## INFINITE GROUPS SATISFYING A NORMALIZER CONDITION

A. RUSSO

**Summary.** In this article infinite groups G are studied with the property that if H is a non-normal subgroup of G then every normal subgroup of G is normal in the normalizer  $N_G(H)$ .

## 1. INTRODUCTION

A subgroup H of a group G is said to satisfy the lower N / C-extremal condition if every normal subgroup of H is also normal in the normalizer  $N_G(H)$  of H. It is clear that a group G is a  $\overline{T}$ -group (i.e. a group in which normality is a transitive relation) if and only if all its normal subgroups satisfy the lower N / C-extremal condition. In particular, G is a  $\overline{T}$ -group (i.e. a group in which all subgroups are T-groups) if and only if every subgroup of G satisfies the lower N / C-extremal condition.

Let X be the class of groups in which every non-normal subgroup is N/C-low. The investigation of the structure of X-groups was started in [3] and [4]; the results obtained there mostly concern the case of finite groups. In particular, it was proved that every finite X-group is soluble with derived length at most 3. On the other hand, the consideration of Tarski groups shows that arbitrary X-group need not be soluble. Here we shall consider infinite soluble X-groups, and in particular we shall prove that soluble X-groups have derived length at most 4. A well-known result of Robinson [6] states that a finitely generated soluble X-group either is finite or abelian. The situation is completely different in the case of soluble X-groups: the direct product X-X3 is an infinite finitely generated soluble X-group. On the other hand, we shall prove that the elements of finite order of a soluble X-group form a subgroup, and that the torsion-free soluble X-groups are abelian.

For our considerations it will be useful to observe that X is contained in the class  $B_2$  of groups in which every subnormal subgroup has defect at most 2. The structure of  $B_2$ -groups (and more generally of groups in which subnormal subgroups have bounded defect) has been investigated by many authors. In particular, Casolo [1], [2] has proved that finite (respectively: periodic) soluble  $B_2$ -groups have derived length at most 5 (respectively: at most 10), while Mahdavianary [5] showed that nilpotent  $B_2$ -groups have class at most 3 (and so they are metabelian).

Most of our notation is standard and can for instance be found in [7].

## 2. STATEMENTS AND PROOFS

It is clear that subgroups and homomorphic images of X-groups are likewise X-groups. Our first lemma deals with centralizers of elements of infinite order of an X-group.

**Lemma 2.1.** Let G be an X-group, and let x be an element of infinite order of G. Then  $N_G(\langle x \rangle) = C_G(x)$ 

**Proof.** Assume that G contains an element a such that  $\langle x \rangle^a = \langle x \rangle$  but  $xa \neq ax$ . Then a acts as

the inversion on x, and so  $\langle a, x \rangle$  has a quotient isomorphic to the infinite dihedral group  $D_{\infty}$ , a contradiction since  $D_{\infty}$  is not an X-group.

**Lemma 2.2.** Let G be a torsion-free nilpotent X-group. Then G is abelian.

**Proof.** Assume that G is not abelian, and let x be an element of G. Then the normalizer  $N_G(\langle x \rangle)$  is subnormal in G, and so even normal, since G is an X-group. Then  $C_G(x)$  is a normal subgroup of G by Lemma 2.1, and hence the identity [y,x,x]=1 holds in G. It follows that G has class at most 2 (see [7], 7.14). Without loss of generality it can be assumed that  $G = \langle a,b \rangle$ , where  $[a,b] \neq 1$ . Let m,n be coprime integers > 1. Since  $[a^m,b^n] \neq 1$ , it follows from Lemma 2.1 that  $b^n$  does not normalize  $\langle a^m \rangle$ . On the other hand,

$$\langle a^m \rangle \triangleleft \langle a^m, [a^m, b^n] \rangle \triangleleft \langle a^m, b^n \rangle,$$

and hence  $\langle a^m, [a^m, b^n] \rangle$  is a normal subgroup of the X-group G. Similary  $\langle b^n, [a^m, b^n] \rangle$  is normal in G, and so also  $\langle a^m, b^n \rangle$  is a normal subgroup of G. Clearly the factor group  $G/\langle a^m, b^n \rangle$  is abelian, so that  $[a,b] = a^{mh}b^{nk}[a,b]^{mnl}$ , where h,k,l, are integers. It follows that  $a^{mh}b^{nk}$  belongs to the centre of G, and hence in particular  $1 = [a^m, b^{nk}] = [a,b]^{mnk}$ . Then k = 0, and similary h = 0, so that  $[a,b] = [a,b]^{mnl}$ . Therefore [a,b] = 1, and this contradiction proves the lemma.

**Corollary 2.3.** Let G be a locally nilpotent X-group. Then the commutator subgroup G' is a periodic abelian group.

**Proof.** Clearly it can be assumed that G is finitely generated, and so nilpotent. Let T be the subgroup of all elements of finite order of G. Then G/T is abelian by Lemma 2.2, so that  $G' \leq T$ , and G' is periodic. Moreover G' is abelian by the quoted result of Mahdavianary [5].

