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Abstract. This paper presents the following general structure theorem for topological groups.
Let G be a topological group of density K, for any cardinal k. Then each neighbourhood of

the identity in G contains a subgroup of index less than or equal to KXo,

1. INTRODUCTION

Recall that the density of a topological space is the smallest cardinal of a dense set in that
space. Also recall that the index of a subgroup H of a group G is the cardinality of the set
{xH : x € G} of left cosets of H in G (or, equivalently, of the set of right cosets).

The main result of this note is the following general structure theorem for topological
groups.

Theorem 1. Let G be a topological group of density k. Then each neighbourhood of the
identity in G contains a subgroup of index less than or equal to k™.

In the theory of topological groups one informally says that a topological group has “small
subgroups’ of a particular type if each neighbourhood of the identity contains a subgroup of
that type. Similarly, we might say that a subgroup of a group is ‘large’, relative to some
cardinal, if its index is bounded above by that cardinal. We may therefore loosely paraphrase
our result, in the words of the title, by saying that topological groups contain small large
subgroups.

The weight of a topological space is the smallest cardinal of an open basis for the space.
Clearly the density of a space is dominated by the weight, ant it is perhaps worth noting that
our theorem therefore holds with ‘density’ replaced by ‘weight’. A further special case 1s
worth noting: a topological group G of density (or weight) k which has no small subgroups
must have cardinality at most k™. This bound holds in particular for any Banach space G; in
fact, by Sections 8 and 10 of [4], the cardinality of G is precisely k™°.

2. PROOF OF THE THEOREM

We prepare the proof through the sequence of lemmas below, and we note that the argument
proceeds by entirely elementary means. We begin by recalling some basics of the theory of
topological groups. For our purposes, a neighbourhood of a point in a topological space 1s
any set containing an open subset containing the point. With application to topological groups
in mind, BOURBAKI shows in [1], §1, N° 2, p.14ff., how to characterise a topology on a set
X in terms of the neighbourhood filters of its points as follows.

Lemma 2. Assume that x — (x) is a function which assigns to each point of a set X a set of
subsets of X satisfying the following conditions.

(Vi) If U € U(x) and U C V, then V € I(x).
(Vi) A finite intersection of members of U(x) is in UU(x).
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(Vi) If V € M(x) thenx € V.
(Viv) ForeachV € (x) there isa W € U(x) such that for each w € W one has V € U(w).
Then ® = {U C X : (Vu € U)U € U} is the unique topology on X such that (x) is the set
of all neighbourhoods of x respect to ®, for all x € X.
With the aim of characterising a group topology © on a group G in terms of a base B of
the filter {1 of ‘potential neighbourhoods’ of the identity of G, BOURBAKI [2], §1, NY 2, p.
12ff,. establishes the following facts.

Lemma 3. Let G be a group, and B a filter base satisfying the following conditions.
(GV;) Foreach U € B thereisaV € B with VV C U.
(GVy) ForeachU € B thereisaV € BwithV~! C U.
Then® = {U C G : Yu € U)3V € B)uV C U} is the unique topology on G such that
(i) for g € Gaset U is aneighbourhood of g if and only if thereisa V € B such that gV C U,
(ii) all translations x — gx . G — G are homeomorphisms, and
(iii) the function x — x~' : G — G is continuous at 1.
The main part of the proof is a direct verification that the conditions (V;) — (Vi) above
hold when $(g) is defined to be {U : (V € B)gV C U}, for each g € G; properties (1) and
(i1) secure uniqueness, and property (iii) follows at once from condition (G V).
We remark that © is a group topology if in addition to (GV}) and (GV};) the following is
satisfied:
GVm) (Vge GONYU e B3V eB) VCgUg™ .

This condition is trivially satisfied if G is abelian. In fact, it suffices that
(SIN) (YU e®B)VgeG) U=gUg .

In this case (G, D) is a SIN-group, or is locally invariant [5]; that is, a topological group with
arbitrarily small identity neighbourhoods which are invariant under all inner automorphisms.
(Alternatively, the group has equivalent left and right uniformities).

If H is a subgroup of a group G, we denote by G / H the set of all cosets & = xH, and
we define the quotient map g : G — G/ H by g(x) = xH. The natural transitive action
(g,x) — gx of G on G by left translation permutes the cosets xH and thus defines a natural
transitive action (g,£&) — g+ & : G Xx G/H — G/ H unambiguously via g - £ = gxH for
§ = xH. Since g(gx) = gxH = g- (xH) = g - g(x), the quotient map g : G — G/ H is
equivariant for the transitive actions of G on G and G / H, respectively.

Lemma 4. Suppose that G and B are as in Lemma 3. Then we have the following.
(i) The set H = (B is a closed subgroup of G with respect to the topology .
(ii) Every ®-open set U satisfies UH = U.
(iii) In particular, g(®) = {q(U) : U € D} is the quotient topology on G /H, and q is a
continuous open map.
(iv) The quotient topology on the coset space G/ H = {gH : g € G} is Hausdorff-
(v) The natural transitive action of G on G / H gives homeomorphisms & — g- & : G/ H —
G/H.

Proof. It is easy to see that H is a subgroup, proving part of (1). Let U € ©® and u € U. Then
there is a V € B such that uV C U. Hence uH C U, and so UH = U, proving (ii). From the
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fact that all U € ® are stable under multiplication by H on the right, it is clear that the quotient
topology on G/ H is g(®) = {q(U) : U € ©}. Obviously, ¢ is continuous and open under
these circumstances, and we have (iii). Also, for U € © we have g - g(U) = gq(gU) € © and
g~ q(U) = q(g~'U). Thus themap & — g- & : G/H — G/ H is a g(D)-homeomorphism
for all g, which proves (v).

