FLOCKS OF OVAL CONES AND EXTENSIONS OF THEOREMS OF THAS

V. JHA and NORMAN L. JOHNSON

Abstract. The flocks of oval cones in PG(3,2") which have the property that no four planes
of the flock share a common point are classified as the translation oval flocks of Thas.

* The work for this article was partially supported by Glasgow - Caledonian College
and was written while the second author was visiting Glasgow during June of 1994.

1. INTRODUCTION

Recently, there has been considerable interest in flocks of quadric sets in PG(3,qg). At
least one reason for this is the connection with such objects and other geometric incidence
structures. For example, there are associated translation planes with spreads covered by reguli
in various ways, generalized quadrangles of type (g%, g), projective planes of Lenz-Barlotti
class II-1 (exactly one incident point-line transitivity) and classes of ovals.

Actually, a generalization of such flocks can be formulated using ovals in Desarguesian
projective planes instead of conics and this 1s done in Thas [8].

Definition 1. Ler O, be an oval in a projective plane ; embedded in PG(3, q) and let v, be a
point of PG(3, g) — Oy. Join the g+ 1 lines of O, to v, and define the points of this set to be the
oval cone Cy, determined by O (andv,). Ifthere is a set of q planes of PG(3,q), 1,70, ..., T,
such that the union of the ovals of intersection ; N Co,,i = 1,2,...,qis Co, — {vo} then
the set of planes {m,, ..., } is a flock of the oval cone Co,.

Remark 1. Note that given any oval in a Desarguesian projective plane 1, there is a flock
of the associated oval cone by planes containing a fixed line. Let X be any plane containing
the vertex v, and let L be any line of ¥ not containing v, where L = . N 7 (change ¥ so that
L does not contain v,- if necessary). Then the set of planes incident with L and not equal to
Y. form a flock of the oval cone. We call the flock a linear flock.

Initially, we were under the impression that except for the conical flocks (of a quadratic
cone defined by a conic), the only known flocks of oval cones are the linear flocks. And, we
proceeded to determine if there were any such flocks of oval cones. We were able to obtain
an infinite class of such flocks of translation oval cones. We present these in this article.

However, these flocks appear in Fisher and Thas [2] (3.11) and are actually due to Thas
similarly as the flocks of quadratic cones of Fisher appearing in the same article are due to
Fisher.

Thus, the construction parts of this article may be considered an explication of some of the
results of Thas. Furthermore, we may provide some extensions of some results of Thas.

In this article, we consider flocks of translation oval cones. Given any translation oval
O7 in PG(2, g), we provide an alternative construction of the class of nonlinear flocks of the
translation oval cone Cp, mentioned above.

In Fisher and Thas [2] (3.11), the emphasis is more on the structure of the osculating planes
of a corresponding (g + 1)-arc in PG(3,q). However, here we are more interested in the
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structure of the automorphism group and our approach starts with this direction.

All of these flocks admit automorphism groups admitting a doubly transitive automorphism
group on the planes of the flock. When the translation oval 1s actually a conic, the flocks
obtained correspond to the translation planes of Betten (also called the flocks of Fischer-
Thas-Walker). However, when the translation oval 1s not a conic, these flocks may not and
probably do not correspond to translation planes.

In Jha-Johnson [4], [5], the authors completely determine the set of flocks of oval cones
in PG(3, g) that admit doubly transitive automorphism groups (in PGL(4,qg)). Hence, we
are most interested in the action of the group. In section 2, we provide a group theoretic
construction of the flocks.

In section 3, we are able to characterize the flocks via symplectic polarities similarly as in

Fisher and Thas. Actually, we are able to provide a bonus and determine the set of possible
isomorphism (see section 4). Using this latter approach, it shall become apparent that no four

planes of the flock share a common point.

Definition 2. We shall say that a flock of an oval cone satisfies the no four property if and
only if no four planes containing the ovals of the flock share a point.

Recently, Thas [7] characterized the flocks of quadratic cones in PG(3, g) whose planes
have the no four property. That 1s, no four planes that contain the conics of the flock share a
common point.

