+'p,,B,, C V for every n E N and therefore



On Vector-Valued Sequence Spaces 21

> i=, B C 3V, forevery ti E N. This iinplies that V contains the zero neighbourhood
Muen Vi + > i=) PxBx) and we are done.

To apply the previous theorein to vector valued sequence spaces we need the following
lemina which is based on an idea of R. Hollstein [21], lemma |. (A similar version is due to
F. Mayoral [27). 2.8.1.)

Lemma4.9. Ler (A, || .||x) be a normal Banach sequence space and let E be o locally convex
Hausdorff space. Let By,...,B,, C E be bounded and absolutely convex and let U be an
absolutely convex zero neighbourhood in E. Then for every € >0 we have

m m

MUTY By € oMU + Y ABY.

g L=l

Proof. Let £ >0 be given. By 2.4 there is some 0 <(c,)pey E €Bx.

Since A(U) is a zero neighbourliood which absorbs the bounded sets A(B;) we can assume
without loss of generality that 1 == |. The full assertion follows by induction.

Let (x,)nev € MV) with V :=U + B,. The boundediiess of the set 5, then implies for
everyn EN:

Xa E (Pylx,) + o) U +I7V(-\'n)Bl .

Hence there exist v, E (pv(x,) T «,)U and 2, E pv(x,)B) such that x, =y, +:, for every
7 E N. By the normality of the closed unit ball By of A we get

(])[,"()‘n))ue;\’ E “(])\"(-\'n) + o‘n)né:\"“,\B,\ C (l + E)B,\

and
(])B.(:n))ne:\’ S “(]7\"(-\.11))116:\"”B/\ C B)\-

Then (vyeen E (14 €)AMU) and (z,)wen E A(By) by the boundedness of B;.

Theorem 4.10. Ler (A, || .||x) be o normal Banach sequence space and let E be ¢ DF space
(¢DF space). Then ME) is ¢ DF space (gDF space, resp.). If (Byuen is i fundamental
X o . — ) .

sequence of bounded sets in E satisfying 2B, C B, for every n € N, then (\MB,) ~ nen IS
a fundamental sequence of bounded sets in N(E).
Proof. In both cases there exists a fundamental sequence of bounded sets (B,).cn in E
satisfying 28, C B, 4, foreveryn E N.

Let E be a gDF space and let (W,),cx be an arbitrary sequence of zero iieighbourhoodsin
A(E). Then there are absolutely convex zero tieighbourhoods U,, in E with 2A(U,)) € W, for
every 7 E N. Using lemina 4.9 we get

MW+ By) C [JMUn+By) C QAU + A(B,)

neN neN neN

C [)(Wa+AB).
neN
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Since E is a gDF space we get that (), (Us + B,) is a zero iieighbourhood in E and this
implies that [),cn(Ws + A(B,)) is @ zero neighboiirhood in A(E). Applying theorem 4.8 i) we

see that A(E) is a gDF space with fundamental sequence of bounded sets (\B,) ), =)

The proof in the DF case runs along the same lines: Let E be a DF space antl let (W,,),.cx
be a segiience of zero neighbourhoods in A(E) and let (p,),en E (0, )Y be arbitrary. Then
there are absolutely convex zero iieighbourhoods U, in E with AQU,,) C W, foreveryn E N.
Using lemma 4.9 we get

MOYWa+ DB € (VAU + Y paBi)

neN k=1 neN k=1

C [CAUD + Y oxMB)

neN k=1

C [\ W+ oxABL).

nen k=1

Since E is a DF space we get witli theorem 4.8 ii} that (), . (U, i puBy) is a zero
neighbourhood in E aiid this implies that (), ¢ (W, +ZZ:, prA(By)) is a zero neighbourhood
in A(E). Applyiiig again theorem 5.81ii) we arrive at the conclusion.

Corollary 411. Let (A, || .||x) be o normal Banach sequence space and let E be o locally
convex space. If E is o gDF space, then {7\(3)/\(“ . B € B(E)} is a fundamental system of
bounded sets in N(E). |feither E is o gDF space and N satisfies property 6)or E is metrizable,
then even {A(B) : B E B(E)} is a fundamental system of bounded seis in NE).
Proof. Because of 4.10 and 4.4 only the secoiid assertion in tlie case that E is a gDF space
aiid A satisfies property 6) still needs a proof.

But this follows from the fact that A(B) is closed in A() whenever B is a bounded, closed
aiid absolutely convex subset of E aiid A satisfies property 6) (cf. 3.3).

Remark 4.12. If E is o ¢DF space and N satisfies property v), then ME) is a topological
subspace of N (E) and for o given fundamental sequence of bounded Sets (B,),ey satisfying
2B, C B, 4, for every n E N ive get that AAB,) N NE))uew is a fundamental sequence of
bounded sets in A(E).

Now we consider the topological dual A(E)” of A(E) if A satisfies property ¢). Tt will turn
out that the properties proved in corollary 4.11 are iinportant for a canonical descriptioii of
the strong dual of A(E). Thc results coiicerning this topic were essentially proved by R.C.
Rosier [34] in the more general context of M-topologies. We give here short proofs for tlie
case we consider. Let (A, .|/x) be a normal Banach segiience space satisfying property ¢)
(i.e. @ isdensein A)and let E be alocally convex Hausdorff space. In this case £V is densc
in A(E) aiid therefore we can ideiitify a contiiiuouslinear form f E A(£)’ via

Jn(x) i= f(O) <y ¥, (O) > ) € Nyx € E,

with the sequence (f,,)nen in E'.
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Lemma 4.13. Ler (A, || - [|x) be a normal Banach sequence space satisfying property €) and
let E be a locally convex Hausdorff space. If (fi)wen = f € ME) and if C C E is absolutely
convex, then we have for every 0 # (0)peny = & € A

||((XHP("°(/;1))H€1\’”l ”06”\ sup lf(\)l
XENC)

Proof. Without loss of generality we inay assume that the ripht hand side is finite, |||y =}
and |a| = o E ¢.
First we l]Oth(,\') = Zne;\".t;l(-\'n) forS = (-\‘n)n@\’ E [;N) and ‘:Z%ne,\fOC”C C )\(C) It follows

”((Xn/)("3 (/;1)):161\"”1 =5 Z Xy co Un) S Z

neN neN €a,c
S SUP{Z l/;:('\'n)[ : (-\‘n)nez\’ € ':';'\/'nel\’(xnc}
neN
= SUP{| Z/n(‘u)' (\n)nc N E ;IIGN(XI!C}
nEN
< sup{|f()| x ENMO)}.

Fora normal Banach sequence space A we considered in remark 2.17 ii) its a-dual A*. We
had equipped this space with the norin || .||y admitting the polar )" of By as its closed
unit ball. We could show that (A*, ]| .||x+) IS @ normal Baiiach sequence space satisfying
property 6). With the help of the previous lemma we caii prove (cf. {34], p. 492-494) the
following representation of the dual of A(E).

