FINITE AND LOCALLY SOLVABLE PERIODIC GROUPS WITH GIVEN INTERSECTIONS OF CERTAIN SUBGROUPS

Y. BERKOVICH^{1,2}, P. LONGOBARDI and M. MAJ

Abstract. Let G be a group and p be a prime. We say that two subgroups H, K are incident if either $H \cap K = H$ or $H \cap K = K$. A group G is an IC_p -group if, for any finite non-incident subgroups H, K of G, a p-Sylow subgroup of $H \cap K$ is cyclic.

In this paper we give a complete classification of solvable and locally solvable periodic IC_p -groups.

1.

Let G be a finite group, p a prime, $P \in Syl_p(G)$. We say that two subgroups F, H are incident if either $F \cap H = F$ or $F \cap H = H$, non-incident in the opposite case. A group G is said to be an IC_p -group if a Sylow p-subgroup of the intersection of any two non-incident subgroups is cyclic [B]. A group G is said to be an IC - p-group if the intersection of any two non-incident subgroups is cyclic whenever it is a p-group [Is]. Obviously $IC_p \subset IC - p$. In this note we obtain a complete classification of solvable finite and locally solvable periodic IC_p -groups; for the classification of non-solvable IC_2 -groups see [B]. We feel that the description of solvable IC - p-groups is fairly difficult. As Isaacs noticed (see [Is]) generally an epimorphic image of an IC - p-group is not an IC - p-group.

We denote by C(m) the cyclic group of order m, by $E(p^n)$ the elementary abelian group of order p^n , by $Q(2^n)$ the generalized quaternion group of order 2^n . Furthermore $Z(p^\infty)$ denotes the Prüfer p-group, $Q(2^\infty)$ the infinite quaternion group and $D(2^\infty)$ the infinite locally dihedral group. Let A[B] denote a semi-direct product with kernel B and complement A, and A(A,B) a Frobenius group with kernel B and complement A.

2.

Finite solvable IC_p -groups. - In this section we consider only finite solvable groups. We prove the following

Main Theorem 1. Let p be a prime divisor of the order of a finite solvable group G. Let $P \in Syl_p(G)$, P < G and assume that P is not cyclic.

Then G is an IC_p -group if and only if one of the following is true:

- (a) $G = P \times C(q^n)$, where either p = 2, $P = Q(2^3)$ and $q \neq 2$, or $P = E(p^2)$ and $p \neq q$.
- (b) $G = C(q^n)$ [P where either $P = Q(2^3)$ and q = 3, or $P = E(p^2)$ and $p \neq q$. Moreover, if $P = Q(2^3)$, then $G/Z(G) = A_4$, the alternating group of degree 4.
 - (c) $G = (C(q^n), E(p^3))$, and any subgroup of order qp^3 of G is minimal non-nilpotent.

¹Supported in part by the Rashi Foundation and the Ministry of Science and Technology of Israel. ²This work was partially done while the first author was a C.N.R. visiting professor at the University of Naples. He wishes to thank the Department of Mathematics R. Caccioppoli for its kind hospitality.

- (d) $G = C(q^n)$ [P, where P is non-abelian of order p^3 and exponent p, p > 2, $p \not\equiv 1 \pmod{q}$, Z(G) = Z(P), G/Z(P) is a Frobenius group with kernel P/Z(P), and P/Z(P) is a minimal normal subgroup of G/Z(P).
 - (e) $G = P[C(q^n), where p = 2, P = Q(2^3) and q \neq 2.$
- (f) G = (P, Q) where p = 2, $P = Q(2^3)$, Q is a homocyclic q-group, $q \neq 2$, and $\Omega_1(Q) = \langle x \in Q / x^q = 1 \rangle$ is a minimal normal subgroup of G.
- (g) $G = P[Q, where \ p = 2, P = Q(2^3), \ Q \text{ is an extraspecial q-subgroup of exponent } q, q \neq 2, Q/Z(Q) \text{ is a minimal normal subgroup of } G/Z(Q), \text{ and } G/Z(Q) \text{ is a Frobenius group.}$
- (h) $G = C(p) \times (C(p), Q)$, where $P = E(p^2), Q$ is a q-group, $q \neq p$, and all non-nilpotent subgroups of the group (C(p), Q) have only one chief series whose q-factors have the same order q^n , where n is the order of $q \pmod{p}$.
- (i) $G = C(p) \times F$, where F = C(p)[Q,Q] is an extraspecial q-group, $q \neq p, P = E(p^2)$, F/Z(Q) is a Frobenius group and Q/Z(Q) is a minimal normal subgroup of F/Z(Q).

