NON-EUCLIDEAN PLANE BOL LOOPS

ARPAD SZEMOK

Abstract. We extract an interesting family of 2-dimensional Bol-loops with the help of
the standard notion of parallel translation using a generalised Poincaré model for two-
dimensional surfaces with constant curvature.
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1. INTRODUCTION

In the theory of differential loops there is an operation on the local geodesic loops which
plays a very important role:

Xoy= exp},(T&.y(exI};l(X))) (*)

where T, , denotes parallel translation along the goedesic from e to y. (Cf. [1], [2]) This
operations is even more interesting if the differential geometric space has a classical structure.
In symmetric spaces the goedesic loop multiplication (*) satisfies well-known 1dentities like
the automorphic inverse property ([1]) and the right Bol property ([2]).

The goal of this paper is to describe the operation defined by (*) 1n the simplest symmetric
spaces, which are the simply connected Riemannian 2-manifolds of dimension 2 of constant
curvature (sphere, hyperbolic plane). For this description we will employ elementary tools
using the Poincaré models on the complex plane of the non-Euclidean planes.

In [3], the 2-dimensional local proper (non-associative) Bol loops are classified and proved
that there are 3 different isotopy classes. In this paper examining the sphere and the hyperbolic
plane, we describe in a rather elementary way the elliptic and hyperbolic cases.

Using the complex plane representation, it is easily seen in which case we can talk about
global loops and in which one we can not. We also prove that the nonglobal case cannot be
made global adding new elements to the loop. It is interesting because it is shown that in the
case of Moufang loops the local Moufang loop can be embedded into a global Moufang loop.
(CL. [4])

Because of the rather elementary structure of our formulas we can prove the well known
properties more easily without using hard theoretical tools.

The formulas give us the possibility to define new global Bol loops (even discrete ones).

We assume familiarity with the basics of the loop theory (see e.g. [S]).

2. PARALLEL TRANSLATION

There is a natural way to introduce the notion of parallel translation of a great circle segment
on the sphere with unit diameter along another great circle segment. (Figure 1)

Let O, N(€ S) be opposite points of the sphere, which means that the (Euclidean) segment
ON is a diameter of the sphere. Let OP;, OP, be the great circle segments between O and P,
and between O and P, respectively. (P, P, # N) Let v; be the tangent vector to OP;. The
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result of the parallel translation of the great circle segment OP; along the great circle segment
OP; 1s the great circle segment P, P3, 1 the tangent vector of the great circle segment P, P3 at
the point P, is equal to v, and the length of OP; is equal to the lenght of P,P;.

THE SPHERICAL POINCARE MODEL.
For further calculations, we introduce the notion of the Poincaré model of the sphere.
(Figure 1)

Let S be the sphere of umit diameter and O, Py, P,, P3 points of S. Let TT be the tangent
plane of the sphere at the point O, and it will be identified (in a standard way) with the
complex plane, O is the origin. The points of the Poincaré model are the points of TT. The
correspondance between the sphere and the complex plane is given by the stereographic
projection of S from N to I'l. The points z; and z, of TT are called opposite points if z; and z;
are stereographic images of P, and P, which are opposite points on the sphere. On Figure 2
we can see that |z;||z2] = 1 and

The images of the great circle segments are Euclidean segments, if the segments pass
through the point O, otherwise they are circle segments (because the stereographic projection
preserves circles). We can see that a circle on IT will be an image of a great circle if and
only if 1t contains a pair of opposite points. The angles are the Euclidean angles, because the
stereographic projection preserves angles. We can easily see that the length of the great circle
segment OP; 1s equal to the length of the great circle segment P, P if P, and P5 are on a circle
with points contained in a plane parallel to the plane of the great circle OP,. In this case, we
can say that the two circles are parallel. It is obvious that two circles are parallel if and only if
there are two great circles which are both orthogonal to both of the circles mentioned above.
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(Figure 2)

O Z

We can summarize the above in the following definition:

Definition 2.1. The points of the spherical Poincaré model are the points of the complex
plane. z; is called the opposite point of the point z1 if 7} = — % A great circle is a line if it
contains O, and is a circle containing pairs of opposite points if it does not contain Q. The
following formula gives us a very comfortable tool.

Theorem 2.1. Let 7;, 2 be the points of the spherical Poincaré model. The parallel translation
along the great circle segment Ozp moves the great circle segment Oz, to the great circle

segment 7273 if
Atz

1—215

{3

Proof. Its obvious that the great circles through O and z; and through O and z; are lines. We

have to prove that
a) the set K = {Xt2 | c R} is a great circle. (R*® = RU {cc})

b) Oz; 18 paral]ell tlﬁﬁﬂ tangent vector of K at z;.

c) the lenght of Oz; is equal to the lenght of z5z3.