Theorem 1.1. (Thas [7] Theorem B).
Let F = {Cy,C,,...,C,} be aflock of the quadratic cone K in PG(3, q),q > 4, with either
(a) g even, or
(b) q odd with q>83 orq<17orqin{ 27, 81 }.
Then F is the flock of Fisher-Thas-Walker if and only if no four of the planes m; with C; C 7

have a point in common.
In this note, we are able to extend the result of Thas to show that the class of flocks of oval

cones in PG(3, g) for g even whose planes satisfy the no four property 1s exactly the class of
translation oval flocks of Thas. When the oval is actually a conic, these flocks are the flocks
of Fisher-Thas-Walker.

2. THE CONSTRUCTION
As our treatment 1s slightly different than Fisher and Thas, we first note

Theorem 2.1. (See Fisher and Thas [2] (3.11)). Let g be even where g = —1 mod 3 and
let e Gal GF(q) such that {(1,t,t°),(0,0,1)|teGF(q)} = O is a translation oval. Let
homogenous coordinates (xy,x1,x,x3) where x;€GF(q),i = 0,1,2,3 define the projective
3-space PG(3,q). Embed the oval in the plane x3 = O and form the translation oval cone by
projecting (0,0,0, 1) = v to the oval Oy in x3 = 0.

Then the following set of planes form a flock of the translation oval cone Cy,:

7, is s° ' x, + s7x1 + sx2 + x3 = 0 for all seGF(q).

Furthermore, this flock admits a double transitive group acting on the planes of the flock
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given as ST (semi-direct product of S by T) where

1 s s° gsotl
S= <1, = 8 é ? | IseGFg) >
00 0 1

and |
/t"+1 0 0 0
0 =1 0 0
0

=

T=<p = teGF(g) — {0} >.

0 o0 o
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o

Proof. We consider the oval O; embedded in the plane x3 = 0 with the form {(1,¢,¢7,0),
(0,0,1,0)|teGF(q)} and note that the knot is then (0, 1,0,0). We first consider the image of
x3 = O under S.

We note that T, maps (1,0,0,0) — (1,s,57,s°Th,

0,1,0,0) — (0,1,0,5%) and (0,0,1,0) — (0,0, 1, 5) so that S maps x3 = 0

onto the set 7, : s !x, + 57x; + sxo + x3 = 0. Note that 7, has the following action on
Tl & TisTy = T T Ty = ToTs4r = Ty Moreover, consider the set of lines of the oval cone:

L. = <(0,0,1,0),(0,0,0,1)>,L, = <(1,¢t7,0),(0,0,0,1) > and the line defined by
the knot and the vertex Ly = <(0,1,0,0),(0,0,0,1) >. Note that S fixes L., and Lg and
T, maps L, onto L,1. Since § also fixes (0,0,0, 1), § acts as an automorphism group of the
translation oval cone Cyp, which acts transitively on the planes 7t; for all se GF(g).

Now consider the action of 7. p,, for ¢t # 0, fixes 71y, and maps

m = <(0,0,1,1),(0,1,0,1),(1,1,1, 1) > as follows:

0,0,1,1) — (0,0, +~179) (0,1,0,1) — (0,t°~! 0, '79) and

(1,1,1,1) — (et o= =9 ¢=1=9) and these points are on

-2 1 (27T lxy + (t72)%x; + (7 Dxy + x3. Moreover,

L;—> onto L»—2. Since T fixes (0,0,0,1), it follows that T is an automorphism group of
the translation oval cone which fixes one plane and acts transitively on the remaining planes.
Hence, ST acts doubly transitively on the set of planes {ds|se GF(g)}.

It remains only to show that the intersections of the planes with the lines of the translation
oval cone partition the nonvertex points of the oval cone. However, since ST acts doubly
transitively on the planes, we only need to check that 7y7t; Co, 1s empty. This 18 equivalent
to showing that xg + x; + x = 0 has no solutions on the translation oval cone Cp, =
{Loo,Ls|s€GF(q)}. Clearly, there is no solution on L., = <(0,0,1,0),(0,0,0,1) > since
any solution is of the form (0,0, «, ) for «f3 # 0 so that xo = x; = 0 which would force
Xy = 0.