This Theorem follows from a long chain of lemmas.

Lemma 1. (see [B]). Let G be a p-group. Then G is an IC_p -group if and only if one of the following assertions holds:

- (a) G is cyclic,
- (b) G contains a cyclic subgroup of index p,
- (c) G is of order p^3 and exponent p.

Lemma 2. Let P > 1 be a non-cyclic Sylow p-subgroup of a group G, P < G, and let p be the smallest prime divisor of |G|. Suppose that G satisfies the following condition:

- (*) If $P_1 < P$ is a Sylow subgroup of a non-primary subgroup of G, then P_1 is cyclic. Then one of the following assertions holds:
- (a) P is extraspecial, and exp P = p for p > 2,
- (b) P is elementary abelian.

Proof. Suppose that $D = O_{p'}(G) > 1$. If $P_1 < P$ then $P_1 \in Syl_p(P_1D)$ and P_1 is cyclic by (*). So all proper subgroups of P are cyclic; therefore either P is abelian of type (p,p) or $P = Q(2^3)$.

Suppose now that D=1. Then by Frobenius normal p-complement Theorem there exists in G a minimal non-nilpotent subgroup H with a normal Sylow p-subgroup $P_1>1$. Now P_1 is not cyclic since p is the smallest prime divisor of |G|. Therefore we conclude from (*) that $P_1=P$. Since P is a normal Sylow p-subgroup of H it is special (i.e. either $P=E(p^n)$, or $Z(P)=P'=\Phi(P)$ is elementary abelian). Suppose that P is not abelian. If Q is a non-normal Sylow subgroup of H then Z(P) is a Sylow p-subgroup of Z(P)Q so Z(P) is cyclic by (*). Thus P is extraspecial. Assume that p>2. Then P is a regular p-group. Thus $\Omega_1(P)$ is a noncyclic Sylow subgroup of $\Omega_1(P)Q$, so $P=\Omega_1(P)$ has exponent p.

Now we give a short proof of the main result from [Is].

Lemma 3. Suppose that G is a non-primary IC-p-group, $P \in Syl_p(G)$. Then P is cyclic, quaternion, or $|P| \le p^3$ and $exp \ P = p$.

Proof. By Lemma 1 we may assume that P is not cyclic, $|P| \ge p^3$ and P contains a cyclic subgroup of index p.

Suppose that $D = O_{p'}(G) > 1$. Then as in Lemma 2, all proper subgroups of P are cyclic, so $P = Q(2^3)$. Let now D = 1.

Suppose that p is the smallest prime divisor of |G|. Then G satisfies the condition (*) of Lemma 2. Therefore P is either extraspecial or elementary abelian. By our hypothesis on P we get $|P| = p^3$. If P is not quaternion then $\exp P = p$ by Lemma 2.

Suppose that p is not the smallest prime divisor of |G|. Then p > 2 and P is regular. Therefore, by a result of Wielandt, $N_G(P) > P$. As above $\Omega_1(P) = P$ is of exponent $p, |P| = p^2 - a$ contradiction.

For the rest of this section we make the following

HYPOTHESIS: (i) G is a non-primary solvable IC_p -group.

- (ii) p is a prime divisor of |G|.
- (iii) P is a non-cyclic Sylow p-subgroup of G.

First we have

Lemma 4. G = PQ where $Q \in Syl_q(G)$, q a prime divisor of |G|.

Proof. This is an easy corollary of Hall's Theorem on solvable groups.

