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Abstract. Let G be a group and p be a prime. We say that two subgroups H, K are incident
ifeither HNK = Hor HN K = K. A group G is an IC,-group if, for any finite non-incident
subgroups H, K of G, a p-Sylow subgroup of H N K is cyclic.

In this paper we give a complete classification of solvable and locally solvable periodic
IC,-groups.

Let G be a finite group, p a prime, Pe Syl,(G). We say that two subgroups F, H are incident
if either FN H = F or FN H = H, non-incident in the opposite case. A group G is said to be
an IC,-group if a Sylow p-subgroup of the intersection of any two non-incident subgroups is
cyclic [B]. A group G is said to be an IC — p-group if the intersection of any two non-incident
subgroups is cyclic whenever it is a p-group [Is]. Obviously IC, C IC — p. In this note we
obtain a complete classification of solvable finite and locally solvable periodic IC,-groups; for
the classification of non-solvable IC,-groups see [B]. We feel that the description of solvable
IC — p-groups is fairly difficult. As Isaacs noticed (see [Is]) generally an epimorphic image
of an IC — p-group 1s not an IC — p-group.

We denote by C(m) the cyclic group of order m, by E(p") the elementary abelian group of
order p", by Q(2") the generalized quaternion group of order 2". Furthermore Z(p°°) denotes
the Priifer p-group, Q(2°°) the infinite quaternion group and D(2°°) the infinite locally dihedral
group. Let A[B denote a semi-direct product with kernel B and complement A, and (A, B) a
Frobenius group with kernel B and complement A.

2,

Finite solvable IC,-groups. - In this section we consider only finite solvable groups. We
prove the following

Main Theorem 1. Let p be a prime divisor of the order of a finite solvable group G. Let
P € Syl,(G), P < G and assume that P is not cyclic.

Then G is an IC,-group if and only if one of the following is true:

(a) G = P x C(q"), where eitherp =2, P = Q(2%) and q # 2, or P = E(p*) and p # q.

(b) G = C(q") [P where either P = Q(2°) and q = 3, or P = E(p*) and p # q. Moreover,
if P = Q(2°), then G | Z(G) = Aa, the alternating group of degree 4.

(c) G = (C(gM), E(p?)), and any subgroup of order qp> of G is minimal non-nilpotent.
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(d) G = C(q") [P, where P is non-abelian of order p* and exponent p, p >2,p % 1 (mod q),
Z(G) = Z(P), G / Z(P) is a Frobenius group with kernel P / Z(P), and P / Z(P) is a minimal
normal subgroup of G / Z(P).

(e) G = P[C(q"), where p = 2, P = Q(2°) and q # 2.

(f) G = (P,Q) where p = 2, P = Q(2°), Q is a homocyclic g-group, g # 2, and Q,(Q)
= <x € Q/x?=1>is aminimal normal subgroup of G.

(g) G = P[Q, where p = 2,P = Q(2°), Q is an extraspecial g-subgroup of exponent
q,9 # 2,0/ Z(Q) is a minimal normal subgroup of G/ Z(0), and G / Z(Q) is a Frobenius
group.

(h) G = C(p) x (C(p), Q), where P = E(p*), Q is a g-group, q # p, and all non-nilpotent
subgroups of the group (C(p), Q) have only one chief series whose q-factors have the same
order q", where n is the order of g (mod p).

(i) G = C(p) x F, where F = C(p)[Q, Q is an extraspecial g-group, q # p,P = E(p?),
F /Z(Q) is a Frobenius group and Q / Z(Q) is a minimal normal subgroup of F /| Z(Q).

This Theorem follows from a long chain of lemmas.

Lemma 1. (sec [B]). Let G be a p-group. Then G is an IC,-group if and only if one of the
following assertions holds:

(a) G is cyclic,

(b) G contains a cyclic subgroup of index p,

(c) G is of order p> and exponent p.

Lemma 2. Let P> 1 be a non-cyclic Sylow p-subgroup of a group G, P < G, and let p be the
smallest prime divisor of |G|. Suppose that G satisfies the following condition.:

(*) If P1 < P is a Sylow subgroup of a non-primary subgroup of G, then P is cyclic.

Then one of the following assertions holds:

(a) P is extraspecial, and exp P = p for p > 2,

(b) P is elementary abelian.

Proof. Suppose that D = O,/(G)>1. If Py <P then Py € Syl,(P;D) and P, 1is cyclic by
(*). So all proper subgroups of P are cyclic; therefore either P 1s abelian of type (p,p) or
P=02%.