K obviously contains z;(k = 0) and its opposite point —%(k = 00). So if K is a circle then
it is a great circle. To prove that it 1s a circle, it 1s sufficient to show that the imaginary part

of the cross ratio of its four points is zero:

kz1 + 22
Im(Zz 43 — Z") — 0
L ) b l . kzlzzj 2
i+ . —ka(l + |ofp) 2letetul-an
—L]1L2
24,4 — —
( 2143 1 — kZIE'-' |Z2|2) {k—lizl[l.‘;lzﬂz} Zz(l + ‘ZEP)
—I12

ok n(z)P+D &
k—1z2(z?+1) k-1’
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which is real. This completes the proof of a).

kzi+z2

_ T )
lim : "‘3"’“; =z(1+ |2 =cu (c €R)

which proves b).

As we have seen earlier, it 1s enough to prove that the circle L = {ﬁ%,k e R} is
parallel to the great circle Oz, 1.e. there are two great circles which are both orthogonal to L
and the great circle Oz;.

Ist step of c) We have to prove that L 1s a circle. We choose three arbitrary points:
z1(k = 0), z3(k = 1), — 2 (k = o0), and we show that Im(z;, 73, — -2, {252 — (), Using the

_ 2122 _ 2122 1—kz2122
same computation method as earlier we get

22 (zl+kz:z)) k—1

.Z]E3| ] — kZlZZ K

(21,23, —

which is real.
2nd step of ¢) L and Oz, are orthogonal to the circle |z| = 1. (It is a great circle because
the opposite point of z 1s —% = — ﬁ = —z, which is on the circle). For the great circle Oz,

which 1s a line on the complex plane, it 1s obvious. For L we have to prove that L is invariant

under the inversion for the circle |z| = 1 i.e. for the inversion z — %

We have to prove that for an arbitrary k € R, there exists A € R such that:

1 21+ Az
2+kzy | — Az1Zz2’
| —=kz122

which 1s equivalent to the equation
| — k7120 — A1Zs + kM|z1|?|22]* = |z1]? + kA |z2|* + AZize + k2122
Rearranging the equation we get a linear equation for A:
1 — |21 — (@122 + 2122)(A + k) — kM|za|* + Kl|z1]*|z2]* = O,

as (Z1zo + z172) 1s real. (It 1s its own complex conjugate).

3rd step of ¢) L and Oz, are both orthogonal to the great circle O(iz;) (which is also a line
on the model as Oz;). For Oz; it is obvious. For L we have to prove that L 1s invariant under
the reflexion to the line O(izy).

We have to prove that for an arbitrary [ € R, there exist a real v for which

21 + 2o ol 21 +Vv2
— = (i2p) —
|l —Iz7172 1 —vz127

Rearranging this we get
2+l —z5 (@ + V)
1 —Ilz1z2 ‘22‘2 1 —vzizo
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Solving this equation we get

B 2122 + 7122 B
122|2(1 = |z1]?)

VN =

which 1s real, so the proot 1s completed.

PARALLEL TRANSLATION OF THE HYPERBOLIC PLANE.

For our observations we use the well-known Poincaré model. We get a very similar result
to Theorem 2.1.

The hyperbolic Poincaré model The points of the hyperbolic plane are the inner points of n
circle of unit radius with center in the origin. Hyperbolic lines are lines if they pass through
the origin, and are circles which are orthogonal to the limit circle |z| = 1 otherwise. The
angles are the Euclidean angles. The length 1s interpreted with the help of the cross ratio in
the well-known way.

The parallel translation of hyperbolic line segment Oz; along the hyperbolic line segment
Oz, 1s the hyperbolic line segment z>z3, if the tangent vector of the hyperbolic line Oz, at O
1s parallel to the tangent vector of the hyperbolic line z,z3 at z;, and the length of 7,73 1s equal
to the length of Oz.

We state

Theorem 2.2. In the Poincaré model of the hyperbolic plane the parallel translations of
the hyperbolic line segment Oz, along the Oz, hyperbolic line segment is the hyperbolic line

segment 72723 if
21 + 22
{3 =

1415

Proof. We have to prove that

a) the set K = {f‘i]—j;;;;,,k € R*} is a hyperbolic line i.e. K is a circle and orthogonal to
the limit circle

b) Oz, is parallel to the tangent vector of K at z5.

c) the length of Oz is equal to the lenght of z;z3.

