INFINITE GROUPS SATISFYING A NORMALIZER CONDITION

A. RUSSO

Summary. In this article infinite groups G are studied with the property that if H is a non-normal subgroup of G then every normal subgroup of H is normal in the normalizer $N_G(H)$.

1. INTRODUCTION

A subgroup H of a group G is said to satisfy the lower N/C-extremal condition if every normal subgroup of H is also normal in the normalizer $N_G(H)$ of H. It is clear that a group G is a T-group (i.e., a group in which normality is a transitive relation) if and only if all its normal subgroups satisfy the lower N/C-extremal condition. In particular, G is a T-group (i.e., a group in which all subgroups are T-groups) if and only if every subgroup of G satisfies the lower N/C-extremal condition.

Let X be the class of groups in which every non-normal subgroup is N/C-low. The investigation of the structure of X-groups was started in [3] and [4]; the results obtained there mostly concern the case of finite groups. In particular, it was proved that every finite X-group is soluble with derived length at most 3. On the other hand, the consideration of Tarski groups shows that arbitrary X-group need not be soluble. Here we shall consider infinite soluble X-groups, and in particular we shall prove that soluble X-groups have derived length at most 4. A well-known result of Robinson [6] states that a finitely generated soluble T-group either is finite or abelian. The situation is completely different in the case of soluble X-groups: the direct product $Z \times S_3$ is an infinite finitely generated soluble X-group. On the other hand, we shall prove that the elements of finite order of a soluble X-group form a subgroup, and that the torsion-free soluble X-groups are abelian.

For our considerations it will be useful to observe that X is contained in the class B_2 of groups in which every subnormal subgroup has defect at most 2. The structure of B_2-groups (and more generally of groups in which subnormal subgroups have bounded defect) has been investigated by many authors. In particular, Casolo [1], [2] has proved that finite (respectively: periodic) soluble B_2-groups have derived length at most 5 (respectively: at most 10), while Mahdavianary [5] showed that nilpotent B_2-groups have class at most 3 (and so they are metabelian).

Most of our notation is standard and can for instance be found in [7].

2. STATEMENTS AND PROOFS

It is clear that subgroups and homomorphic images of X-groups are likewise X-groups. Our first lemma deals with centralizers of elements of infinite order of an X-group.

Lemma 2.1. Let G be an X-group, and let x be an element of infinite order of G. Then $N_G(\langle x \rangle) = C_G(x)$

Proof. Assume that G contains an element a such that $\langle x \rangle^a = \langle x \rangle$ but $xa \neq ax$. Then a acts as
the inversion on x, and so $\langle a, x \rangle$ has a quotient isomorphic to the infinite dihedral group D_∞, a contradiction since D_∞ is not an X-group.

Lemma 2.2. Let G be a torsion-free nilpotent X-group. Then G is abelian.

Proof. Assume that G is not abelian, and let x be an element of G. Then the normalizer $N_G(\langle x \rangle)$ is subnormal in G, and so even normal, since G is an X-group. Then $C_G(x)$ is a normal subgroup of G by Lemma 2.1, and hence the identity $[y, x, x] = 1$ holds in G. It follows that G has class at most 2 (see [7], 7.14). Without loss of generality it can be assumed that $G = \langle a, b \rangle$, where $[a, b] \neq 1$. Let m, n be coprime integers > 1. Since $[a^m, b^n] \neq 1$, it follows from Lemma 2.1 that b^n does not normalize $\langle a^m \rangle$. On the other hand,

$$\langle a^m \rangle \triangleleft \langle a^m, [a^m, b^n] \rangle \triangleleft \langle a^m, b^n \rangle,$$

and hence $\langle a^m, [a^m, b^n] \rangle$ is a normal subgroup of the X-group G. Similarly $\langle b^n, [a^m, b^n] \rangle$ is normal in G, and so also $\langle a^m, b^n \rangle$ is a normal subgroup of G. Clearly the factor group $G/\langle a^m, b^n \rangle$ is abelian, so that $[a, b] = a^{mh}b^{nk}[a, b]^{ml}$, where h, k, l, are integers. It follows that $a^{mh}b^{nk}$ belongs to the centre of G, and hence in particular $1 = [a^m, b^{nk}] = [a, b]^{mnk}$. Then $k = 0$, and similary $h = 0$, so that $[a, b] = [a, b]^{ml}$. Therefore $[a, b] = 1$, and this contradiction proves the lemma.