Theorem 4.14. Lei (A, || . ||x) be i normal Banach sequence space satisfving properiy €) and
let E be o locally convex Hausdorff space. Then

i) ME)Y CAN((E', B(E', E))).

iij For every absolutely convex and closed subset C of E we have

A(C)O/\(I:VD' — AX(CO) nA(E)/

iiij The strong topology on the dual of N(E) is fuzez than the relative topology induced by

AXWE, BCE', EY)). They coincide if and only if {)\(B :B E B(E)} isa fundamental system
of bounded sets in A\(E).
Proof. i) Let f = (f;))nen be  continuous linear form on N(E). Then there is an absolutely
convex zere neighbourhood U in E such that sup ¢, [f(0)] < 1. The previous lemma
implies (pys (f))weny E A*. Hence f EX™ (((LU®], pyo)). U° is equicontinuous and therefore
strongly bounded and we getf € N*(([U°], pye)) C AN((E', B(E, E))).
iij Let C C E be absolutely convex and closed. Let f = (f,)nen E )\(C)”““I Using
i) we see f € N(E', B(E,E)))and with lemma 4.13 we get (Pco(fy)nen € By«. Hence
f ENY(C®).
For the converse inclusion let f = (f,)nen E N(C°) NAEY be given. Then we have for
v € A(C) that
@< 1l <D petapes () < 1,
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because pe(x,) E By and pee(f,) E By« (= B;’\)‘ ).
Applying coroliary 4.11 we get:

Corollary 4.15. Let (A, || . [|x) be a normal Banach sequence space satisfying property )
and E be ¢i gDF space or & metrizable locally convex space. Then the strong dual of ME) is
a topological subspace of A*((E’, B(E',E))).

Remark 4.16. Let (A, || .||x) be a normal Banach sequence space satisfying property €). Then
A =N* and it Beasy to see that dual norm || .||x is || . |[xx-

We now consider tlze general case (the proaf is implicitly contained in [34] and [16] where
algebraic and topological identities for more complicated vector valued sequence spaces
were proved). The second part is proved (under much stronger assumptions) in {28], 2.3.

Theorem 4.17. Let (A, || . [|») be a normal Banach sequence space satisfying property E)
and let E be a locally convex Hausdorff space. Then NEY coincides algebraically with
AX((E', @(E’R)))if and only if for every f = (f,)uen EAX{E', B(E',E)))there is U E Uy(E)
such thatt E A*(U°).

If one of this is true and if, in addition, {/\(B)Nb) 1 B E B(E)} is a fundamental system of
bounded sets in A(E), then tie strong dual of A(E) is N*((E’, B(E’, E))).
Proof. Let U be an absolutely convex zero neighbourhood in E and f = (f;,),,cx E A™(U®).
Then we have for every x = (x,),en EA(U)

S 1 €D pue (Pl < 1

neN neN

aiid hencef’ E A(EY.
For the converse, ietf” E A(E)’ be given. Then thereis an absolutely convex and closed zero
neighbourhood & in E such that f E A(U)°ME". Theorem 4.14 part ii) guarantees f E A*(U°).
To prove the remaining topological identity we apply theoi-ein 4.14 part iii).

Remark 4.18. Let (A, || - ||5) be u normed Banach sequence space satisfying property €) and
let (E,|| .||g) be a normal space. If we denote the dual normon E by || - ||, then tlie theorems
7.17 and 4.14 part (i) imply that M(E, || -||)) =A*(E"|| - |lz)) (isometrically).

Corollary4.19. Let (A, || .||x) be ¢ normal Banach sequence space satisfying property €) and
let E be a quasibarrelled locally convex Hausdorff space. If {\*(B) : B E B(E', @(E’E)))}
is a fundamental system of bounded sets in A* ((E*,B(E’,E))), then the dual of ME) is
(algebraically) A\*((E', @(E’E))). If, in addition, {m’\(m . B E B(E)} is a fundamental
system of bounded sets in A(E), then tlie strong dual of ME) BA* ((E”,B(E',E))).
Proof. Using theorem 4.14 it remains to show the algebraic identity. Let f = (f,).en E
AX((E', (E’,E)))be arbitrary. Then there is an absolutely convex and bounded set B in
(E’, B(E',E))with f € A*(B). E is quasibarrelled, hence B C {J° for some zero neighbour-
hood U in E. Applying theorein 4.17 we have f E A(EY.

Using the corollaries 4.11 and 4.19 and having in mind that A* satisfies property 6) (for
every normal Banach sequence space A) we get:
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Corollary 4.20. Let (A, || .||x) be a normal Banach sequence space satisfving property &). If
E is « metrizable locally convex space or-if E is a quasibarrelled DF space, then tlie strong
dual of NE) is N (£, B(E',E))).

In the last part of this chapter we waiit to consider properties of boundecl subsets of vector
valued sequence spaces. We use essentially lemma 4.3 and lemma 4.9 to get the results. But
first let us piove tlie following lemma:

Lemma 4.21. Let E be a locally convex Hausdorff space. Let B a bounded and absolutely
convex subset of E and let U be an absolutely convex zero neighbourhood in E. For e > 0 tlie
Jowing liolds:

i) for every x E B¥ we have B" N(x+ U) C W&)—Uﬁ +x,

iBENU CBN(T To)U .
Proof. i) Letx € B" be given. If V is an absolutely convex zero iieighbourhood which is
contained in £ U, theii

Bfnx+U) cB+V)NK+U)C(@B+2V)NU)+x
C@BNQRV+U)+2V+xC2BN (1l +¢)U + 2V +x.

This implies i).
ii) Let V be as in the pioof of part i). Then

BENUCB+VINUC BNV +UN+VCBNU+eU)+V.

This proves ii).

Proposition 4.22. Let (A,] - ||a) be a normal Banach sequence space and let (E, T) be a
—\( .

locally convex Hausdorff space such that {\(B) * :B € B(E)} is a fundamental systent of

bounded sets in A(E) (e.g. let E be a gDF space). If every bounded subset of E is metrizable,

then tlie same holds for every bounded subset of A(E).

Proof. Every boiinded subset of A(E) is contained in A(B) for some B € B(E), so we rnay
restrict ourself to such sets. Let B E B(E) be given and consider a metrizable locally convex
topology Sori tlie span of B which coincides on B with 7. Theii proposition 3.1 yields that on
A(B) tlie topologies induced by A((Z, 7)) and A(({B],S)) coincide. A((|B], S))s metrizable
and we apply lemma 4.21 (o get tlie assertion.

The followiiig result is of tlie same type.

Proposition4.23. Let (A, || .||a) be a normal Banach sequence space and suppose (E\T) is
a locally convex Hausdorff space such that {/\(B)'W:) 1 B E B(E)} is a fundamental system of
bounded sets in A(L) (e.g. E is a gDF space). If E satisfies Wi strict Mackey condition (i.e.
Jor every B € B(E) there is C C B in B(E) such that the topologies on B induced by T and
pe coincide), then A(E) satisfies the strict Mackey condition.

Proof. Every bounded set of A(£) is contained in A(B) for some B E B(E), S0 we may again
restrict ourself to such sets. Fix B € B(E). Then it exists some C € B(F) such that foi
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every ¢ >0 there is an absolutely convex zero neighbourhood & with BN/ C ¢C. Using the
lemmata 4.21 and 4.3 we get:
—\) AME)

AB T NAMU) C S N

() A(E)
“henU “*x0
and it follows that the topologies induced on m/\(m by ME) and p__. coincide.