Lemma 5. If P is normal in G then $|P| < p^4$, and Q is cyclic.

Proof. If Q_1, Q_2 are non-incident subgroups of Q then PQ_1, PQ_2 are non-incident and $P \leq PQ_1 \cap PQ_2$, a contradiction. Therefore Q is cyclic. The first assertion follows from Lemma 3.

If a Sylow p-subgroup P of a non-primary group G is normal in G, G/P is a primary cyclic group, and either P is abelian of type (p,p) or $P=Q(2^3)$ and G satisfies the additional hypothesis in (b) of Main Theorem 1, then G is an IC_p -group. Therefore, if P is normal in G, we can assume $|P|=p^3$.

Lemma 6. Suppose that P is elementary abelian of order p^3 . Then G = (Q, P). Moreover, if L/P is a subgroup of order q, then L is minimal non-nilpotent group.

Proof. Obviously $O_q(G) = 1$. Since $C_G(O_p(G)) \le O_p(G)$, then $P = O_p(G)$ is normal in G. By Lemma 5, Q is cyclic, and, by Maschke's Theorem, P is a minimal normal subgroup of G. Then G = (Q, P), and any subgroup L of G with P < L and |L/P| = q, is minimal non-nilpotent, as required.

Lemma 7. Suppose that P is non-abelian of order p^3 and exponent p. Then G = Q[P, Z(P) = Z(G), G/Z(G) is a Frobenius group. Moreover, if S/Z(G) is a subgroup of order q in G/Z(G), then S is a minimal non-nilpotent group.

Proof. Obviously $O_q(G) = 1$. Then $D = O_p(G) > 1$. Suppose that D < P. Since $D = P \cap DQ$ then D is cyclic. Since $C_G(D) \le D$, we get a contradiction. Thus D = P. Obviously P / Z(P) is a minimal normal subgroup of G / Z(P). Suppose that $Z(P) \ne Z(G)$, and set $C = C_G(Z(P))$. Then |G/C| is a non-trivial power of Q, and $Q \ne 1 \pmod{Q}$. Take a minimal non-nilpotent subgroup Q of Q of Q. Then a Sylow Q-subgroup Q of Q has order Q (since

 $p \equiv 1 \pmod{q}$ and it is not cyclic. Then M and P are non-incident, $M_p \leq M \cap P$ and G is not an IC_p -group. Thus Z(P) = Z(G). Take a subgroup S/P of order Q in G/P. Since P/Z(P) = P/Z(S) is a minimal normal subgroup of S/Z(P), then S is a minimal non-nilpotent group.

From Lemmas 5, 6, 7, it follows that, if P is normal in G, then G satisfies one of (a), (b), (c), (d) of Main Theorem 1. Conversely, it is easy to see that if G satisfies one of (a), (b), (c), (d), then G is an IC_p -group.

Now we study the case: P not normal in G. Then, by Lemmas 3, 6 and 7, either P is elementary abelian of order p^2 , or $P = Q(2^3)$.

We investigate first the case $P = E(p^2)$.

Lemma 8. Suppose that $P = E(p^2)$ is not normal in G. Then Q is normal in G.

Proof. If $O_q(G) = 1$, then P is normal in G (since the p-length of G is equal to 1) - a contradiction. So assume that $Q \neq D = O_q(G) > 1$. By the above remark PD is normal in G, PD < G. Then $G = N_G(P)PD, N_G(P)$ and PD are non-incident, and $P \leq N_G(P) \cap PD$ is not cyclic - a contradiction.

Lemma 9. Suppose that Q is normal in G and $|P| = p^2$. Then $G = C(p) \times C(p)[Q]$.

Proof. We have (see [G], Theorem 5.3.16, p. 188) $Q = \langle C_Q(x) | x \in P^{\#} \rangle$.

Now, either there exist $x, y \in P^{\#}$ such that $C_Q(x), C_Q(y)$ are not incident, or $C_Q(x) = Q$ for some $x \in P^{\#}$. In the second case we have $G = \langle x \rangle \times \langle y \rangle [Q]$. In the first case we have $P \leq PC_Q(x) \cap PC_Q(y)$, a contradiction.