Suppose now that D = 1. Then by Frobenius normal p-complement Theorem there exists
in G a minimal non-nilpotent subgroup H with a normal Sylow p-subgroup P; > 1. Now P,
is not cyclic since p is the smallest prime divisor of |G|. Therefore we conclude from (x) that
Py = P. Since P is a normal Sylow p-subgroup of H it 1s special (i.e. either P = E(p"), or
Z(P) = P' = ®(P) is elementary abelian). Suppose that P is not abelian. If Q is a non-normal
Sylow subgroup of H then Z(P) is a Sylow p-subgroup of Z(P)Q so Z(P) is cyclic by ().
Thus P is extraspecial. Assume that p >2. Then P is a regular p-group. Thus ;(P) 1s a
noncyclic Sylow subgroup of Q;(P)Q, so P = Q,(P) has exponent p. |

Now we give a short proof of the main result from [Is].

Lemma 3. Suppose that G is a nan-pr:’mmy IC-p-.grfﬁup, P € Syl,(G). Then P is cyclic,
quaternion, or |P| < p> and exp P = p.
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Proof. By Lemma 1 we may assume that P is not cyclic, |P| > p° and P contains a cyclic
subgroup of index p.

Suppose that D = O,,(G) > 1. Then as in Lemma 2, all proper subgroups of P are cyclic,
so P = Q(2°). Letnow D = 1.

Suppose that p is the smallest prime divisor of |G|. Then G satisfies the condition (x) of
Lemma 2. Therefore P is either extraspecial or elementary abelian. By our hypothesis on P
we get |P| = p°. If P is not quaternion then exp P = p by Lemma 2.

Suppose that p is not the smallest prime divisor of |G|. Then p>2 and P is regular.

Therefore, by a result of Wielandt, Ng(P) > P. As above Q,(P) = P is of exponent p, |P| =

p*— a contradiction.

For the rest of this section we make the following
HYPOTHESIS: (1) G is a non-primary solvable /C,-group.
(ii) p is a prime divisor of |G|.

(iii) P is a non-cyclic Sylow p-subgroup of G.

First we have

Lemma 4. G = PQ where Q € Syl,(G), q a prime divisor of |G|.

Proof. This is an easy corollary of Hall’s Theorem on solvable groups.

Lemma 5. If P is normal in G then |P| < p*, and Q is cyclic.

Proof. If O,, 0, are non-incident subgroups of Q then PQ;,PQ, are non-incident and
P < PQ; N PO,, a contradiction. Therefore Q is cyclic. The first assertion follows from
Lemma 3.

If a Sylow p-subgroup P of a non-primary group G is normal in G,G / P 1s a primary
cyclic group, and either P 1s abelian of type (p,p) or P = 0(2%) and G satisfies the additional
hypothesis in (b) of Main Theorem 1, then G is an IC,-group. Therefore, if P is normal in G,
we can assume |P| = p°.

Lemma 6. Suppose that P is elementary abelian of order p’. Then G = (Q, P). Moreover, if
L/ P is a subgroup of order g, then L is minimal non-nilpotent group.

Proof. Obviously O,(G) = 1. Since Cg(0,(G)) < 0,(G), then P = Op(G) 1s normal in
G. By Lemma 5, Q is cyclic, and, by Maschke’s Theorem, P is a minimal normal subgroup
of G. Then G = (Q, P), and any subgroup L of G with P< L and |L /P| = g, is minimal
non-nilpotent, as required.

Lemma 7. Suppose that P is non-abelian of order p°> and exponent p. Then G = Q[P,Z(P) =
Z(G),G / Z(G) is a Frobenius group. Moreover, if S/ Z(G) is a subgroup of order q in
G / Z(G), then S is a minimal non-nilpotent group.

Proof. Obviously O,(G) = 1. Then D = O,(G) > 1. Suppose that D < P. Since D = PNDQ
then D is cyclic. Since Cg(D) < D, we get a contradiction. Thus D = P. Obviously P / Z(P)
is a minimal normal subgroup of G / Z(P). Suppose that Z(P) # Z(G), and set C = Cg(Z(P)).
Then |G / C| is a non-trivial power of g, and p # 1 (mod g). Take a minimal non-nilpotent
subgroup M / Z(P) of G/Z(P). Then a Sylow p-subgroup M, of M has order p* (since
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p = 1 (mod g)) and it i1s not cyclic. Then M and P are non-incident, M, < M N P and
G is not an IC,-group. Thus Z(P) = Z(G). Take a subgroup S/ P of order g in G/ P.
Since P/ Z(P) = P/ Z(S) 1s a minimal normal subgroup of .S/ Z(P), then S is a minimal
non-nilpotent group.