We noted already that for every normed (metrizable locally convex) space E the space A(E)
is again normed (metrizable, resp.). Now, we consider quasinorniable spaces E, i.e. locally
convex Hausdorff spaces satisfying the following property:

For every absolutely convex zero neighbourhood U in E there exists an absolutely convex
zero neighbourhood V in E such that for every p > 0 there is a bounded subset B in E with
vV CpU+B.

Proposition 4.24. Let (A, || .|[x) be o normal Banach sequence space and assume E is
quasinormable space. Then A(E) is quasinormable.

Proof. Let W be an absolutely convex zero neighbourhoodin A(£). Then there is an absolutely
convex zero neighbourhood U in E with 2A(U) C W. By assumption is E quasinormable.
Hence, there exists another absolutely convex zero ncighbourhood V C U in E such that for
every p >0 thereis a bounded subset B in E with V < pU +B. Applying lemma 4.9 we get:

AMV) C AU T B) C 20MU) T AB) C pW T AB).

This implies that A(£) is quasinormable.

5. BARRELLEDNESS CONDITIONS FOR VECTOR-VALUED SEQUENCE SPACES

Let (A, ]| .ll») be anormal Banach sequence space and Ict E be a locally convex Hausdorff
space. In this chapter we will consider descriptions for bounded subsets of the space A(E)
especially if E is metrizable or a DF space. As already noted the space A(F) is metrizable
(or normed) whenever E has this property. In [17] the completeness of the space A(E) was
characterized: A(E) is complete if and oniy if E is complete.

We are now interested in barrelledness conditions for Fréchet- and DF space-valued sequ-
ence spaces. Precisely, we waiit to investigate the barrelledness of A(E) for DF spaces E and
the distinguishedness of A(FE) for Frécliet spaces E.

If @ is dense in A we noted inremark 2.17 iv) that A is the regular subspace (in the sense of
T. Komura & Komura, [23)) of the perfect space A®. In this case M. Florencio & P.J. Paiil
[16], 3.18, proved that A(E) is a (barrelied) DF space if and only if £ is a (barrelled) DF space.
If, in addition, ¢ is dense in (A*, B(A*,A)) we can again apply the result of M. Florencio &
PJ. Padl [i6], 3.18, to ensure for every Fréchet space E that A(E) is distinguished if anti only
if SOiSE.

ForA =1, S. Dierolf ([12], (5.i3)) proved that /,.(E) is a DF space whenever E is a DF
space. K.D. Bierstedt & J. Bonet ([2], 1.5) could show that /. (E) is a quasibarrelled DF
space if and only if E is a DF space satisfying the dual density condition. in a previous paper
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K.D. Bierstedt & J. Boiiet | | ] proved for metrizable spaces E that /(E)is distinguished if aiid
only if E satisfies the density condition.

First we consider barrelled metrizable spaces E aiid we prove that in this case A(E) is
barrelled. To do this we need alemma. which is based on an idea of A. Defant & W. Gavaerts
[8], it appears in a wcaker form in [2] and it is contained in aii abstract Banach-Steinhaus
theorein due to S. Diaz. A. Ferndndez, M. Florencio & P.J. Pail (see (9], theoreiii 1). But for
the sake ofcompleteness we will prove here version we need.

Lemmab.1. Let (A, || - ||)) be ci normal Banach sequence space and let E be ci locally convex
Hausdorff space. If N(E) is quasibarrelled and E is barrelled, thest N(E) is also barrelled.
Proof. Let T be a barrel in A(E). We have to show that T absorbs the bouiided sets. Let B E
B(\(E)) be arbitrary. Withoiit loss of generality we assume that B = (¢ .z, PpAP ™' ([0, 11)
with positive p,. p» € ¢s(E). To abbreviate we define forn € V:

m :=HE X H{O} and M, :ZH{O} X H E.

k<n k>n k<n k>n

For n E N it is immediate that A(E) is topologically isomorphic to the direct sum (A(E) N
L) & (WE)NM,) and A(E) N L, is barrelled (it is isoiiiorphic to £"). Hence, T absorbs the set
BNL, foreveryn EN. From B = ﬂpem(,ﬂ p,,)\(]f'([()\ 1)) weobtain B CBNL,+BNM,.
So, the proof will be coinplete if we can show that 7" absorbs B N M,, for some n E N.

Assume this is iiot truc. Theii. for every n E N, there exists 1@ ::(.\'(k"’)ke\: E@BNM)\
2%T. If E deiiotes the completion of E. theii the space A(E) is coinplete (see [17]) and we
may define a map f :/y — NE) by

e

fle) == Z 0,27,

n=1

A standard argument (cf. [29], 3.2.13) shows that f(B,,) is the closiire of the absolutely
convex hull of {27 :n E N}. So. f(By, is i compact (and absolutely coiivex) subset of
A(E), heiice a Baiiach disc. Bul we coinputc for every « E / that

x
§ —n (u) § 0(,17 -n \(ll]
n=1 keN

n=1

Hence, f(B),) is even contained in A(E). Since every barrel absorbs the Banach discs,
f(By,) is absorbed by T. In particular, T absorbs {27"x™ : n E N}. a contradiction to
X €2%T,neN.

Remark 5.2. i) Let E ci locally convex Hausdorff space. Let T be an absolutely convex subset
of ME), which absorbs every Banach disc in NE). If T absorbs. in addition, every bounded
subset of [ 1<, E x [1; =,{0} for every n € N, then the proof of lemma 5.1 shows that T
absorbs every bounded subset of M(E).

i) According to 1).we can replace in lemma 5.1 (quasi)barrelled by No-(quasi)barrelled or
by (ultra)bornological.
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If E is a inetrizable locally convex space, then A(E) is quasibarrelled. Using this we get
with the help of lemma 5.1:

Corollary 5.3. Let (A, || - ||) be o normal Banach sequence space and let E be o metrizable
locally convex space. |1 E is barrelled, then N(E) & barrelled.

It is much harder to obtain a result similar as 5.3 if E is a (quasi)barrelled DF space. It
will turn out that in this case the property ) for normal Banach sequence spaces plays an
important role. We first consider the situation if A satisfies £). The following theorem is
contained in aresult of M. Florencio & P.J. Paul (cf. [16], 3.8 (i)).

Theorem 5.4. Let (A || - ||5) be a normal Banach sequence space satisfving property )
and let E be o quasibarrelled locally convex Hausdorff space such that {A\*(B) : B €
B((E', B(E',E))) }Yis a fundamental system of bounded sets in N* ((E”,B(E’,E))). Then A\(F)
is quasibarrelled.

Proof. Fix abounded subset B of the strong dual of A(E). Using theoreiii 4. 14iii) we conclude
that B is bounded in A* ((E’, (£, E))). Now, there exists some C E B{(E', B(E',E)))with
B C AX(C). Using that E is quasibarrelled, we find a closed and absolutely convex zero
neighbourhood U in E whose polar U° contains C. Applying theoreiii 4.14 ii) we get
B C A(U)°ME) and therefore B is equicontinuous.

Corollary 5.5. Let (A, || . ||x) be a normal Banach sequence space satisfving property €) and
let E be a guasibarrelled DF space. Then A(E) is quasibarrelled.

Proof. (E’,R(£',E))is inetrizable and corollary 4.4 implies that {A*(B) : B € B((¥,
B(E',E))) }is a fundamental systcin of boundcd sets in A*((E”,3(E’, E))).An application of
5.4yields the desired statement.