Assume that there is an intersection on L, = <(1,¢,17,0),(0,0,0,1) > sothatxy = 3,x; =
Bt and x, = 3¢° for some nonzero 3 in GF(g). Then this would imply that (1 +¢+:7) = 0.
Sothat 1 + ¢ 4 ¢ = 0. This implies that the trace (1 + ¢+ 1°) = 0. Sothat 1 + ¢+ 17 = 0.
This implies that the trace (1 + ¢ + 1) = 0 but the trace of (+ + ) = 0 and trace 1 = 1
provided g = 2" and r 1s odd. Hence, this proves (2.1).

Definition 3. The flocks of (2.1) shall be called the translation oval flocks of Thas.
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Remark 2. Finally, we note that the necessary conditions in Fisher and Thas for construction
of the flocks are that (2" — 1,2™ 4+ 1) = 1 where r is odd and m is between 1 and r — 1. The
conditions that we have been using above are simply that (r,m) = 1 and r is odd.

However, note that (2" — 1,2" + 1) divides (2" — 1,2?" — 1) = (2" — 1) = 1 since
(r,m)=1.

3. A CHARACTERIZATION OF THE TRANSLATION OVAL FLOCKS OF THAS BY
SYMPLECTIC POLARITIES

Let {(1,2,£7,:°t1),(0,0,0, 1)|teGF(q)} be the ¢ + 1 arc C(0) where o induces an auto-
morphism of GF(g) and if 0 = 2" and g = 2" then (r,m) = 1. Furthermore, assume r 1s odd.
Liineburg [6] (44.3) defines the “osculating plane” to a point of (1,¢,17,°T)GF(g) of C(0)
as the plane with equation 177 1xy + t7x; + tx, + x3 = 0. Further, the osculating plane of C(0)
at (0,0,0, 1)GF(q) 1s xo = 0. Moreover, by Liineburg [6] (44.3), there is a unique symplectic
polarity 8 such that P? is the osculating plane of C(c) in P for all P € C(0).

Recall that a special unisecant L to a (g + 1)-arc is a line incident with a point x of the arc
such that any plane containing L intersects the (g + 1)-arc in at most one other point # x.
Furthermore, there are exactly two unisecants to any point x of the (1 4+ 1)-arc and these
generate a plane called the “contact plane” which shares exactly x with the arc (see Hirschfeld
[3]1(21.3)). Furthermore, the set of special unisecants form the union of the two ruling classes
of lines of a hyperbolic quadric (Hirschfeld [3] (21.3.10)).

The symplectic polarity 3 defined by Liineburg is as follows:

B(xo,X1,X2,X3,Y0,Y1,¥2,¥3) = Xo¥3 + x1y2 + X2y1 + x3Y3.

Since there is also a symplectic polarity associated with the hyperbolic quadric of special
unisecants, the question i1s whether these two polarities are the same. Furthermore, we should
like to know if the osculating plane defined above is the contact plane. Since we shall require
these results later, we note:

Proposition 1. (1) The osculating plane defined as above is the contact plane.
(2) The symplectic polarity 3 is the polarity afforded by the hyperbolic quadric of special
unisecants.

Proof. Actually, (1) may be found in the proof of (21.3.15) p. 251 of Hirschfeld [3].

To see that (2) is valid, we need to show that line [3-invariant lines on any point of the
(g + 1)-arc are the two special unisecants.

Note there 1s a group isomorphic to PGL(2, g) acting triply transitvely on the points of
the g + 1-arc. Since the special unisecants incident with x map under g in PGL(2, g) to the
special unisecants incident with xg, it 1s sufficient to consider the statement of (2) relative to
the point (1,0, 0,0, ). Using [5 above, it 1s easy to calculate that the 3-invariant lines incident
with (1,0,0,0) are the lines <(1,0,0,0),(0,1,0,0)> and <(1,0,0,0),(0,0,1,0) > as note
that 5(1,0,0,0,y0,y1,¥2,y3) = O 1f and only if y3 = 0 and 3(0, 1,0,0,y0,y1,¥2,y3) = 0 1f
‘and only 1f y, = 0. Hence, the [3-image points are (yp, y1,0, 0).