From Lemmas 5, 6, 7, it follows that, if P is normal in G, then G satisfies one of
(a),(b),(c),(d) of Main Theorem 1. Conversely, it is easy to see that if G satisfies one
of (a), (b),(c),(d), then G 1s an IC,-group.

Now we study the case: P not normal in G. Then, by Lemmas 3, 6 and 7, either P is
elementary abelian of order p?, or P = Q(2%).

We investigate first the case P = E(p?).

Lemma 8. Suppose that P = E(p?) is not normal in G. Then Q is normal in G.

Proof. If O,(G) = 1, then P is normal in G (since the p-length of G is equal to 1) - a
contradiction. So assume that Q # D = O,(G) > 1. By the above remark PD is normal in
G,PD < G. Then G = Ng(P)PD, Ng(P) and PD are non-incident, and P < Ng(P) N PD is
not cyclic - a contradiction.

Lemma 9. Suppose that Q is normal in G and |P| = p*. Then G = C(p) x C(p)[O.

Proof. We have (see [G], Theorem 5.3.16, p. 188) Q = < Co(x)|x € P* >.

Now, either there exist x,y € P* such that Cp(x), Co(y) are not incident, or Cp(x) = Q for
some x € P*. In the second case we have G = <x > x <y >[Q. In the first case we have
P < PCp(x) N PCp(y), a contradiction.

Lemma 10. Suppose that P = E(p?) is not normal in G and G does not contain a normal
subgroup of order q. Then G = <a> x(<b>,0Q), and all non-nilpotent subgroups of
(<b>,Q) have only one chief series, whose indices are p and q", where n is the order of

q(mod p).

Proof. By Lemmas 8, 9 we have G = <a > X(< b >[(Q). By assumption any two subgroups
of F = <b>[Q that contain < b > are incident. Set ¢" = |Q/®(Q)|. If n = 1 then Q is
cyclic, and the result 1s obvious. Hence assume that n > 1. By Maschke’s Theorem Q / ®(Q)
is a minimal normal subgroup of F' / ®(Q). So n is the order of g(mod p).. If g is not an index
of a chief series of F, then all g-indices of this series are equal to ¢". Suppose that R /T is a
chief factor of F of order g. Without loss of generality we may assume that 7 is a minimal
normal subgroup of F. By assumption |7|>1. Since T' < Z(Q), then R is abelian. By
Maschke’s Theorem R is not elementary abelian. Then ®(R) is a normal subgroup of order ¢
of F - a contradiction. Thus all g-indices of a chief series of F are equal to ¢". Now we prove
that /' has only one chief series. It suffices to prove that F' contains only one minimal normal
g-subgroup. This is obvious since any two subgroups of F that contain < b > are incident.
Finally F is a Frobenius group.

Notice that every group that satisfies the conditions of Lemma 10 is an /C,-group.

Lemma 11. Let P = E(p?) be not normal in G, and let G contain a normal subgroup of order
q. Assume that Q is not cyclic. Then Q is extraspecial and Q / Z(Q) is a minimal normal

subgroup of G / Z(Q).



Finite and locally solvable periodic groups with given intersections of certain subgroups 151

Proof. Write G = < a > x F, where a has order p and F = < b >[Q. Then F contains only
one minimal normal g-subgroup, say R, and |R| = g. By Maschke’s Theorem R is the only
normal elementary abelian g-subgroup of F. Therefore any abelian normal g-subgroup of F
is cyclic. In particular Z(®(Q)) is cyclic, and ®(Q) is cyclic by a result of Hobby (see [H]).
Also QO /- ®(Q) is a minimal normal subgroup of '/ ®(Q), and F' / ®(Q) 1s not nilpotent. First
we prove that |®(Q)| = g.

If the subgroups ®(Q) and ();(Q) are not incident, then P®(Q) and P();(Q) are not incident,
and P < P®(Q) N PQ,(0) is not cyclic, a contradiction. Then either (2;(Q) < ®(Q), or
®(0) < Q1(0) and Q(Q) = Q, since Q / ®(Q) is a minimal normal subgroup of G / ®(Q).

Now, if g > 2, then Q is regular, and Q,(Q) has exponent g. Futhermore |Q);(Q)| > g, since
O is not cyclic. Then (2;(Q) is not contained in ®(Q), and Q = ;(Q) has exponent g, so
that |®(Q)| = q.