Corollary5.6. Let (A, || . ||x) be a normal Banach sequence space satisfving property ¢) and
let E be o barrelled DF space. Then NE) is barrelled.

Proof. Theabove corollary implies that A(E) is quasibarrelled. Applyinglemma 5.1 completes
the proof.

Let us consider the situation in the case that E is a DF space and A does not satisfy property
£).

For exainplethis situation appears, if £ s the strong dual ofa iiietrizable space F and A is the
space | then /(£) is the strong dual of the space /,(F). Hence, [ (E) is (quasi)barrelled
if and only if /,(F) is distinguished. K.D. Bierstedt & J. Bonet [1] proved that /;(F)is
distinguished if aiid only if F satisfies Stefan Heinrich’s density condirion (which will be
introduced later). They obtained that this density conditioii is equivalent to the fact that every
bounded subset of E (the strong dual of F) is inetrizable. In a subsegiient paper [2] K.D.
Bierstedt & J. Bonet introduced the so-called dual density condition for locally convex spaces
E aiid they could show, whenever E is the strong dual of a inetrizable space F, that E satisfies
the dual density condition if and only if F has the density condition. Moreover, whenever E
is a DF space, they proved that the space /.. (E) is quasibarrelled if and only if E satisfies the
dual density conditioii. We will prove that tlie same condition is sufficient and necessary even
in the general case. Using results from the previous chapter we will see that the dual density
condition is sufficient. Tliat it is even necessary will follow by a reduction to the case which
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was proved by K.D. Bierstedt & J. Bonet.
Now, we introduce Heinrich’s density condition and the dual deiisity condition. S. Heinrich
introduced the density conditioii in the context of ultrapowers of locally convex spaces.

Definition 5.7. (¢f. f19], 1.4)A locally convex Hausdorff space E with zero neighbourhood
filter Uy(E) satisfies the deiisity condition if; given any function p : Uy(E) — (0,00) and an
arbitrary NV € Uy(E), there always exist a finite subset B of Uy(E) and a bounded set B in E
such that

() p(WUCB+V.

veF

It is easy to see and already noted by S. Heinrich that every quasinormable locally convex

Hausdorff space satisfies the density condition.

Remark 5.8. (¢f. [/9], 1.4)In tie definition of the density condition rve may replace Uy(E)
by any basis U of the zero neighbourhood filter of E.

Indeed, the outcoming condition is not strictly stronger than the density condition:

Given 5 :Uf — (0, c0), forevery U E Uy(E) there exists V() E U with V(U) C U. Define
p 1 UNE) — (0,00) by p(U) := §(V(U)). Heiice, for every finite subset 3 of U(E) there
exists a finite subset G of Uwith(),cg 3(V)V C [, P(UHU.

For inetrizable spaces we get therefore:

Proposition 5.9. Let E be o metrizable locally convex space and let (Uy)nen be o buasis of the
zero neighbourhood filter in E, Then E satisfies tlie density condition {f and only if for every
sequence (P)nen € (0,0¢)N and every zero neighbourhood V in E there exist a bounded set
B iii E and m € N such that

() euUs CB TV,
= |
Strongly connected with the density condition are the strong dual density condition and the
dual density condition which were introduced by K.D. Bierstedt & J. Bonet (cf. (2], 1.1).

Definition 5.10. Let E be a locally convex Hausdorff space. E satisfies the (strong) dual
density condition if for every function « : B(E) — (0,00) and every bounded subset C of E,
these exist always a finite subset F of B(E) and a zero neighbourhood U in E such that

cnu e BB
BeF

(CnU CTIY( U «(B)B), respectively).
BeF

The following remark is taken from [2], 1.2,

Remark 5.11. i) Every locally convex Hausdorff space with the strict Mackey conditioii
satisfies tie strong dual density coiiclitioii.

i) Using tlie same technigue us in remark 5.8 we obtain that in the definition of the dual
density condition one can replace B(E) by any fundamental system of bounded sets B in E.
Taking polars this yields:
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iii) The srrong dual of a guasibarrelled locally convex Hausdorff E satisfies tiedual densiry
coiidition if and only if it satisfies the strong dual density coiidition if and only if E satisfies
thie densiry condition. Especially this equivalence holds if E is a metrizable locally convex
space.

We now prove a characterization useful for DF spaces (cf. (2], 1.4).

Proposition 5.12. Let E be i locally convex Hausdorff space possessing an increasing
Sundamental sequence (B,),en of absolutely convex and closed bounded sets. Then E satisfies
the (strong)dual density condition T and only if for every sequence (%,)nen € (0,00)N and
every bounded set B in E there exist o zero neighbourhood U in E and in E N such that

E
m

BOAU C Y aB,
n=I

BNhU C Z o, B, respectively).

n=|

Proof. For every (&,),en € (0, o) and every m E N we get

m m m

F(() uBi) © > ouBy € T((1) 2" uBy).

n=| n=| n=|

Using remark 5.11 ii) this implies the assertion.
The proof of the following theorem is essentialy contained in [2], 1.5.

Theorem 5.13. Let E be i DF space and let (B,),zn be an increasing fundamental sequence
of closed, absolutely convex and bounded sets in E. A bounded and absolutely convex subset
B of E B metrizable if and only if for every sequence (o,).ex € (0,00)" there exist « zero
neighbourhoorl U in E and m € N such that

E
>l
BNnU C Z(X,,B,,.

n==1

Proof. Let B be inetrizable.
Assume there is a sequence (&,),eny E (0,00)" such that for every in € N the set

——F . . A L
>, «,B, does not contain a zero neighbourhood in B. Since B is inetrizable, there

m

exists a zero sequence (X,)uen in B with x,, & >, a,,B,,I' ,in E N. Hence, for everyin E N.
there is an absolutely convex zero neighbourhood U,, in E with x,, € U,, +Z:j':, «,B,. The-
refore the sequence (x,),en i Not residually contained in tlie zero neighbourhood ﬂme\, U +
S, &, By, a contradiction.

For the converse, we may assume that for every & = (ct,).en E (0,0¢)¥ there is a

m(a)

E
natural number m(e) such that >~ =%, «,B, contains a zero neighbourhood in B. Hence,
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the sets Z’"(O‘f By ,ocn positive and rational for n E N, define a countable system of zero
neighbourhoodsin B and it is easy to see that this systemis a zero basis in B.

Corollary 5.14. (¢f- [2], 1.5)Ler E be a DF space. Then thefollowing are equivalent:
i) E satisfies the dual density condition.
ii) Every bounded subset of E is metrizable.

iii) There exists a continuous rorm || .|| on E such that on every bounded subset of E the
topologies induced by E and by || .|| coincide.

Proof. Accordingto proposition5.12 and theorem 5.13 it remains to show that ii) impliesiii).
Therefore let (B,,),en be a fundamental sequence of bounded sets in E. Assuming ii) we get
foreveryn € N a sequence (U,.»)men Of closed and absolutely convex zero neighbourhoodsin
E defining a zero basis in B,. E satisfiesthe countable neighbourhood property and therefore
there exists pn, >0 such that U =1, ,cy PamUnn is @ zero neighbourhood in E. The
Minkowski functional || . || of U has the required property.