Corollary 2.3. Let G be a locally nilpotent X-group. Then the commutator subgroup G' is a periodic abelian group.

Proof. Clearly it can be assumed that G is finitely generated, and so nilpotent. Let T be the subgroup of all elements of finite order of G. Then G/T is abelian by Lemma 2.2, so that $G' \leq T$, and G' is periodic. Moreover G' is abelian by the quoted result of Mahdavianary [5].

Lemma 2.4. Let G be an X-group containing an abelian normal subgroup A such that G/A is finite cyclic. Then the commutator subgroup G' of G is periodic.

Proof. Without loss of generality it can be assumed that G is finitely generated and has no periodic non-trivial normal subgroups. Then A is a free abelian group of finite rank. Let G be a counterexample with G/A of minimal order, so that in particular A is a maximal abelian normal subgroup of G. Let x be an element of G such that $G = \langle x, A \rangle$, and let p be a prime dividing the order of G/A. Then $\langle x^p, A \rangle$ is a proper subgroup of G, and so $\langle x^p, A \rangle'$ is periodic. Since $\langle x^p, A \rangle'$ is normal in G, it follows that $\langle x^p, A \rangle' = 1$. Then $\langle x^p, A \rangle$ is abelian, and hence $\langle x^p, A \rangle = A$. Therefore $x^p \in A$ and G/A has order p. For each positive integer n, the finite p-group G/A^{p^n} belongs to X, and so it is a nilpotent B_2-group. Then G/A^{p^n} has class at most 3 (see [5]), and so $\gamma_4(G) \subseteq \cap_{A^{p^n}} A^{p^n} = 1$. Then G is a torsion-free nilpotent X-group, and Lemma 2.2 yields that G is abelian, a contradiction.

It is now possible to prove that the elements of finite order of a locally soluble X-group form a subgroup.

Proposition 2.5. Let G be a locally soluble X-group. Then the set of all elements of finite order of G is a subgroup.

Proof. Let x and y be elements of finite order of G. Without loss of generality it can be assumed that $G = \langle x, y \rangle$, so that in particular G is soluble. Let N be the smallest non-trivial
term of the derived series of G. By induction on the derived length of G we obtain that G/N is finite, so that also N is finitely generated. Let a be an element of N, and consider the subgroups $H = \langle a \rangle^G(x)$ and $K = \langle a \rangle^G(y)$. Then H' and K' are periodic by Lemma 2.4, and there exists a positive integer m such that $[a, x]^m = [a, y]^m = 1$. It follows that $[a^m, x] = [a^m, y] = 1$, so that $a^m \in Z(G)$. Therefore $G/Z(G)$ is periodic, and hence finite, so that also G' is finite (see [7], 4.12). It follows that G is finite.

Lemma 2.6. Let p be a prime, and let (x) be a cyclic p-group. If y is an automorphism of order p^k of (x) such that the semidirect product $G = \langle y \rangle \rtimes (x)$ is an X-group, then $n \leq 1$.

Proof. Let p^m be the order of x, and assume that $n \geq 2$. Then $x^p = x^{1+p^s}$, where p does not divide s and $t \leq m - 2$. Put $k = m - 1 - t$, and consider the non-normal subgroup $H = \langle x^{p^{n-1}} \rangle \times (y)$ and x^p normalizes H, a contradiction, since G is an X-group and $[x^p, y] \neq 1$.

Lemma 2.7. Let A be a reduced torsion-free abelian group, and let σ be a non-trivial automorphism of A. Then the semidirect product $G = \langle \sigma \rangle \rtimes A$ is not an X-group.