**Lemma 2.4.** Let G be an X-group containing an abelian normal subgroup A such that G/A is finite cyclic. Then the commutator subgroup G' of G is periodic.

**Proof.** Without loss of generality it can be assumed that G is finitely generated and has no periodic non-trivial normal subgroups. Then A is a free abelian group of finite rank. Let G be a counterexample with G/A of minimal order, so that in particular A is a maximal abelian normal subgroup of G. Let x be an element of G such that  $G = \langle x, A \rangle$ , and let p be a prime dividing the order of G/A. Then  $\langle x^p, A \rangle$  is a proper subgroup of G, and so  $\langle x^p, A \rangle'$  is periodic. Since  $\langle x^p, A \rangle'$  is normal in G, it follows that  $\langle x^p, A \rangle' = 1$ . Then  $\langle x^p, A \rangle$  is abelian, and hence  $\langle x^p, A \rangle = A$ . Therefore  $x^p \in A$  and G/A has order p. For each positive integer n, the finite p-group  $G/A^{p^n}$  belongs to X, and so it is a nilpotent  $B_2$ -group. Then  $G/A^{p^n}$  has class at most 3 (see [5]), and so  $\gamma_4(G) \leq \bigcap_{n \in N} A^{p^n} = 1$ . Then G is a torsion-free nilpotent X-group, and Lemma 2.2 yields that G is abelian, a contradiction.

It is now possible to prove that the elements of finite order of a locally soluble X-group form a subgroup.

**Proposition 2.5.** Let G be a locally soluble X-group. Then the set of all elements of finite order of G is a subgroup.

**Proof.** Let x and y be elements of finite order of G. Without loss of generality it can be assumed that  $G = \langle x, y \rangle$ , so that in particular G is soluble. Let N be the smallest non-trivial

term of the derived series of G. By induction on the derived length of G we obtain that G/N is finite, so that also N is finitely generated. Let a be an element of N, and consider the subgroups  $H = \langle a \rangle^G \langle x \rangle$  and  $K = \langle a \rangle^G \langle y \rangle$ . Then H' and K' are periodic by Lemma 2.4, and there exists a positive integer m such that  $[a,x]^m = [a,y]^m = 1$ . It follows that  $[a^m,x] = [a^m,y] = 1$ , so that  $a^m \in Z(G)$ . Therefore G/Z(G) is periodic, and hence finite, so that also G' is finite (see [7], 4.12). It follows that G is finite.

**Lemma 2.6.** Let p be a prime, and let  $\langle x \rangle$  be a cyclic p-group. If y is an automorphism of order  $p^n$  of  $\langle x \rangle$  such that the semidirect product  $G = \langle y \rangle \propto \langle x \rangle$  is an X-group, then  $n \leq 1$ .

**Proof.** Let  $p^m$  be the order of x, and assume that  $n \ge 2$ . Then  $x^y = x^{1+sp^t}$ , where p does not divide s and  $t \le m-2$ . Put k=m-1-t, and consider the non-normal subgroup  $H = \langle x^{p^{m-1}}, y \rangle$  of G. Clearly  $H = \langle x^{p^{m-1}} \rangle \times \langle y \rangle$  and  $x^{p^k}$  normalizes H, a contradiction, since G is an X-group and  $[x^{p^k}, y] \ne 1$ .

**Lemma 2.7.** Let A be a reduced torsion-free abelian group, and let  $\sigma$  be a non-trivial automorphism of A. Then the semidirect product  $G = \langle \sigma \rangle \propto A$  is not an X-group.