Remark 5.15 i) Let E be a DF space in which every bounded subset is metrizable o
equivalently, which satisfies the dual density condition. Then E is quasibarrelled. (This is
due to A. Grothendieck, /18], p. 71,théorém 5).

ii) In every DFM space E the bounded subsets are precompact and therefore metrizable
(seee.g. [31]), so E satisfies the dual densiry condition and hence the strong dual densi9
condition.

We are now able to characterize the barrelledness of A(E) for DF spaces E. We proved in
5.5and 5.6:

If A satisfiesproperty ), then A(E) is (quasi)barrelled if and only if E is (quasi)barrelled.

The remaining part is given in the next result which has been proved by K.D. Bierstedt &
J. Bonet (see [2], 1.5)inthe case A =1,

Theorem5.16. Let (A, || . ||») be a normal Banach sequence space not satisfying property )
and let E be a DF space. Then thefollowing are equivalent:
i) E satisfies the dual density condition. U/
ii) Every bounded subset & E is metrizable. )
iii) Every bounded subset of (E)is metrizable. A
iv) A(E) is quasibarrelled. ‘ _r >,

Moreover, N(E) is barrelled if and only if E is barrelled and one o the conditi ﬁs Jt@ |\§’
is satisfied. s

Proof. The equivalence of i) and ii) was proved in 5.14. In 4.22 we could show that ii)
impliesiii). 4.10 yields that A(E) is a DF space and so iii) implies iv) by remark 5.15i).

Let A(E) be quasibarrelled. A does not satisfy property &) and by theorem 3.8 this implies
that /. (E) is a complemented subspace of A(E). Therefore [ (E) is also quasibarrelled. (For
the following part of the proof compare with [12], (4.5),(5.12) and with [2], 1.5” (3) implies
(1)) Let (B.)nen be an increasing fundamental sequence of bounded, closed and absolutely
convex sets in E.

Let (&a)nen E (0,00)" be given.



32 L. Frerick

We define

V= ﬂ lx(z o By).
k=1

neN

The sequence (/I (3" _, aBi))uey is increasing, consists only of closed, absolutely convex
and bounded sets and every bounded subset of the DF space /..(E) is absorbed by some
I (X i) oBi) (cf. 411). So, we inay apply A. Grothendieck [18], p.72, lemma 4, to
get V= C 2V. Now, V=) is a bornivorous barrel in /~.(E) and the quasibarrelledness
of /..(E) implies that V is a zero neighbourhood. So there is an absolutely convex zero
neighbourhood in E with /.(U) € V. We get that for every bounded subset B in E there
exists 7 E N such that

"
BNUCY By

k=1

(Otherwise there is a bounded sequence (x,),cy. coiitained in U. with x, ¢ Si_, ouBy
for each » E N, a contradiction to /..() C V.) Because (e, ).en is arbitrary we get with
proposition 5.12 that E satisfies the dual density condition. So iv) implies i). The second
assertion follows by the first part aiid lemma 5.1,

Remark 5.17. i) Let E be ¢i DF space with citi increasing fundamental sequence (B,)nen of
bounded, closecl and absolutely convex sets. If E satisfies the dual density condition, then,
according 10 the proof of theorem 5.16, it satisfies the (formally) stronger condition:

Forevery (&¢,)pen E (O,oo)"\' there is o zero neighbourhood U such tliat for every bounded
set B tliere exists n EN with BNU C >_;_, ouBy.

i) 1t is possible to apply directly the result of K.D. Bierstedt & J. Bonet mentioned above
to show that tie dual density condition is necessary for the quasibarrelledness of 1, (E).

We now want to consider distinguished (vector valued) metrizable spaces. Grothendieck
called a locally convex Hausdorff space E distinguished if its strong dual (E',B(E',E))is
barrelled. If E is, in addition, metrizable, then E is distiiiguished if and only if (E', @(E'E))
is quasibarrelled (bornological, ultrabornological, an LB space) (see [18], p. 73, theorein 7).

First we note:

Remark 5.18. Let E be ci metrizable locally convex space. If E satisfies tlie density condition,
then E isdistinguished.

Indeed, E satisfies the density conditioii if and only if the DF space (E', @ (E'E))satisfies
the dual density conditioii (see 5.11 iii)). But reinark 5.15 i) implies that (E', @ (E'E))then
has to be quasibarrelled.

We will give a complete characterization of the distinguishedness of A(E) whenever A is a
normal Banach sequence space and E is a metrizable locally coiivex space. Analogously to
the previous results on vector valued DF spaces (which we will use) condition ) for normal
Baiiach sequence spaces will play an iinportant role. Let us first consider the situation for
norinal Banach sequence spaces A satisfying property ¢):

Theorem5.19. Ler (A, || . ||)) be a normal Banach sequence space satisfving property ) aiid
let E be ¢ metrizable locally convex space.
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DR/A
distinguished.

) If N || - |lax) does not satisfy property €), then NE) is distinguished if and only if E
satisfies the density condition.
Proof. Becaiise A satisfies property £) we get witli corollary 4.20 that tlie strong dual of A(E)
is the DF spaccA*((£', B(E', E)))(topologically).

i) If A\* satisfies the property £). then AX((E’, B(E', E))) is quasibarrelled if and only if
(E’, B(E', E))is quasibarrelled (see 5.5) or, equivalently, if aiid only if £ is distinguished.

ii) If A* does not satisfy property ¢), then A*((E’, B(£', E)))is quasibarrelled if and only
if (£, B(E', E))satisfies the dual density condition (see 5.16) or. equivalently, ifaiicl only if £
satisfies the density coiiclition (see5.11 iii)).

NIa=) a@lso satifies property €), then ME) is distinguished if and only if E is

Remark 5.20. i) Theorem 5.19 i) describes tlie situation whenever N =1, p E (1 ,2c) or
A= .

i1) Theorem 5.19 part ii) covers the case N = Iy, which was considered by K.D. Bierstedt
& J. Ronet /1],

In remark 5.15 i) we noted that a DF space E in which every bouiided subset is inetrizable
(i.e a DF space £ which satisfiesthc dual deiisity coiidition) has to be quasibarrelled. We used
that this property is stable under forming the vector valued sequeiice spaces A(£) to get that
AE) is quasibarrelled for every DF space E with the dual deiisity coiiditioii (aiid every normal
Banacli seqiieiice space A). If A does not satisfy property ). then A(E) contains /. (E) as a
complemented subspace aiid we couid show that tlie dual deiisity coiiditioii is also necessary
for tlie quasibarrellediiessof (. (£) aiid therefore necessary for the quasibarrellediiessof A(E).
We will use tlie same ideas iii tlie exaininatioii of tlie distinguishedness of A(E) whenever E
is metrizable aiid A does iiot satisfy property £). W first prove:

Proposition 5.21. Let (A, || - || \) be a normal Banach sequence space and let E be a metrizable
locally convex space which satisfies the density condition. Then tlie (metrizable) space A(E)
also satisfies tlie density condition.
Proof. We use the characterization 5.9 of the density condition for metrizablelocally conves
spaces. Let therefore (U,).en be a decreasing sequence of closed ancl absolutely convex zero
neighbourhoods in E which defines a zero basis.