Now assume that g = 2. The subgroup ®(Q)P is nilpotent, thus P < Cg(®(Q)). Write
C the critical subgroup of Q (see [G], p. 185). Arguing as before, either C < ®(Q), or
®(0) < C and C = Q. But C is not contained in ®(Q), otherwise P acts trivially on Q, then
C = Q and Q has class at most 2. Now, if |Q(Q)| = 2 then Q = Q(2°) and |®(Q)| = 2. If
0 = Q,(0), then [a,b]* = 1 forany a,b € Q of order 2, and Q / Q;(®(Q)) is abelian. Then
Q(#(Q)) = $(0), and again |3(Q)| = 2.

Thus |®(Q)| = g. Suppose that |Z(Q)| > g. Then Z(Q) = Q, since O\ ®(Q) is a minimal
normal subgroup of G\ ®(Q) - a contradiction. Thus Z(Q) has order g and Q is extraspecial.

From Lemmas 10, 11 it follows that, if P = E(p?) is not normal in G, then G satisfies either
(h) or (i) of Main Theorem 1, and, conversely, if G satisfies (k) or (i), then G is an /C,-group.

It remains to consider the case P = Q(2%) not normal in G.

Lemma 12. If P = Q(2°) is not normal in G then Q is normal in G.

Proof. Set D = O,(G). Assume that D < Q. Suppose that D = 1. Then L = O»(G) <P and
Co(L) < L. So |L| = 4, G/ L has a subgroup H /L of index 2, and H has a characteristic
subgroup Qg of index 4. Then Qy = @ is normal in G - a contradiction. Thus D > 1. Then by
the above argument PD is normal in G and P 1s not normal in PD. Now PDNg(P) = G,P <
PD N Ng(P) and PD, Ng(P) are not incident - a contradiction.

Lemma 13. Suppose that P = Q(2°) is not normal in G. Then one of the following is true:

(a) G = (P,Q), where Q is homocyclic, and Q / ®(Q) is a minimal normal subgroup of
G/ 2(0).

(b) G = P[Q where Q is cyclic.

(c) G = P[Q where Q is extraspecial, exp Q = q,G/Z(Q) is a Frobenius group and
QO / Z(Q) is a minimal normal subgroup of G / Z(Q).

Proof. By Lemma 12 we get G = P[Q. Set <z> = Z(P), T = Cp(2).

Suppose that T = 1. Then G = (P,Q) and Q is abelian. Let R = ();(Q). Then by
Maschke’s Theorem R is a minimal normal subgroup of G. Let exp Q = ¢". Suppose that
O is not homocyclic. Then obviously n>1. Set M = <x*|x € QO>, k = p*~!. Then
R = M x M, where M, is a normal subgroup of G by Maschke’s Theorem, and M < R since
O is not homocyclic, a contradiction since R is a minimal normal subgroup of G. Thus Q 1s
homocyclic and (a) holds.
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Suppose that 7 > 1. Then C;(z) / < z > is an IC-group with a non-cyclic Sylow 2-subgroup
P / <z > of order 4. We have Cg(z) = PT. If PT is nilpotent then T is cyclic. Suppose that
PT is not nilpotent. Then PT is supersolvable and T is cyclic by Lemma 11. Thus in any
case T 1s cyclic. It T'= (), then (/) holds. Assume that 7' < Q. Then Q is noncyclic. If Q is
abelian, then by Maschke’s Theorem P((Q) is not an /C,-group - a contradiction. So Q is
not abelian. Now Q / Q' is not cyclic. So by the above remark G / Q' is a Frobenius group.
Since p = 2 then G / Q" is not a Frobenius group. Set G = G/ Q". Then Q;(Q’) is a minimal
normal subgroup of G by Maschke’s Theorem. -

In particular Q;(Q") < Z(Q). Hence Q;(7T) is normal in G, and Q;(Q’) < T. This shows
that Q' is cyclic. Then Q' < T.

Moreover Q is regular since ¢ >2. Hence H = Q,(Q) is of exponent g. If |T| > g, then
PT and PH are not incident, P < PT N PH, a contradiction. Thus |T| = gand T = Q'. Now
QO /T 1s a minimal normal subgroup of G /T, hence Z(Q) = T and Q is extraspecial. Also
H=QQandexp Q = q. -

The Main Theorem 1 follows from Lemmas 1-13.

Locally solvable IC,-groups. Let G be a locally solvable torsion group. We say that G is
an IC,-group if for any finite subgroups H, K of G, either H and K are incident, or a Sylow
p-subgroup of H N K is cyclic.

We prove 1n this section the following

Main Theorem 2. Let G be a locally solvable infinite periodic group. Then G is IC,-group
if and only if one of the following holds:

(a) Every Sylow p-subgroup of G is either cyclic or quasi-cyclic.