Lemma 10. Suppose that $P = E(p^2)$ is not normal in G and G does not contain a normal subgroup of order q. Then $G = \langle a \rangle \times (\langle b \rangle, Q)$, and all non-nilpotent subgroups of $(\langle b \rangle, Q)$ have only one chief series, whose indices are p and q^n , where n is the order of $q \pmod{p}$.

Proof. By Lemmas 8, 9 we have $G = \langle a \rangle \times (\langle b \rangle [Q)$. By assumption any two subgroups of $F = \langle b \rangle [Q]$ that contain $\langle b \rangle$ are incident. Set $q^n = |Q/\Phi(Q)|$. If n = 1 then Q is cyclic, and the result is obvious. Hence assume that n > 1. By Maschke's Theorem $Q/\Phi(Q)$ is a minimal normal subgroup of $F/\Phi(Q)$. So n is the order of $q \pmod{p}$. If q is not an index of a chief series of F, then all q-indices of this series are equal to q^n . Suppose that R/T is a chief factor of F of order q. Without loss of generality we may assume that T is a minimal normal subgroup of F. By assumption |T| > 1. Since $T \leq Z(Q)$, then R is abelian. By Maschke's Theorem R is not elementary abelian. Then $\Phi(R)$ is a normal subgroup of order q of F - a contradiction. Thus all q-indices of a chief series of F are equal to q^n . Now we prove that F has only one chief series. It suffices to prove that F contains only one minimal normal q-subgroup. This is obvious since any two subgroups of F that contain g > 1 are incident. Finally g > 1 is a Frobenius group.

Notice that every group that satisfies the conditions of Lemma 10 is an IC_p -group.

Lemma 11. Let $P = E(p^2)$ be not normal in G, and let G contain a normal subgroup of order q. Assume that Q is not cyclic. Then Q is extraspecial and Q/Z(Q) is a minimal normal subgroup of G/Z(Q).

Proof. Write $G = \langle a \rangle \times F$, where a has order p and $F = \langle b \rangle [Q]$. Then F contains only one minimal normal q-subgroup, say R, and |R| = q. By Maschke's Theorem R is the only normal elementary abelian q-subgroup of F. Therefore any abelian normal q-subgroup of F is cyclic. In particular $Z(\Phi(Q))$ is cyclic, and $\Phi(Q)$ is cyclic by a result of Hobby (see [H]). Also $Q / \Phi(Q)$ is a minimal normal subgroup of $F / \Phi(Q)$, and $F / \Phi(Q)$ is not nilpotent. First we prove that $|\Phi(Q)| = q$.

If the subgroups $\Phi(Q)$ and $\Omega_1(Q)$ are not incident, then $P\Phi(Q)$ and $P\Omega_1(Q)$ are not incident, and $P \leq P\Phi(Q) \cap P\Omega_1(Q)$ is not cyclic, a contradiction. Then either $\Omega_1(Q) \leq \Phi(Q)$, or $\Phi(Q) < \Omega_1(Q)$ and $\Omega_1(Q) = Q$, since $Q / \Phi(Q)$ is a minimal normal subgroup of $G / \Phi(Q)$.

Now, if q > 2, then Q is regular, and $\Omega_1(Q)$ has exponent q. Futhermore $|\Omega_1(Q)| > q$, since Q is not cyclic. Then $\Omega_1(Q)$ is not contained in $\Phi(Q)$, and $Q = \Omega_1(Q)$ has exponent q, so that $|\Phi(Q)| = q$.