Let (p)ney € (0, 00)" aiid a zero neighbourhood W in A(E) be given. We have to show
that there are m E N aiid C E BOE)) with (Y=, p.AU,) C C T w.

First we get tlie existence ofan absolutely coiivex zero neighbourhood U in £ with A(U) C
W. Since E satisfies tlie deiisiiy coiiditioii there are m E N aiid B E B(E) with

m
ﬂgy“mc3+u

n=|

Lemma 4.3 thcii implies

m m m

(]mMch—Q:T*M()mWﬂU M3+w.

n=l k=1 n=I
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Now, we can apply lemma 4.9 to get ()'—, p,A(U,) C A(B) TAU) C A(B) +W and this
yields the coiiclusion.

We recali a result of J. Bonet, S. Dierolf & C. Fernandez (sec|7], lemma i), which gives a
necessary condition for the distinguishedness of Frechet spaces. Using this result they could
give the first example of a distinguished Frechet space whose bidual is not distinguished.
With essentially tlie same proof as given in [7] we prove the resuit for metrizable spaces:

Theorem5.22. Let E be a meirizable locally convex space and let F be o topological subspace
of the bidual B’ of E which contains E as a closed subspace (if we consider E as o subspace
of E*).

Let g : F — F /E be the quotient map. Assunie F is distinguished, then

i)F /E is also distinguished and

i) the strong dual of F /E is u topological subspace of the strong dual of F, i.e. every
bounded set B inF / E is contained in the closure of ¢(C) for some C € B(F).

Proof. The transposed map ¢' : (F/EY,BUF/E),F/E) — (F,B(F,F) of ¢ is a
continuous inclusion with range £°*, sowe may identify (£ / E)’ (algebraically) with E**' =:
E”. We equip E” with the relative topology induced by 3(F’, F)

We recali that a metrizable space is distinguished if aiid only if its strong dual is an LB
space. We only have to show that E” is an LB space. (Since the opeii mapping theorem then
implies i) and ii), using the fact that the associated bornological topology to f((F /E)’, £ / E)
is also an LB space topology).

Letj : £ — Fandi : F — E’ be the canonical iiiclusions aiid letj* : F/ — E and
b (B, B(E",E)) — F' be their trasposed mappings (which are continuous with respect to
the strong topologies). First we note that E” is the kernel ofj‘. Using that the strong dual of
F is barrelled. we even get that

J(F L BF ) — (E', B(E' E™))
is continuous. Because £ is barrelled (it is a Frechet space) we have the contiiiuity of
(B BE",E™) ™ (F,BUF, F)).

Moreover, the mapping j' o T is the transpose of i o j and therefore its restriction to E s
the identity on (E’,B(£’,E™)). So (*’, R(F’, F)) is the topological direct sum of a copy of
(E’,B(E',E”) and ker(j') = E”. Thus E” is a compleinented subspace of an LB space and
therefore itself an LB space.

We remark that J. Bonet & S. Dierolf [6] could show that a quotient innp between Frechet
spaces, which lifts bounded sets with closure, lifts already bounded sets.

We now turn back to the examination of the distinguishedness of our spaces A(£).

Theorem 5.23. Let (A,
locally convex space.
If both A and N* saitisfy property €), then A(E) is distinguished if and onlv if E is distingu-
ished.
If A or N* does not satisfy property €), then A(E) 1S distinguished if and only if E satisfies
the densirv condition,

|+ In) be a normal Banach sequence space and let E be a metrizable
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Proof. According to theoreni 5.19 we only have to prove the assertion in the case where A
does not satisfy property ¢). E satisfies the density coiidition, proposition 5.21 yields that
ACE) satifies it. Remark 5.18 implies that A(E) is distinguished.

Let A(£) be distinguishcd. Theii theorem 3.8 iinpliesthat /.. (E) isacomplemented subspace
of A(E) and therefore /.. (£) is distinguished. Because E is nietrizable and distinguished we
get with corollary 4.20 that /.. (£") is the bidual of ¢y(E). Moreover, co(E) is closed in [ (E)
and /. (£) is a topological subspace of /.(E”). So, we may apply 5.22 ii) and get that
the quotientmap ¢ : /,(E) — /..(E)/ co(E) lifts bounded sets with closure. We choose a
decreasing zero basis (U,),en in E consisting of closed aiid absolutely convex sets.

Let (p,)wen E (0, 20)Y be arbitrary. Then

B:= ﬂ pn([([,\:(Un))
neN

is a bounded subset of /,(E) /co(E). Hence, because ¢ lifts bounded sets with closure, there
is a bounded set C in /.. (E) with B C ¢(C). By corollary 4.4 we may assume that C = I..(D)
for someclosed D E B(E) aiid we get B C g(/~ (D)).

Assume there is a closed and absolutely convex zero neighbourhood U in E such that there
exists x,, € (o=, PuUI\D + 2U for every m E N. Then we get (x,)men E loo(E) and
(Xwdmen Tco(E) € B (by the definition of B). Bui there cannot exist a zero sequeiice (y,)men
in E Wlth (-\.m -+ Y )mé:\" E DN + UN. HEiiCe (-\:m)me\" + C()(E) € q([oc(D)) + q(lx(U))- a
contradiction to B C ¢(/~.(D)). So, the assumption is wrong and we have shown that for

every zero neighbourhood U in E there exists m E N with ()—, p,U, C D + U. Because
(Pn)nen is arbitrary, this means that E satisfies the density condition.

Remark 5.24. i) Let E be a metrizable locally convex space with a decreasing 2ero basis
(Unnen- If E satisfies the density condition, tke proof of theorem 5.23 shows that it satisfies
tlie (formally) stronger coiiclition:

Forevery (pp)nen E (0,00)’V there exists a bounded subset D of E such that for every zero
neighbourhood U one can find m E N with (\'—, p,U, CD T U.

i)l recently got tlie information, that J.C. Diaz had independently proved rhe case A =1,
(unpublished).

Grothendieck { 18], Questions non Resolues 5, posed the question, whether the bidual of a
distinguished Frechet space is again distinguished. As noted above the first counter exainple
was given by J. Boiiet, S. Dierolf & C. Fernandez | 7] using Frechet spaces of Moscatelli type.
Using theoreni 5.23 we can give an example in the context of vector valued sequence spaces:

Example 5.25. Let E be a reflexive Fréchet space which does not satisfy tlie densiry coiidition
(for such a space see [12], (4.7)or (4.8)). Then we get that ¢o(E) is distinguished. Birt the
bidual of co(E) is |, (E)and therefore not distinguished.

By a result of A. Pcris (see {30], 3.1.6) a Frechet space satisfies the density conditioii
whenever its bidual satisfiesit. S0 one may replace in the above example E by any distingiiished
Frechet space without density condition.

Remark 5.26. Assume that X is a normal Banach sequence space and that E is a reflexive
Frécher space without tlie density condition such that N(E) is distinguished But its bidual does
not. Then co(E) is complemented in A(E).
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Indeed, under the assumptions above, A and A* have to satisfy property £) (see theorem
5.23). Moreover, A** must not satisfy property ¢) (otherwise A(E) would be reflexive). We
may apply reinark 3.9 to get that A(E) contains a complemented copy of ¢y (E).