Now we merely check that any place containing one of these lines intersects any point of
the (g + 1)-arc in at most one point. The plane <(1,0,0,0),(0,1,0,0),(0,0, a, 1) > contains
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(0,0,0,1) if and only if a = 0. In this case, the plane contains (1,¢,7%,°*!) if and only if
1° =0.

If a # O then assume the plane contains (1,#,¢7,t°"!) and (1,s,5°,s°T!) for s # ¢ and
st # 0. The equation for the plane is x, + ax3 = 0. The plane contains the two indicated
points if and only if the equation

a ag+1

y" =ay’" orrathery=1/a

i1s satisfied for y = t or s.

Thus, the plane contains only the point (1, w,w? ,w?*!) for w = 1 /a. This proves the
proposition.

Continuing with our discussion, we note that Thas [8] shows that a flock of an oval cone
gives rise to a flock of a hyperoval cone. Also, we point out that Casse and Glynn [1] show
that any g-arc in PG(3,q = 2") may be uniquely extended to a (g + 1)-arc.

‘We may characterize the translation (hyper)oval flocks of Thas as follows:

Theorem 3.1. Let K be a q + 1 arc in PG(3, qg) for ¢" = 2" and for r odd.

Define a translation hyperoval cone as follows: For Py, let O(Py) denote the osculating
plane at P\. For Pp # P\, form the lines PoP for all P in C — {P}, and construct the g-arc
in O(P)) from the intersection points of the lines. Let Q|, Q, denote the points extending the
g-arc to a hyperoval in O(P1). Construct a translation hyperoval cone C(K) by projecting the
hyperoval in O(Py) from P,.

Then there exists a unique symplectic polarity 3 such that the set of osculating planes
PP for all P # Py in K is exactly the translation hyperoval flock of Thas of the translation
hyperoval cone C(K).

Proof. Since we have noted that there is a group isomorphic to PGL(2,q) acting triply
transitvely on the points of the g + 1-arc, we take a version of this statement with Py to be
(0,0,0,1), the g + 1-arc K to have the form {(1,7,77,2°""), (0,0,0, 1)|{tze GF(g)} and P, to be
(1,0,0,0) so that with the symplectic polarity 3 defined as before,

P(xo,X1,X2,X3,Y0,Y1,Y2,Y3) = Xoy3 + X1 Y2 + X2y1 + X33,

we have O(py) = P’? = (x3 = 0).

Note that no four planes of the flock can share a common point as these are osculating
planes to the points of a g + 1-arc connected by the symplectic polarity f3.

The stabilizer of the point Py is doubly transitive on the points of the ¢ -+ 1-arc different
from Py so that this group acts doubly transitively on the set of osculating planes {P”|P in

K—-{Po}}.
If follows that we may translate everything back into the setting of (2.1) and employ the
associated doubly transitive group. Hence, we obtain a flock in PG(3, ¢) exactly wheng = —1

mod 3 so that g = 2" for r odd.

4. THE ISOMORPHISM QUESTION

Let F, and F; be flocks of oval cones corresponding to the translation ovals O, and O,
corresponding to the g 4 1 arcs in PG(3, g) with defining automorphisms ¢ and T.
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Theorem 4.1. There are exactly &(r) /2 mutually nonisomorphic translation (hyper)oval
flocks of Thas (of the type constructed in (2.1)) in PG(3, q) where g = 2" and ¢ is the Euler
b-function.

Proof. If the flocks are isomorphic then the dual flocks are isomorphic and hence so are the
g-arcs and associated g + 1-arcs. But, two g + 1 arcs are isomorphic if and only if 0 = T or
1! (see Liineburg [6] (44.2). Hence, there are exactly ¢(r) / 2 such flocks where g = 27 and
r 1s odd. This proves the result.

Moreover, we note that the translation ovals are conics exactly when the ois 2 or 27!,

5. THE NO 4-THEOREM

Theorem 3.1. Let F be a flock of an oval cone in PG(3,2") such that no four of the planes of
the flock containing the ovals of the cover share a common point.

Then F is isomorphic to one of the translation oval flocks of Thas.

(Note that this also implies that r is odd).