(b) G = Z(p™) x C(p).

(c)p =2and G = D(2°).

(d)p =2 and G = Q(2°°).

(e) G = P X Z(q™), where p # q, and P is either quaternion or elementary abelian of
order p*.

(f)p = 2 and G = P[Q, where P = Q(2°), Q is the direct product of finitely many copies
of Z(q°°), q # 2, and )1(Q) is the only minimal normal subgroup of G.

(g) G =(<a>[Q) x <b>, where |<a>|=|<b>|=pandQis as in (f) with g # p.

We start with the following

Lemma 14. Let G be a locally finite infinite p-group. Then G is an IC,-group if and only if
one of the following holds:

(a) G = Z(p™).
(b) G = Q(2).
(c) G = Z(p~) X C(p).
(d) G = D(2°).

Proof. If G has only one subgroup of order p, then G is either quaternion or locally cyclic
and one of (a) or (b) holds. Then we can assume that there exists H < G, with H elementary



Finite and locally solvable periodic groups with given intersections of certain subgroups 153

abelian of order p?.

If M is a finite subgroup of G, then d(M) < 3 by Lemma 1, where d(M) 1s the minimal
number of generators of M. Hence G has finite rank and there exists a normal subgroup A in
G with G /A finite and A = A X ... X A,,A; 2 Z(p*), n < 3 (see for example [R1], Part 2,
Corollary 2, p. 38). Thus n = 1, otherwise with a € A1,b € A, |<a>| = |<b>| = p’,
we get that < a > x < b > is an IC,-group, a contradiction. |

Furthermore G = AH, otherwise for any x € G — AH, a € A with |<a>|>|<x,H>|,
we have H < <x,H >N < a,H>, and < a, H > and < x, H > non-incident.

Finally A N H # 1, otherwise, with b € H, b # 1, a € A, |<a>| = p?, we get
<a,b>N<d? H> > <d’,b> = <d’>x<b>, with <a,b> and <a&’,H> non-
incident.

Thus G = < ¢ >[A, with A = Z(p™>), | < ¢ >| = p, and the result follows (see for example

[R1], Part 1, Lemma 3.28, p. 83).

Proof of Main Theorem 2. If G is a p-group, then the result follows from Lemma 14. So
assume that G has an element x of order g%, where g # p is a prime. We can also assume
that P € Syl,(G) is neither cyclic nor Z(p°°). Then a Sylow p-subgroup of every non-primary
finitely generated subgroup of G is cyclic, or quaternion, or of order p> and exponent p
(Lemma 3).

If P is infinite, then P = Z(p™) < b >, by Lemma 14, and if a € Z(p*>), |<a>| = p°,
then < a,b,x > is a finite /C,-group, a contradiction, since | <a,b > | > p* and <a,b> is
not cyclic (Lemma 3). Thus P is finite, and or P = Q(2°), or |P| = p?> and exp P = p, or P is
elementary abelian of order p°.

If P is normal in G, then it is easy to see that G / P is a locally cyclic g-group. Then G / P
has not proper non-trivial subgroups of finite index, and G = PCg(P) since G/ Cg(P) 1s
finite. Hence G = P x Z(g°°), and it is easy to see that (¢) holds. Therefore we can assume
that P is not normal in G. |

leta € G — Ng(P). Then H = <a,P,x> is a finite solvable /C,-group and P 1s not
normal in H. Thus by Main Theorem 1 either P = Q(2°) or P is elementary abelian of order
p*. Moreover by the same Theorem |7t(F)| < 2 for any finite subgroup of G, so that G is a
n-group where 1 = (G) = {p, q}. |

By [Z], there exists an infinite abelian subgroup A of G normalized by P, and obviously
we can assume that A is a g-group. For any y € Q;(A) — {1}, we have | <y,P>| < g'Fl|P|,
and if y is such that <y, P> has maximal order, we get easily that z € <y, P> for all
z € O1(A). Hence d(Q;(A)) < |P| and (see for example [R2], p. 107) A = A; X ... X Ap,
where A; is either cyclic or quasi-cyclic. If A; is cyclic, for any i, then A 1s finite, a
contradiction. Thus we may assume A; = Z(p™). Let g € G, and write d = | <g,P>|.
Ifa € Ay, |<a>|>d, wehave P < <a,P>N<g,P>, and <a, P> is not contained in
<g,P>. Hence <g,P><<a,P>, and G = AP = P[A. Now, using Main Theorem 1,
it is easy to see that either (f) holds (if P = 0(2%)) or (g) holds (if P = <a>Xx<b>,
| <a>|=|<b>]|=Dp).
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