6. BORNOLOGICALVECTOR VALUED SEQUENCE SPACES

In this chapter we consider sufficient conditions to guarantee that for a given (ultra)
bornological space E the space A(E) is also (ultra)bornological. First we consider the situation
if E is metrizable. In this case A(E) is again metrizable, hence bornological. Using remark
5.211) we get:

Proposition6.1. Let (A, || .||)) be & normal Banach sequence spnce and let E be a metrizable
locally convex spnce. Then A(E) is ultrabornological if and only if E is ultrabornological.

The situationis more complicatedif E is a bornological DF space or even a DFM space. We
will prove for DFM spaces E and normal Banach sequence spaces A which satisfy property y)
that A(E) is bornological. This given a partial answer to the question, posed by K.D. Bierstedt
and J. Schmets (see [35)), if for every bornological space E also ¢(E) is bornological. We
first consider the situation when A satisfies £) and 6). The following proposition is covered
by a result due to M. Florencio & P.J. Paul (see [16], 4.9), which is proved in the context of
perfect spaces.

Proposition 6.2. Let (A, | - ||x) be a normal Banach sequence space satisfying properties €)
and 6). Let E be a DF spnce. Then A(E) is bornological if and only if E is bornological.

Proof. Letf be an arbitrary locally bounded linear form on A(E). (We will show that £
is continuous). Define locally bounded linear forms f,,n € N on E by £,(x) :=f{((0) <,
x, (0} > ), x € E. Since E is bornological, these mappings f;, are continuous on E.

Let X = (x,)nen € A(E) be arbitrary. Because A satisfies property 6) we get x € A(B) for
some B E B(E). Property ) yields lim,_ o [[((O)i<n, PeG))k>a)||x = 0. Using that f is
locally bounded, this implies lim,,_ . (f(x) —Z’Alefk(xk)) =1im,— 00 f (O <y Gk Ji>n)) =
0. SO’ WE may ldentlfo with (fu)nEN Vlaf()') = Z;,):-_-lf;l(«\'ll))-x = (-xn)/leN E }\(E)

Let C be a bounded subset of A(£). Without loss of generality we may assume that
C= ﬂpé(‘.\'([—j) p,,?\(p_l([O, 1]))1 P/; > O We get

U fitw) : (adeen € €} € £(O)

neN k=i

and therefore ((fi)r<,, (O) > ) is a strongly bounded sequence in A(E)" which is by corollary
5.5 even equicontinuous. Hencef = (f;,),en is continuous.

We proved that every locally bounded linear form on A(E) is already continuous and this
implies together with corollary 5.5 that A(E) is bornological.

Remark 6.3. Analysing the proof of proposition 6.2 we see thar the result 1S even true for
normal Banach sequence spaces A satisfying property €) and DF spaces E whenever

NE) = U A(B).

BEB(E)
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Example 6.4. (cf. [26]) Let E be o bornological DF space in which every zero sequence
converges locally, i.e. cy(E) = U,,E s Co(B). (Tlismeans that E is o retractive LN space).
Then ¢o(E) is o bornological DF space.

For the iiext result we need a reformulation of leinina 4.9:

Lemma 6.5. Let (A, || - ||z) be a normal Banach sequence space and let E be a locally convex
Hausdforff space. Let By, . .., B, be bounded and absolutely convex subsets of E. For every
e >0 it follows

m m

AO B C U+ NB.

n=|1 n=|

Proof. Let ¢ >0 be arbitrary. Withoiit loss of generality we may assume that in = 2. Let
(men E A(B) +5,) be given. Using the boundedness of By and 52 we get

Xy € (1 + €)pp, 45, ()(B1 + Ba) = (1 + g+, (x)B1 -+ (1 + €)py, +5, () B2

foreveryn EN.

This iiiiplies the existence of y, E (1 ¥ e)py, 44, (x)B) aiid 7, E (1 Fe)pp, 4 p. (x,)B2 with
Xy =V + 2, for every 1 E N. We now compute ||[(pg, u)nen [[x |25, G )nenllr < (1 +¢€)
and using again the bouiidediiess of By and Ba, we get (vinen E (I 4 €)AB)) and (Zy)nen E
(I + oA(Bo). Tliis implies the assertion.

Proposition 6.6. Let (A, || - [[\) be @ normal Banach sequence space satisfying property 6)
but not property €). Let E be a DF space. Then MNE) is bornological if and only if E satisfies
the strong dual density condition.

Proof. Let (B,).en be an increasing fiindainental segiience of bouiided, absolutely coiivex
and closed sets in E satisfying 2B, € B, 4, ,n EN.

SupposeE satisfies the strong dual density conditionand let (oc,).en E (0, co)" be arbitrary.
If C is a bounded subset of A(E), we may (in view of property ), see 4.11) assume that
C C A(By) for somek E N. Using that E satisfies the strong dual density condition, we get
the existence of an absolutely convex and closed zero neighbourhood U in E and m E N such
that

[ m
Bk NnNUC Z Z O(,,B,,.

n=1
Using the lemmata 4.3 aiid 6.5 this yields

m m

CNAU) C ABy) NAU) C 2ABx N U) C A(% > B C Y xABy).

n=1 n=I

Hence, A(E) satisfies the stroiig dual density condition. Since A(E) is a DF space this yields
that A(E) is bornological.

A(E), see 3.8) also bornological.



38 L. Frerick

Let (x,)nen E (0, 0)™ be arbitrary. Then

vi={J [x(z o By)

neN k=1

is a bornivorous and absolutely convex subset of /. (E), therefore a zero neighbourhood.
Hence there is a zero neighbourhood U in E with /.. (U) C V. Proceeding as in the proof of
5.16 this implies that for every bounded subset B of E there isn E N with

BNUCY  ouby.
k=

Therefore E satisfies the strong dual density condition.
We remark that K.D. Bierstedt & J. Bonet (see [2], 1.5) proved the above result in the case
A =] with a somewhat different proof.

Remark 6.7. i) Lei E be i DF space with an increasing fundamental sequence (By)uen Of
bounded, closed and absolutely convex sets. |f E satisfies the strong dual density condition,
then, according to the proof of proposition 6.6, it satisfies the (formally) stronger condition:

For every (0,)nen E (0,00)Y there is a zero neighbourhood U such that for every bounded
set B there esistsn € N with BN U C > y— 0B

i) Let (A, || . lla) be a normal Banach sequence space satisfving property 6) and let E
be o DF space. Combining remark 5.2 i) with proposition 6.2 and proposition 6.6 we get
necessary and sufficient conditions deciding whether A(E) is ultrabornological.

iii)/n tlie previous results of this chapter ore may replace “propertv 6)” by “property 8,.)”,
see theorem 2.9 iv).

We must confess that we can give only partial results in the case when (A, || . ||x) does not
satisfy property d,,.).

Up to now we have only remark 6.3 to ensure that in this case A(F) is bornological. But we
can give a positive answer whenever (A, || . ||.) satisfies property v) and E is a DFM space.

Let (A, || ||») be anormal Banach space satisfying property y). We recall that (A, | .|| x)
is defined by

A =L E w zsup||Pu(0)]|x <oc},
neN

el = sup [P0,
neN

where P, denote tlie canonical projection onto the first n coordinates. Then (A, || . ||x) is a

subspace of (A, || -[| xe) (see 2.9 1)) and (A, || - || ) satisfiesproperty 6). i.e. its closed unit

ball is even closed in w (see2.9 iii) and 2.10). We now prove a technical lemma coiicerning

this spaces.