Furthermore, when the oval is a conic the flock is the flock of Fischer-Thas-Walker.

Proof. We shall structure the proof along the lines of the proof that Thas gives in [7]. The
main point here 1s that this prootf also works in this more general setting with appropriate
modifications for the fact that we are only assuming that the flocks is defined an oval cone as
opposed to a quadratic one.

Let O; be an oval in a Desarguesian projective plane 7t;. Consider 7ty within PG(3,27)
and let vp be a point of PG(3,2") — ;. Form the oval cone Cp, defined as the points on
the lines of voP for all PeO,. If Of 1s the hyperoval consisting of O; and the knot k; of
0, we may also consider the hyperoval cone C"'] = Cp, U vpk;. It was pointed out in Thas
[8] that a flock of a oval cone also produces a flock of the corresponding hyperoval cone.
Let F = {m,m ..., m,} be a set of planes whose intersections with Cp, partition the points
# vo of the oval cone. Now assume that no four planes of F share a common point. Now
dualize PG(3,2") so that the set of lines of the oval cone Cp, becomes a set of lines in a
plane 7, (the dual of vp) with the property that no three are concurrent. That is, the dual
of the set of lines of Cp, becomes a dual oval in a plane 7,,. Similarly, the set of lines of
the hyperoval cone Cg;l when dualized become a dual hyperoval in a plane 7,,. Note that
the flock F = {m;,m, ..., 7, } when dualized becomes a set of points p;,pa, ... ,p, with the
property that the join p,p; of two distinct points intersects the plane 71, 1S a point p;; not on a
line of the dual hyperoval. Let the dual oval be denoted by T, the dual hyperoval by 't and
the dual flock by FP = {py,p2,...,p4}

Now assume that the flock of planes has the no four property. Then this 1s also true of the
dual flock FP so that this becomes a g-arc in PG(3,q). By Casse and Glynn [1], there is a
unique extension to a g + 1-arc F2-+ = FP U {z}.

This 1s exactly the same way that Thas sets up the argument in [7] except that the original
oval 1s a conic there. With some modification particularity in the following lemma 3 (which
we noted in a previous section), Thas’s argument extends essentially directly. Thus, itis really
only necessary to read the statements of the following four lemmas, the proof to lemma 3 and
the concluding remarks. However, we shall include the details for the benefic of the reader
who wishes to ensure that everything works in the more general case.
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Lemma 1. The point z extending the g + 1 arc F” is the plane m,, dual vo.

Proof. Assume not! Let p; denote the point intersecting 7t,, and recall that none of these
g(g — 1) / 2 points are on a line of the dual hyperoval I'*. Let L be a line of I''" and consider
the plane < L,z >. Note that L contains at most one point of F” since otherwise some piDj
would intersect L. There are g planes on L different from 7, and these cover the points of
PG(3,1) — m,,. Hence, it follows that each such plane on L contains exactly one point of
FP. Let < L,z > contain the point say p;. Recall that a special unisecant to an element x of a
k - arc is a line incident with x such that any plane containing this line contains at most one
point other point of the k-arc ([3] (21.3). Also, when the k-arc is a g 4 1-arc, there are exactly
two special unisecants to a point x ([3] (21.3.4). Furthermore, as mentioned previously, these
2(g + 1) special unisecants are the generators of a hyperbolic quadric H. At each point y, the
“contact plane” generated by the two special unisecants intersects the g + 1-arc in exactly the
point y of the g + 1-arc.

Let L, L, denote two special unisecants at z. Form the planes

<Ly,p; >and < L,,p; >. By[3](21.3.1), note that zp, is a special unisecant to the original
g-arc. Hence, any plane containing z and p, intersects the dual flock F” in at most one other
point. Since there are ¢ — 1 planes that contain zp; and another point p; for i # 1, there are
exactly two planes containing the point z and p; of the g 4 1-arc and no other points of the
g + 1-arc namely the planes < L;,p; > and < L,,p; >.

Hence, < L, z > contains at least one of the unisecants to z and this is valid for all lines of
'+, Let L;m,, = x;eLfori = 1 or 2. Then there exist g + 2 lines of v in 7t,, which intersect
X1 OF X so one of these is on at least (g + 2) /2 > 3 lines of '™ (for ¢ > 4) which is contrary
to the fact that I'T is a dual hyperoval. Hence zem,,.