We know three points of K : zo(k = 0),z20(k = 1)%(!{ = oc)K 18 a circle. It is enough to
show that the imaginary part of the cross ratio of its four points is zero:

Im(z . 1 kZ1—|—Z2)_0
2y 315: I+k215

Computing the cross ratio as earlier:

(20, 2 1 kzl"E-Zg)_k—l
2 3)2_211_'_;{212_2 1 .

which 1s real. This completes the proof of a).

ki 4z

= 22
. i
;EIE] L+ M‘; = 71(1 — |z2]*) = cz1(c € R),
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which proves b).
For k = ﬁ and k = — i?ltf we get two points:

|
T4 + 22
1 + & ) !

|21

which are on the limit circle because

| ﬁ21+22 |1::Z2|§:]|
4 £ = 4 I =
1__ |E]|Z2 1 —t |I| <1

which 1s true because the numerator and the denominator are complex conjugates.
The length of z,z3 is computed from the cross ratio

i
(|E|z1 T 22 JEIZ1+ZZ . 71 +Zz)
1—!—%5’ 1 - 2 R R VS

The length of Oz, is computed from the cross ratio

a _a
zil” Jzl’

( 0,21).

Using the simplification method presented above, we get that both the cross ratios are

:f—ﬁ:l, so the lengths are equal.

This completes the proof.
UNIFIED FORMULA. |

We can construct a unified formula using Theorem 2.1 and 2.2 for the surface S : kx* +
ky* + |k|z> = 1/4(k € Rk # 0) The surface S is equal the unit sphere if k = 1 and it
is equal to the hyperbolic plane if k = —1. If k is positive, we get spheres with diameter
1 //—« if we use the norma ||(x,y,2)|| = —x* —y* + z*. /2 has a geometric meaning
and is called Gaussian curvature. The surfaces S contain all the types of complete surfaces
with constant Gaussian curvature. For a surface with positive constant curvature, we can
generalize the spherical model, projecting the sphere from its ‘north pole’ to the complex
plain. Substituting kz instead of z on the model for k = 1, we get the new model. We can do
the same substitution for negative constant Gaussian curvature. In that case the radius of the
limit circle is V% The case k = O can be interpreted as the Euclidean case. The Poincaré

model of the Euclidean plane can be itself. We call /ines the lines in the Euclidean plane, the
hyperbolic lines in the hyperbolic plane and the great circles in the ‘spherical plane’.

Theorem 2.3. Let 71,72, be points of the Poincaré model of the surface with its center in the
origin with constant K curvature. The parallel translation of the line segment Oz, along the
line segment Oz, is the line segment 7523 if

21 + 2o

_ _ 2.1)
I — Kz122

3
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for any K.

Proof. Substituting kz; instead of z;(i = 1,2, 3), we get the result.

3. BOL LOOPS ON THE COMPLEX PLANE

Definition 3.1. Let k € R be fixed. Let z,,22,23 be points of the complex plane. If K is
nonnegative, then z1,72, 23 are arbitrary points, if K is negative, then let 71,7, 23 be inside the

2/ /—x circle. We define the operation ‘o’ with the formula (2.1) i.e.:

21 + 22
| — kz122

{3 =21 08 =

Theorem 3.1. If the formula (2.1) is defined, then the multiplication z; o zp satisfies the

following identity:
xo((yozg)oy)=((xoy)oz)oy (3.1
Proof. We have to prove that for any x,y,z when (2.1) is defined, the following equation
holds.
x - 1—*:} +y ('x—t}f“-i-z) |
- n,Tr"'— | — ml"tz‘g?t rY
EZSHTE I
_ — &y _ y
1 le_ﬁ]-l—t;zy 1 Kl I'L'"l -]:u}Ey
After simplification
PPV o A Ry y+z x+y :f{x+:nf)z
x Kl—rayfy | I —KyZ | y _ 1 —rxy | Z+}’ — KXY
o ¥+D) y+z (x+}=)z - (x-i-y):»*  enT
1—-k k2 ) k1= —KYZ KXY 1 | — KXy Kl—ﬁ@ K2y

Rearranging we have

x+y— K0yZ — Ky 7+ yx — kxly|® — kxyz
1 — Kyz — kxy — K2xy%z — 1k(¥ + 2)(x + y)

_Z4y— kxyz — kx|  + x4+ y — K0z — KyZ
1 — kxy — KZy + K2xy%27 — K(x + Y)(Z + V)

This equation obviously holds. We call property (3 1) the right Bol property and we call
loops with this property right Bol loops.