**Proof.** Assume that G is an X-group, and let a be an element of A such that  $a^{\sigma} \neq a$ . Since  $H = \langle \sigma \rangle \langle a \rangle^G$  is also an X-group, and  $\langle a \rangle^H = \langle a \rangle^G$ , it can be assumed without loss of generality that  $A = \langle a \rangle^G$ . The automorphism  $\sigma$  has infinite order by Lemma 2.4. For every interger i put  $a_i = a^{\sigma^i}$ , so that  $A = \langle a_i | i \in kZ \rangle$ . Let k be a positive integer, and assume that  $A_k = \langle a_i | i \in kZ \rangle$ is properly contained in A. As  $a = a_0 \in A_k$ , the subgroup  $A_k$  is not normal in G, and so  $\langle a \rangle$  is normal in  $N_G(A_k)$ . Clearly  $\sigma^k$  fixes a by Lemma 2.1. Then  $\sigma^k = 1$ , a contradiction. Therefore  $A = A_k$  for every  $k \ge 1$ . In particular, the set  $\{a_i | i \in Z\}$  is dependent, and there exist integers r and s, with r < s such that  $\{a_r, \ldots, a_s\}$  is independent and  $\{a_r, \ldots, a_{s+1}\}$  is dependent. Thus  $a_{s+1}^m = a_r^{m_r} \dots a_s^{m_s}$ , where  $m, m_r, \dots, m_s$  are integer and  $m \neq 0$ . Let D be the divisible hull of A, and let  $D_0$ , be the smallest divisible subgroup of D containing  $\langle a_r, \ldots, a_s \rangle$ . Then  $\sigma$  can be extended to an automorphism  $\tau$  of D. Since  $a_{s+1} \in D_0$ , we obtain  $\langle a_r, \ldots, a_s \rangle^{\tau}$  $\leq D_0$ . Moreover,  $D_o$  has the same rank of  $\langle a_r, \ldots, a_s \rangle$ , so that  $D_0 / \langle a_r, \ldots, a_s \rangle$  is periodic and  $D_0^{\tau} \leq D_0$ , since  $D/D_0$  is torsion-free. It follows that  $D_0^{\tau} = D_0$ , so that  $A_0 = A \cap D_0$  is a subgroup of finite rank of A containing  $\langle a_r, \ldots, a_s \rangle$ , and  $A_0^{\sigma} = A_0$ . Clearly  $a = a^{\sigma_r^{-r}} \in A_0$ , so that  $A = A_0$  and A has finite rank. Thus the counterexample G can be chosen in such a way that A has minimal rank. As A is reduced, there exists a prime p such that  $A^p \neq A$ . Let k be the order of the automorphism induced by  $\sigma$  on the finite group  $A/A^p$ . If  $i \in k\mathbb{Z}$ , we obtain that  $a_i A^p = a A^p$ . Since  $A = A_k = \langle a_i | i \in kZ \rangle$ , it follows that  $A / A^p$  is cyclic. Then  $A / A^{p^n}$  is cyclic of order  $p^n$  for every  $n \ge 0$ . Application of Lemma 2.6 yields that the automorphism induced by  $\sigma$  on  $A/A^{p^n}$  has order dividing p(p-1). Therefore  $\sigma^{p(p-1)}$  acts trivially on  $A/A^{p^n}$ for each  $n \ge 0$ . Put  $B = \bigcap_{n>0} A^{p^n}$ , so that  $[A, \sigma^{p(p-1)}] \le B$ . Cleraly  $[A, \sigma^{p(p-1)}] \ne 1$ , and hence it follows from Lemma 2.2 that  $\sigma^{p(p-1)}$  does not act trivially on B. Moreover, A/Bdoes not have finite exponent, so that  $\langle a \rangle \cap B = 1$ , and B has rank less than A. By the minimal choise of A, we obtain that the subgroup  $\langle \sigma^{p(p-1)}, B \rangle$  does not belong to X. This contradiction proves the lemma.

We can now prove our main result.

**Theorem 2.8.** Let G be a torsion-free locally soluble X-group. Then G is abelian.

**Proof.** Clearly it can be assumed that G is finitely generated, and hence soluble. Thus by induction the derived length of G we may also suppose that the commutator subgroup G' is abelian. As a finitely generated metabelian group, it is well-know that G is residually finite (see [8], 9.51) and so in particular reduced. Assume that G is not abelian, so that G is not nilpotent by Lemma 2.2, and  $C = C_G(G')$  is properly contained in G. Let X be an element of G' and Y an element of  $G \setminus C$  such that  $[X, Y] \neq 1$ , and consider the subgroup Y = (X, Y) = 1. Clearly Y = (X, Y) = 1 is contained in Y = (X, Y) = 1. This contradiction shows that Y = (X, Y) = 1 and hence Lemma 2.7 can be applied to prove that the factor group Y = (X, Y) = 1 does not belong to Y = (X, Y) = 1. This last contradiction completes the proof.

The above theorem has the following consequence.

**Corollary 2.9.** Let G be a locally soluble X-group. Then the commutator subgroup G' of G is periodic, and G is soluble with derived length at most 4.

**Proof.** The set T of all elements of finite order of G is a subgroup by Proposition 2.5, and it follows from Theorem 2.8 that the factor group G/T is abelian. Thus G' is periodic, and hence locally finite. Application of Theorem 3.4 of [3] yields now that  $G^{(4)} = 1$ .

We leave as an open question whether there exist soluble X-groups with derived length 4.

## REFERENCES

- [1] C. Casolo, Gruppi finiti risolubili in cui tutti i sottogruppi subnormali hanno difetto al più 2, Rend. Sem. Univ. Padova 71 (1984), 257-271.
- [2] C. Casolo, Periodic soluble groups in which every subnormal subgroup has defect at most two, Arch. Math. 46 (1986), 1-7.
- [3] C. De Vivo and A. Russo, On groups satisfying an extremal condition on subgroups, Ricerche Mat., 45 (1996), 37-48.
- [4] C. De Vivo and A. Russo, Finite groups in which normality is a weakly transitive relation, Ist. Lombardo Accad. Sci. Lett. Rend. 130 (1996).
- [5] S.K. Mahdavianary, A special class of three-Engel groups, Arch. Math. 40 (1983), 193-199.
- [6] D.J.S. Robinson, *Groups in which normality is a transitive relation*, Proc. Cambridge Philos. Soc. 60 (1964), 21-38.
- [7] D.J.S. Robinson, Finiteness Conditions and Generalized Soluble Groups, Springer, Berlin, 1972.

Received June 21, 1995
Dipartimento di Matematica e Applicazioni
Università di Napoli "Federico II"
Complesso Universitario Monte S. Angelo
Via Cintia
I - 80126 Napoli - ITALY