Now assume that q=2. The subgroup $\Phi(Q)P$ is nilpotent, thus $P \leq C_G(\Phi(Q))$. Write C the critical subgroup of Q (see [G], p. 185). Arguing as before, either $C \leq \Phi(Q)$, or $\Phi(Q) < C$ and C = Q. But C is not contained in $\Phi(Q)$, otherwise P acts trivially on Q, then C = Q and Q has class at most 2. Now, if $|\Omega_1(Q)| = 2$ then $Q = Q(2^3)$ and $|\Phi(Q)| = 2$. If $Q = \Omega_1(Q)$, then $[a,b]^2 = 1$ for any $a,b \in Q$ of order 2, and $Q/\Omega_1(\Phi(Q))$ is abelian. Then $\Omega_1(\Phi(Q)) = \Phi(Q)$, and again $|\Phi(Q)| = 2$.

Thus $|\Phi(Q)| = q$. Suppose that |Z(Q)| > q. Then Z(Q) = Q, since $Q \setminus \Phi(Q)$ is a minimal normal subgroup of $G \setminus \Phi(Q)$ - a contradiction. Thus Z(Q) has order q and Q is extraspecial.

From Lemmas 10, 11 it follows that, if $P = E(p^2)$ is not normal in G, then G satisfies either (h) or (i) of Main Theorem 1, and, conversely, if G satisfies (h) or (i), then G is an IC_p -group. It remains to consider the case $P = Q(2^3)$ not normal in G.

Lemma 12. If $P = Q(2^3)$ is not normal in G then Q is normal in G.

Proof. Set $D = O_q(G)$. Assume that D < Q. Suppose that D = 1. Then $L = O_2(G) < P$ and $C_G(L) \le L$. So |L| = 4, G/L has a subgroup H/L of index 2, and H has a characteristic subgroup Q_0 of index 4. Then $Q_0 = Q$ is normal in G - a contradiction. Thus D > 1. Then by the above argument PD is normal in G and G is not normal in G. Now $PDN_G(P) = G, P \le PD \cap N_G(P)$ and $PD, N_G(P)$ are not incident - a contradiction.

Lemma 13. Suppose that $P = Q(2^3)$ is not normal in G. Then one of the following is true: (a) G = (P,Q), where Q is homocyclic, and $Q / \Phi(Q)$ is a minimal normal subgroup of $G / \Phi(Q)$.

- (b) G = P[Q where Q is cyclic.]
- (c) G = P[Q where Q is extraspecial, exp Q = q, G/Z(Q) is a Frobenius group and Q/Z(Q) is a minimal normal subgroup of G/Z(Q).

Proof. By Lemma 12 we get G = P[Q]. Set $\langle z \rangle = Z(P)$, $T = C_Q(z)$.

Suppose that T = 1. Then G = (P, Q) and Q is abelian. Let $R = \Omega_1(Q)$. Then by Maschke's Theorem R is a minimal normal subgroup of G. Let $\exp Q = q^n$. Suppose that Q is not homocyclic. Then obviously n > 1. Set $M = \langle x^k | x \in Q \rangle$, $k = p^{n-1}$. Then $R = M \times M_1$ where M_1 is a normal subgroup of G by Maschke's Theorem, and M < R since Q is not homocyclic, a contradiction since R is a minimal normal subgroup of G. Thus Q is homocyclic and G0 holds.

Suppose that T > 1. Then $C_G(z) / < z >$ is an IC_2 -group with a non-cyclic Sylow 2-subgroup P / < z > of order 4. We have $C_G(z) = PT$. If PT is nilpotent then T is cyclic. Suppose that PT is not nilpotent. Then PT is supersolvable and T is cyclic by Lemma 11. Thus in any case T is cyclic. If T = Q, then (b) holds. Assume that T < Q. Then Q is noncyclic. If Q is abelian, then by Maschke's Theorem $P\Omega_1(Q)$ is not an IC_2 -group - a contradiction. So Q is not abelian. Now Q / Q' is not cyclic. So by the above remark G / Q' is a Frobenius group. Since P = 2 then G / Q'' is not a Frobenius group. Set $\overline{G} = G / Q''$. Then $\Omega_1(\overline{Q}')$ is a minimal normal subgroup of \overline{G} by Maschke's Theorem.

In particular $\Omega_1(\bar{Q}') \leq Z(\bar{Q})$. Hence $\Omega_1(\bar{T})$ is normal in \bar{G} , and $\Omega_1(\bar{Q}') \leq \bar{T}$. This shows that Q' is cyclic. Then $Q' \leq T$.