Proof. Assume that G is an X-group, and let a be an element of A such that $a^\sigma \neq a$. Since $H = \langle a \rangle^G$ is also an X-group, and $(a)^H = \langle a \rangle^G$, it can be assumed without loss of generality that $A = \langle a \rangle^G$. The automorphism σ has infinite order by Lemma 2.4. For every integer i put $a_1 = a^{i\sigma}$, so that $A = \langle a_1 | i \in kZ \rangle$. Let k be a positive integer, and assume that $A_k = \langle a_1 | i \in kZ \rangle$ is properly contained in A. As $a = a_0 \in A_k$, the subgroup A_k is not normal in G, and so A is normal in $N_G(A_k)$. Clearly σ^k fixes a by Lemma 2.1. Then $\sigma^k = 1$, a contradiction. Therefore $A = A_k$ for every $k \geq 1$. In particular, the set $\{A_i | i \in Z \}$ is dependent, and there exist integers r and s, with $r < s$ such that $\{a_r, \ldots, a_s \}$ is independent and $\{a_r, \ldots, a_{s+1} \}$ is dependent. Thus $a_{s+1} = a_{m_1} a_{m_2} \ldots a_{m_r}$, where m_1, m_2, \ldots, m_r are integer and $m \neq 0$. Let D be the divisible hull of A, and let D_0 be the smallest divisible subgroup of D containing $\{a_r, \ldots, a_s \}$. Then σ can be extended to an automorphism τ of D. Since $a_{s+1} \in D_0$, we obtain $\langle a_r, \ldots, a_s \rangle^{\tau} \leq D_0$. Moreover, D_0 has the same rank of $\langle a_r, \ldots, a_s \rangle$, so that $D_0 / \langle a_r, \ldots, a_s \rangle$ is periodic and $D^\tau_0 \leq D_0$, since D / D_0 is torsion-free. It follows that $D^\tau_0 = D_0$, so that $A_0 = A \cap D_0$ is a subgroup of finite rank of A containing $\langle a_r, \ldots, a_s \rangle$, and $A^\tau_0 = A_0$. Clearly $a = a^\sigma r^{-1} A_0$, so that $A = A_0$ and A has finite rank. Thus the counterexample G can be chosen in such a way that A has minimal rank. As A is reduced, there exists a prime p such that $A^p \neq A$. Let k be the order of the automorphism induced by σ on the finite group A / A^p. If $i \in kZ$, we obtain that $a_i A^p = A A^p$. Since $A = A_k = \langle a_1 | i \in kZ \rangle$, it follows that A / A^p is cyclic. Then A / A^p is cyclic of order p^n for every $n \geq 0$. Application of Lemma 2.6 yields that the automorphism induced by σ on A / A^p has order dividing $p(p - 1)$. Therefore $\sigma^{p(p - 1)}$ acts trivially on A / A^p for each $n \geq 0$. Put $B = \bigcap_{n \geq 0} A^p$, so that $\langle A, A^{p(p - 1)} \rangle \leq B$. Clearly $[A, A^{p(p - 1)}] \neq 1$, and hence it follows from Lemma 2.2 that $\sigma^{p(p - 1)}$ does not act trivially on B. Moreover, A / B does not have finite exponent, so that $\langle a \rangle \cap B = 1$, and B has rank less than A. By the minimal choice of A, we obtain that the subgroup $\langle \sigma^{p(p - 1)} B \rangle$ does not belong to X. This contradiction proves the lemma.

We can now prove our main result.

Theorem 2.8. Let G be a torsion-free locally soluble X-group. Then G is abelian.
Proof. Clearly it can be assumed that G is finitely generated, and hence soluble. Thus by induction the derived length of G we may also suppose that the commutator subgroup G' is abelian. As a finitely generated metabelian group, it is well-know that G is residually finite (see [8], 9.51) and so in particular reduced. Assume that G is not abelian, so that G is not nilpotent by Lemma 2.2, and $C = C_G(G')$ is properly contained in G. Let x be an element of G' and y an element of $G \setminus C$ such that $[x, y] \neq 1$, and consider the subgroup $H = \langle x, y \rangle$. Clearly $\langle x \rangle^H$ is contained in G', and so is abelian. If $\langle x \rangle^H \cap \langle y \rangle \neq 1$, then $H / \langle x \rangle^H$ is a finite cyclic group, and H is abelian by Lemma 2.4. This contradiction shows that $\langle x \rangle^H \cap \langle y \rangle = 1$, and hence Lemma 2.7 can be applied to prove that the factor group $H / C_G(\langle x \rangle^H)$ does not belong to X. This last contradiction completes the proof.

The above theorem has the following consequence.

Corollary 2.9. Let G be a locally soluble X-group. Then the commutator subgroup G' of G is periodic, and G is soluble with derived length at most 4.

Proof. The set T of all elements of finite order of G is a subgroup by Proposition 2.5, and it follows from Theorem 2.8 that the factor group G / T is abelian. Thus G' is periodic, and hence locally finite. Application of Theorem 3.4 of [3] yields now that $G'^4 = 1$.

We leave as an open question whether there exist soluble X-groups with derived length 4.
REFERENCES