Lemma 6.8. Ler (A, || .||la) be i normal Banach sequence space satisfving property Y ) and
let an arbitrary (0,)nen E A be given. Moreover, lety 1[0, 1] — [0,1] be increasing such
that lim_oy(x) =0.

Thenﬂ)revery (611)1161\’ € [ [ 7OO)N .S'(lfiéﬁ’f”g (o‘nén)ne\’ € )\(M I.I_f‘()//()H'S (O(n 5:11/(5,,_ l ))MEN S
A
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Proof. Let for every subset S of N be P, : w — w the canonical projection onto the
coordinatesbelonging to S.

Without loss of generality we may assume that (,,5,),cn is contained in the closed unit
ball BA(L\) of 7\(6).

Let £ >0 be arbitrary and define S :=5(¢) :={n EN : y(5,;') < £}. Using thaty is
increasing and satisfies lim,_oy(x) = 0 we get the existence of p >0 such that |x,5,| <
ploc,| for every n E N\S. Hence, Py s((2,8,v(8; )uen) E A. Moreover, we coinpute
||P,§((a11511y(6;]))HGN)”)\W S E”((XHéH)IIEJVH)\'M S ¢. Therefore we gEt (06;15117(5,71))/:@,\! =
P"\"'\»S'((o"’é”Y(én_l))HEN) ‘l‘PS((‘Xnén‘Y(én_ I))néN) E A+ B, . Because A is closed in A® and
¢ is arbitrary this iinplies the assertion.

We need another lemma concerning zero neighbourhoods of compact subsets of normed
spaces.

Lemma 6.9. (S. Dierolf, personeil communication) Let (E||| .||) be @ normed space with
closed unir ball By - Let Ky and K be absolutely convex and compact subsets of E such
that 2(K + K>) C By.. Then there is an increasing mapping € : [0, 1] — [0, 1] satisfying
lim,_g e(x) = 0 such that for every x E [0, 1] we have

(K1 + K3) ﬂxB”.” C 2K N 8(,\‘)8”.”) + (2K, N 8(A’)B||.||).

Proof. We will prove:

(*) For every e > 0 there is 6 > 0 such that

(K, +K3) N 63”.“ Cc 2K, N B +(2K3 N EB“.“).

This implies iinmediately the assertion.

Assume that (*) is wrong. Then thereis e >0 and a zero sequence (z,),cn in E, contained
in Ky + K, such that z, & (2K, N eBy.)) +2Kn eB).) forevery n E N. Choose sequences
(nen in Ky and (v)nen in Kz with i, ,= x, -+y,, n E N. The sets K| and K> are (sequentially)
compact, so there exists a stricly increasing sequence (71;)xen OF positive nuinbers, x E K
and y E K> such that x,, — x and y,, — y(k — o). Since (z,),en Is @ Z€ro sequence we
coinpute x + ¥ = 0. Hence, thereis m € N such that

Zay = Oy, =)+ (G, = 3) € QKL N eBy) + K2 N eByy),

acontradiction.

Proposition 6.10. Let (A, || . ||x) be a normal Banach sequence space satisfying property
Y) and let E be a DFM space. Moreover, let Ky, ... K, be absolutely convex and compact
subsets of E. Then we get

AOG T K)NAE) C Y 2" AD(K,) N AE)).
n=1 n=I

Proof. We will prove

AOK, + K>) NAE) C 2 (K1) NAE)) + 20\(K) N AE)),
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the assertion follows then by induction.

Because E satisfies the dual density condition (cf. 5.15 ii)), corollary 5.14 yields the
existence of a continuous norm || .|| on E, such that the topologies induced on X :=X + K>
by || .|l and E coincide. Without loss of generality 2K = 2(K; + K») is contained in the
closed unit ball By.;;. Using lemma 6.9 we get an increasing mapping € : [0, 1] — [0, 1] with
lim,_,o £(x) = 0 such that for every X E [0, 1]

KNxB). C Q2K Ne)B). ) + QK2 Ne)B) ).

Let (z,)nen € AO(K) N AE) be arbitrary. We define for the reason of shortness for n € N:
Pi(zn) .z, 7& 0
6!: = pBI{-H (Z”)
1: z,=0.

Then it follows forn E N:

Zn € pr(z)K mPB” I (Zn)B”.” = pg(z,) - (KN 6”_18””)
C pr(z)((2K; N E(é;I)B”.”) + (2K N E(&;I)B”.”)).

Hence, for every n E N we have z = u, +v,, where

uy € pr(z)(2K; N e(s; By and
Ve € pr(z)2Ks N ey By )

From this we first obtain pg, (U,,)< 2pk(z,.), 7 E N and therefore (u,),en E 2A® (K, if
we take into account that K, is bounded. Analogously we show that (v,),cx is contained in
2AO(Ky).

It remains to show that (u,,),en and (v,),en are contained in A(E). We will do this explicitly
for (u,).ewn, the other case can be proved analogously.

Let an absolutely convex and closed zero neighbourhood V in E be given. We may assume
that 2K = 2(K; T K) is contained in V and that By absorbs V. Because || - || induces
on K; the same topology as E there exists an increasing mapping ¢ : [0, 1] — [0, 1] with
lim,_.¢ @(x) = 0 such that for every x € [0, 1]

2K NxB)) Cox)V.
We definey :=¢ o e and we get forevery n E N:

uy E pr@)K Ned; DBy
C pxG)QK Ny HV)
C pr(z)y(d; V.

Hence, by definition of the 6, py(u,) < ps, (2)8,7v(5;"). Taking into account that s, ,

@)uen E A and (g (2)8)nen = (Px(@)uen € A® we may apply lemma 6.8 to get
(pv(u))nen € A Because V is arbitrary we have (u,),eny € A(E) Which completes the proof.
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Theorem 6.11. Ler (A, || .|[x) be a normal Banach sequence space satisfving property y) and
let E be a DFM space. Then MNE) is bornological (and so a complete LB space).

Proof. Let (K,).en bc a funclaiiiental sequeiice of closed, absolutely convex and bo-
uiided sets in E. Lct (t)weny E (0, oc) be arbitrary. We have to show that V :=
Unen Somey @alA®(K,) N A(E)) is a zero neighbourhood iii A(E). Siiice E is a DFM space,
the sets K,, are compact, so theorem 3.3 iv) implies that C,, :=A* ("1, ’"—;_l(x,,K,,) NAE)
is closed iii A(E) for each 1 E N. Moreover, (Cp)men 18 increasing aiid every bounded set
is absoi-bed by soiiie C,,,, see 4.12. So, we inay apply A. Grotheiidieck [18], p. 72, lemme
4, aiid get that U :=J,,cy C..is a zero iieighbourhood iii the quasibarrelled DF space A(E).

Proposition 6.10 implies U C V aiid we are doiie.

Remark 6.12. We note that one may replace in the previous theorem “property y)” by
“property Yy.)”, see 2.91),ii).
¢y satisfiesproperty ) and therefore property y ) and we obtain:

Corollary 6.13. (S. Dierolf, unpublished) Let E be ot DFM space. Thency(E)is bornological.
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