Lemma 2. The contact plane of any point of F” intersects 1, in a line of the dual hyperoval
' - { the two special unisecants at 7 }. Furthermore, m,, is the contact plane at z.

Proof. Since there are g(g — 1) / 2 points p;; for i # j, and there are exactly g(g — 1) / 2 points
which are not on lines of '™ in 71,,, it follows that z is on a line of I'*. Since every point of
m,, 1s on O or 2 lines of the dual hyperoval, let M|, M, be the lines of 't thru z. For any point
pr, <M\, px > and < M,, p; > contain z and p; and since the M; are lines of I'", these planes
share no other points of FP1. As p, varies over the g-arc, we obtain ¢g planes < M, p; > s0
that M, and M, are the two special unisecants to z and hence {M;,M>} = {L;,L,}. Then,
<Ly, L, > = m,, 1s the contact plane at z.

Now let Ni, N, be the two special unisecants to p;. Note that <x,pi,p; > for j # k
provides a set of ¢ — 1 planes that share zp; and since < L, px > and < L, px > share exactly
z and p; with FP*, we may, without loss of generality, take <N;,z> = < L;mp; > and
<Ny,z> = <Ly, pi >. Moreover, Nym,, = n; is on L; for i = 1,2 and since I'" is a dual
hyperoval, there are lines R; # L; for i = 1,2 incident with n; and in '™, fori = 1, 2.

Since < Ry, Ny > contains exactly the point pg, it follows that <R, N; > = <Ry, No >
= < N, N, > is the contact plane at p;. Note that this implies that Ry = R, = nymel' T,

Hence, the contact plane at p; intersects 7, in a line of 't — {L;, Ly }.

Lemma 3. No three contact planes can share a line.

Proof. By the proposition in section 2, the osculating plane 1s the contact plane. No three
planes can share a line since there a symplectic polarity  such that PP for P in F* is the set
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of contact planes and otherwise three points of the (g + 1)-arc would also share a common
line.

Lemma 4. The g contact planes at points of FP intersect the contact plane of z in the q lines
of the dual hyperoval not equal to L or L.

Proof. Simply note that a contact plane at p; and a contact plane at p; for i not k cannot share
a line on the contact plane of z by lemma 3.

Let M be any line of 't — {L,, L, } and let p be in FP* such that pPm,, = M. Then M” is
a line incident with ﬂfﬂ = z and with p.

Hence, the ¢ + 2 lines of (I')P are the lines {zp; fori = 1,2,...,q} U{L,L,}.

Now take any contact plane p*? and intersect the set of lines zp;, L1, L,. This intersection

1S a hyperoval in p’? . Note that if we take the representation as given z = (0,0,0,1) and
p1 = (1,0,0,0) then p*? = (x3 = 0) and the intersection with the lines is the hyperoval

{(1,£,:7,0),(0,0,1,0),(0,1,0,0) }).

By the theorems (2.1) and (3.1), the set of contact planes p? fori = 1,2,...,q1in PG(3,2")
forms a flock of a (hyper translation oval) translation oval cone if and only if r is odd (also
see below).

However, since {p1,...,p,} forms the dual flock then PP, ..., p?} is the original flock
of planes and the original oval produces the hyperoval cone which when dualized is the dual
hyperoval. Hence the set of lines of the original hyperoval cone is the set of lines 7 so that
the flock must be one of the translation oval flocks of Thas.

Note that it also follows from the above argument that considering the flock in PG(3,2")
that » is odd. In particular, one obtains a flock if and only if 1 + ¢+ 7 # 0 for all
t € GF(qg). If g = 2’ for r ever then since o = 2" and (r,m) = 1, it follows that m is odd
= 25 + 1. But, then there 1s a subfield isomorphic to GF(4) and for ¢ in this subfield, we have

i 2541 k . . .
=1t = (t*)? = 2. Since there exists an element such that 2 = ¢ + 1, the construction
1s valid if and only if ¢ = 2’, for r odd.
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