Moreover Q is regular since q > 2. Hence $H = \Omega_1(Q)$ is of exponent q. If |T| > q, then PT and PH are not incident, $P \le PT \cap PH$, a contradiction. Thus |T| = q and T = Q'. Now Q/T is a minimal normal subgroup of G/T, hence Z(Q) = T and Q is extraspecial. Also H = Q and $\exp Q = q$.

The Main Theorem 1 follows from Lemmas 1-13.

3.

Locally solvable IC_p -groups. Let G be a locally solvable torsion group. We say that G is an IC_p -group if for any finite subgroups H, K of G, either H and K are incident, or a Sylow p-subgroup of $H \cap K$ is cyclic.

We prove in this section the following

Main Theorem 2. Let G be a locally solvable infinite periodic group. Then G is IC_p -group if and only if one of the following holds:

- (a) Every Sylow p-subgroup of G is either cyclic or quasi-cyclic.
- (b) $G = Z(p^{\infty}) \times C(p)$.
- (c) p = 2 and $G = D(2^{\infty})$.
- (d) p = 2 and $G = Q(2^{\infty})$.
- (e) $G = P \times Z(q^{\infty})$, where $p \neq q$, and P is either quaternion or elementary abelian of order p^2 .
- (f) p = 2 and $G = P[Q, where <math>P = Q(2^3), Q$ is the direct product of finitely many copies of $Z(q^{\infty}), q \neq 2$, and $\Omega_1(Q)$ is the only minimal normal subgroup of G.
 - (g) $G = (\langle a \rangle Q) \times \langle b \rangle$, where $|\langle a \rangle| = |\langle b \rangle| = p$ and Q is as in (f) with $q \neq p$.

We start with the following

Lemma 14. Let G be a locally finite infinite p-group. Then G is an IC_p -group if and only if one of the following holds:

- (a) $G = Z(p^{\infty})$.
- (b) $G = Q(2^{\infty})$.
- (c) $G = Z(p^{\infty}) \times C(p)$.
- (d) $G = D(2^{\infty})$.

Proof. If G has only one subgroup of order p, then G is either quaternion or locally cyclic and one of (a) or (b) holds. Then we can assume that there exists $H \leq G$, with H elementary

abelian of order p^2 .

If M is a finite subgroup of G, then $d(M) \le 3$ by Lemma 1, where d(M) is the minimal number of generators of M. Hence G has finite rank and there exists a normal subgroup A in G with G/A finite and $A = A_1 \times \ldots \times A_n, A_i \cong Z(p^{\infty}), n \le 3$ (see for example [R1], Part 2, Corollary 2, p. 38). Thus n = 1, otherwise with $a \in A_1, b \in A_2, |\langle a \rangle| = |\langle b \rangle| = p^2$, we get that $\langle a \rangle \times \langle b \rangle$ is an IC_p -group, a contradiction.

Furthermore G = AH, otherwise for any $x \in G - AH$, $a \in A$ with $|\langle a \rangle| > |\langle x, H \rangle|$, we have $H \le \langle x, H \rangle \cap \langle a, H \rangle$, and $\langle a, H \rangle$ and $\langle x, H \rangle$ non-incident.

Finally $A \cap H \neq 1$, otherwise, with $b \in H$, $b \neq 1$, $a \in A$, $|\langle a \rangle| = p^2$, we get $\langle a,b \rangle \cap \langle a^p,H \rangle \geq \langle a^p,b \rangle = \langle a^p,b \rangle \times \langle b \rangle$, with $\langle a,b \rangle$ and $\langle a^p,H \rangle$ nonincident.

Thus $G = \langle c \rangle [A, \text{ with } A \cong Z(p^{\infty}), |\langle c \rangle| = p$, and the result follows (see for example [R1], Part 1, Lemma 3.28, p. 83).