It remains to show that G / H is Hausdorff and that H is closed. But if G / H is Hausdorff,
then in particular the singleton set {H} is closed in G / H, whence H = g~ '({H}) is closed
in G, completing the proof of (1).

Finally, assume that g;H # g,Hin G / H. Thisis equivalentto g, ', & H, and so there is a
V € B such that g, 1g1 ¢ V. Using (GV;) and (GVy), we find an A € ‘B such that AA~1 C V.
Then gz‘lgl ¢ AA~!, and this implies that g1A N goA = (). By Lemma 3, the set A is an
D-neighbourhood of 1, and thus there is an ®-open neighbourhood W of 1 such that W C A.
Therefore gt WN g, W = (). But g(g; W) and g(g> W) are disjoint open neighbourhoods of g, H
and goH in G / H, respectively, and so G / H is Hausdorff. Thus (iv) holds, completing the
proof. -

Lemma 5. If a topological space G of density « satisfies the first axiom of countability and
is Hausdorff, then card G < ™0,

Proof. Let D be a dense subset of cardinality k. Now for any x € G, there 1s a sequence
(d,) of elements of D converging to x, since the neighbourhood filter of x has a countable
basis. Let C C D" denote the set of all sequences of D having a limit in G. Since G is
Hausdorff, (x,)eny — limpenx, : C — G is a well-defined surjection. Hence card G <
card C < card DY = ke, |

Note that Hausdorffness is essential here: if a set X with at least 2 points 1s equipped with
the indiscrete topology then the density k of X is 1, and so k™ = 1 <2 < card X.

We are now ready for the proof of Theorem 1. Assume that (G,®g) is a topological
group and W an identity neighbourhood. Inductively define ®q-idendity neighbourhoods
Up = W,U,,Us,,... satisfying U, = U;! and U, U, C U,—1,n = 1,2.... Then B =
{U, :n=0, 1,... } satisfies (GV;) and (GV};), and by Lemma 3 we have a unique topology
© on G such that B is a basis for the neighbourhoods of the identity and all translations
x +— gx : G — G are homeomorphism. Since each U, is a neighbourhood of 1 with respect to
Do, we have ® C . (Notice that we do not assert that the sets U,, are open in D, even if they
are taken to be open in D; Lemma 4 shows that U, cannot be open in® unless U,H = Uy,).
By Lemma 4, the intersection H = (] _, U, is an D-closed subgroup, and because © C 2y,
H is also Dg-closed. Obviously, H is contained in Uy = W, and we shall show that H satisfies
the requirements.

Let g : G — G/H denote the quotient map. Then by Lemma 4, the image g(®) is
the quotient topology and ¢ : (G,D) — (G/H,q(®)) is a continuous open map onto a
homogeneous Hausdorff space. Since B is a basis for the neighbourhood filter of 1 in (G, ),
the set g(*B) is a basis of the neighbourhood filter of H in G / H. Hence (G / H,D) satisfies
the first axiom of countability, by homogeneity. If D is dense in (G,®g) then DH / H = (D)
is dense in (G / H,q(®g) — (G / H,q(®)) is continuous. Hence the density of G / H is less
than or equal to , the density of G. Therefore, by Lemma 5, card G / H < k™, as required.
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3. REMARKS

A slight modification of the argument above shows that, in a SIN-group G of density K
every identity neighbourhood contains a closed normal subgroup whose index is dominated
by k. To see this, note that we can choose, in the proof of Lemma 5, identity neighbourhoods
U, forn=1,2,...,in such a fashion that, in addition to the conditions stated there, each U,
is invariant under all inner automorphisms. Accordingly, the group H = (_, U, is normal.
(Also, as noted following Lemma 3, D is a group topology on G with {U,, : n € N} as a basis
for the filter of identity neighbourhoods, and so G / H is a Hausdor{f topological group).

We now present an example, for any infinite cardinal k, of a Hausdorft topological group
of density k and cardinality 2 which has a neighbourhood of the identity containing no
non-trivial normal subgroups.

The group S(k) of all permutations with finite support on the set Kk acts on the product
R* through permutations of the index set. (Explicitly, for o € S(k) and x € R”, we define
o - x by setting (0 - x)(x) = x(o(x)); for each x < k). With the product topology on R” and
the discrete topology on S(k), this action is clearly continuous. Now let G be the semidirect
product R”* x S(k) with the product topology. Clearly G is a topological group, and it is easy
to see that G has density (and indeed weight) k and cardinality 2".

Denote by V the open neighbourhood V = {x €* : |x(0)| < 1} of 0 in R*. Then the set
W = V x {e} is an open neighbourhood of the identity (0, e) in G, and we claim that if H is
a normal subgroup of W, then H = {0}. In fact, if H is normal, it must be contained in the
maximal invariant subset (|{c(W) : o € S(k)} of W, which coincides in turn with

{x e R*": |x(x)| < forall x<k} x {e}.

But the latter set, being the unit ball in the Banach space /.. (k) (which 1s embedded naturally
as a linear subspace of R"), has no small subgroups. Therefore, H is trivial.

We feel that a self-contained and entirely elementary proof of Theorem 1, such as we have
presented, is of interest. We note, however, that a somewhat shorter argument is possible, at
the cost of using more sophisticated machinery. Briefly, given an arbitrary neighbourhood U
of 1 in G, there exists, by Theorem 8.2 of [3] for example, a left-invariant pseudometric p on
G such that the unit sphere centred at 1 with respect to p is contained in U. The set of elements
of distance O from 1 forms a closed subgroup H of G, and the homogeneous factor-space
G / H supports a metric d, defined by d(xH, yH) = p(x,y). (The well-definedness of d follows
from the left-invariance of p). The argument may now be concluded in much the same way
as that of §2.
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