Definition 3.2. Ifz3 = z; 0 23 where z1 025 = IE]EEE (zi,22 € Zifk > 0or |z4],

if K <0) then the inverse operations can be expressed by:
a) 71 = 23 / 22 = 23 0 (—22) (right inverse),
b) 22 = z1\z3 = z3 0 (kz3|21]*) — 21 © (K21 |23|%) (left inverse)
¢)(z10z9)~ ! = zl—l 02z, I (automorphic inverse property)

v’ V(=r)

Proof.
a) 1s easy
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b) 1s more complicated:

23 + Kz3]71 |2 21 + Kkzi|z3)*

1 — 2325|712 1 — 72124 |z)>

1
1= kPz e
1

= Tk |2|23|2(23 =21 + K2123(21 — 23)) =
— Kz Pz

1 21 + 22 21 +22 _ 21 + 22
— 2. |12 — — Z1 + KZq — | 21 — — —
| — g2latalfal” \ 1 - kz,2; 1 — Kz122 1 — k7122

|1—kKz122|

(z3(1 + |z1[*) = 211 + K|z3]?)) =

(22 + k) — kZ1z2) + K212 + 22— KT 22 — 2
11 — kz122|* — K?|z1 + 22]*|21 ]2

— 42,

which completes the proof.

c) is obvious using z=! = —z.

Remark. As we have seen, this theorem enables us to interpret the inverses in a geometric
way.

4. COMPLETENESS

It is clear from the Poncaré model that Bol loops with negative k are complete. In the
lack of completeness in the case of the positive k, we can only talk about partial Bol loops.
Can we make these partial Bol loops complete continuously? The answer is in the following
theorem.

Theorem 4.1. Partial Bol loops of positive curvature cannot be made complete continuously
adding new elements to the sets.

Proof. The first case in when we add one element to the partial Bol loop to make it complete.
Denote this element with v. (1/+v/k)o (1/+/k) = (i /K)o (i/+/K) = v, because in the
partial Bol-loop (1 /+/k) o (1 /+/k) and (i /+/K) o (i /+/K) cannot be defined. Using the
continuity

EI}((I/\/E)G(U VK) = (1/vk)o(1/+/x)and
lim((ir / VK)o (it /V/K)) = (i / VK)o (i / VK).

What is the value of 1 o0 ((1 /+/k) o (1/+/k))?

1 — 2

Lo ((1/ /&) (1/ V&) = lim(1 0 ((t/ VR o (t//R))) = lim 1 o (Wﬁ) _

i I 4 zﬂi‘;’;—; 1_m1—52+2r/\/§ L/«
= I1 —_
(=11 _ 2/ VE =1 1 — 2 =21/K

[—1¢?
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What is the value of 1 0 ((i / v/K) o (i / \/k))?

Lo((1/VK)o(1/VK) = lim(1 o ((zi / VK)o (tu/VK))) =

: 2ti [ /& :
2t 1 1 -1 +2
=lim|(1lo L/ VK = lim 1__'{? = lim s n_/ﬁ=l/k:,
t—1 1 — 72 =11 4 g2/VE 11— 2 4 21i/k

1 —¢-

which 1s a contradiction. So we cannot make the Bol loop complete with one element.

The second case is when we add at least two elements to the set to make it complete. In
this case (1 / k) o (1 / k) and (i / k) o (i / k) have to be different elements. Denote them by v,
and v,. Using the continuity

viovi = Hm((t/ Vi) o (t/ Vi) o ((t/ VK)o (t/ Vi) =

4t [ /K

s =1 _
M}EI}I_KZU‘\/EZI/\/E =0

1 —12

vi o vy =lIm(((t/ VK)o (t/ VK)o ((ti / VK)o (1 / V/K))) =

2r[ﬁ+2rffﬁ

1 —£2 1—12
0

_Iﬁll | K2r/-/_E2ri_/ﬁ -

! ] —12 1—72

Therefore v; o vi = v; o v, = 0, which contradicts the cancellativity. So we cannot make
the Bol loop complete.

Remark. In the proof we did not use the Bol loop property so we can say that a partial Bol
loop cannot be made complete even as a loop.

5. FURTHER GENERALIZATION

For k = —1, we have a Bol loop on the circle |z| < 1. The functionf : z —» 5~ isal — 1

I+[z]
map of C to the circle |z| < 1. Substituting it into z; and z5 inz; 0 25 = %‘%’ we get:

f(z1) + f(z2) )

|
aozn=f (1 + @ )f @)

which 1s defined for the whole C.

From this formula we can get other Bol loops. Letus take 71,2, € O[V?2] = {p +q\/§p, g €
Qtandz; :=p— gv2if z; = pv/2. (Previously we only used that x — X is an involution). So
we have defined a discrete Bol loop on this set. It is obvious that the operation ‘o’ preserves
the set.
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