Proof of Main Theorem 2. If G is a p-group, then the result follows from Lemma 14. So assume that G has an element x of order q^{α} , where $q \neq p$ is a prime. We can also assume that $P \in Syl_p(G)$ is neither cyclic nor $Z(p^{\infty})$. Then a Sylow p-subgroup of every non-primary finitely generated subgroup of G is cyclic, or quaternion, or of order p^3 and exponent p (Lemma 3).

If P is infinite, then $P = Z(p^{\infty}) < b >$, by Lemma 14, and if $a \in Z(p^{\infty})$, $| < a > | = p^3$, then < a, b, x > is a finite IC_p -group, a contradiction, since $| < a, b > | \ge p^4$ and < a, b > is not cyclic (Lemma 3). Thus P is finite, and or $P = Q(2^3)$, or $|P| = p^3$ and $\exp P = p$, or P is elementary abelian of order p^2 .

If P is normal in G, then it is easy to see that G/P is a locally cyclic q-group. Then G/P has not proper non-trivial subgroups of finite index, and $G = PC_G(P)$ since $G/C_G(P)$ is finite. Hence $G = P \times Z(q^{\infty})$, and it is easy to see that (e) holds. Therefore we can assume that P is not normal in G.

Let $a \in G - N_G(P)$. Then $H = \langle a, P, x \rangle$ is a finite solvable IC_p -group and P is not normal in H. Thus by Main Theorem 1 either $P = Q(2^3)$ or P is elementary abelian of order p^2 . Moreover by the same Theorem $|\pi(F)| \leq 2$ for any finite subgroup of G, so that G is a π -group where $\pi = \pi(G) = \{p, q\}$.

By [Z], there exists an infinite abelian subgroup A of G normalized by P, and obviously we can assume that A is a q-group. For any $y \in \Omega_1(A) - \{1\}$, we have $| < y, P > | \le q^{|P|}|P|$, and if y is such that < y, P > has maximal order, we get easily that $z \in < y, P >$ for all $z \in \Omega_1(A)$. Hence $d(\Omega_1(A)) \le |P|$ and (see for example [R2], p. 107) $A = A_1 \times \ldots \times A_n$, where A_i is either cyclic or quasi-cyclic. If A_i is cyclic, for any i, then A is finite, a contradiction. Thus we may assume $A_1 \cong Z(p^{\infty})$. Let $g \in G$, and write d = |< g, P > |. If $a \in A_1$, |< a > | > d, we have $P \le < a, P > \cap < g, P >$, and < a, P > is not contained in < g, P >. Hence < g, P > < < a, P >, and G = AP = P[A]. Now, using Main Theorem 1, it is easy to see that either (f) holds (if $P = Q(2^3)$) or (g) holds (if $P = < a > \times < b >$, |< a > | = |< b > | = p).

REFERENCES

- [B] YA.G. BERKOVICH, A class of finite groups (Russian), Sibirsk. Mat. J. 8 (1967), 734-740 (Russian).
- [G] D. GORENSTEIN, Finite groups, Harper and Row, N.Y., 1968.
- [H] C. HOBBY, The Frattini subgroup of a p-group, Pacific J. Math. 10 (1960), 209-212.
- [Is] I.M. ISAACS, A note on IC_p-groups, Proc. Amer. Math. Soc. 17 (1966), 1451-1454.
- [R1] D.J.S. ROBINSON, Finiteness conditions and generalized soluble groups, Parts 1, 2 Springer, Berlin, 1972.
- [R2] D.J.S. ROBINSON, A course in the theory of groups, Springer, Berlin, 1980.
 - [Z] D.I. ZAICEV, On solvable subgroups of locally solvable groups, Soviet Math. Dokl., vol. 15 (1974), 342-345.

Received October 17, 1994
Y. BERKOVICH
Department of Mathematics and Computer Science
Afula Research Institute
University of Haifa, 31905 Haifa, ISRAEL
P. LONGOBARDI and M. MAJ
Dipartimento di Matematica e Applicazioni "R. Caccioppoli"
Università degli Studi di Napoli, Monte S. Angelo, via Cintia
80126 Naples, ITALY