AN OSCILLATION THEOREM FOR SCHRODINGER EQUATIONS

ADRIAN CONSTANTIN

Abstract. We consider the problem of characterization of oscillatory semilinear Schridinger
equations in exterior domains.

KEY WORDS: Schrddinger equation; Oscillatory solution.

1. We consider the semilinear Schrodinger equation
Lu = Au+ f(x,u) = 0,x € Q, (1)

in an exterior domain X C R*,n > 3, where f 1s nonnegative and locally Holder continuous
in 2 X Rand odd in u, 1.e. f(x,—u) = —f(x,n).
Let |x| denote the Euclidean norm of x = (x;,x3,...,x,) € R" and for a >0, let

Se = {x€R":|x| =a}
G, = {x€R":|x|>a}.

|

|

We say that > C R" is an exterior domain if G, C % for some a > 0.

We introduce the class i of nondecreasing functions w € C'(Ry,R.) with w(f) >0 for
t>0 satisfying [, 2 = oo and lim;—... w(r) = .

Equation (1) i1s considered in an exterior domain 2 C R" subject to the assumptions:

(A)f € Cﬂw(E X R) for some A € (0, 1) (local Holder continuous);

(B)0 < f(x,1) < of|x[)wo(?) for all x € ¥ and for all >0 for some «x € C(R4,R,) and
wo € R with W{](O) = 0;

(O)px)e(t) < f(x,1) forall x € X and for all ¢+ > 0, where p 1s continuous and nonnegative
in ¥; @ € C'(Ry),0()>0, @ (t)>0 for t>0 and lim,_, ¢+ f; < oo (the last condition
is a sublinear condition on ).

A solution of (1) in ¥ is a function # € C*(Z) such that Lu(x) = 0 for all x € . We say
that the operator L given by (1) is oscillatory in 2 whenever every solution defined in G, C X
for some a > 0 changes sign in G, for all » > a. Observe that if v(x) 1s a solution of (1) then
—v(x) 1s also a solution. Thus L is nonoscillatory in X if and only if (1) has a solution u(x)
which is positive in G, for some b > a.

We intend to give conditions on p and g that guarantee that (1) 1s an oscillatory equation.

_ar_
(1)

2. In the sequel we will need the following

Lemma 2.1. [3] Let L be the operator defined by (1) where f is nonnegative for u > 0 and
satisfies assumption (A) in an exterior domain X and suppose that G, C 2 for some a > 0.
If there exists a positive solution vy and a nonnegative solution vy of Lvy < 0 and Lvy > 0,
respectively, in G, such that vy(x) < vi(x) throughout G, U S,, then equation (1) has at least
one solution u(x) satisfying u(x) = vi(x) on S, and vo(x) < u(x) < vi(x) throughout G,.



230 Adrian Constantin

““onsider now the differential equation
u" + F(t,u) = 0 @

where F(¢,u) is continuous on {(#,u) : t > 1,u € R}.

Lemma 2.2. Assume that

F(t,u) = h(t)wg (%) t>1,ueR,

where h € C(R4,Ry) satisfies f fﬂ h(s)ds < oo and wy € CY(R,R) is odd on R, nonnegative
on R, and such that |wy| € R.
Then equation (2) has a solution u(t) which is positive in (b, oc) for some b > 1.

Proof. Under the hypotheses of Lemma 2.2 we know (see [1]) that for every solution u(¢) of
(2) there are real constants ¢, d such that u(t) = ct + d + o(t) as t — oo.

In view of the fact that wy 1s odd on R, it is sufficient to show that (2) has a solution u()
which is of constant sign in (b, oo) for some b > 1. We will actually prove that any nontrivial
solution u(z) of (2) is positive or negative in (b, oc) for some b > 1.

Assume that u(f) is a nontrivial solution of (2) which has infinitely many zeros {rﬂ}”;_}i with
t, — ocasn — oo. Thenc = d = 0. Taking into account (see [1]) that ¢ = limy_, o #'(£), this
can happen only if lim,_, o u(f) = limy_,, u'(f) = 0. For convenience we consider {f,},>
strictly increasing.

Let M = sup,{|u(?)|} >0. Denote Q = sup, <{|wo(@)|} >0 and observe by the
mean-value theorem (wo(0) = 0) that |wo(x)| < Q|u] for |u| < M.

Let £ > 1 be a root of u(¢) such that Ljﬁ h(s)ds < é Since wy € CY(R,R) we have local
uniqueness for the solutions of (2) and so, since u(#;) = 0 and u(?) is nontrivial for ¢ > 1, we
have |u/(t;)| > 0 (' (t;) = 0 would imply u(¢) = O for t > #,). The relation lim,_, . #'(f) = 0
enables us to find a root 1, > ; of u(t) with |4/ (¢)| < %|u" (tr)| for t > ¢t,. Let T be a point in
[tx,2,] where |u'(7)| attains its maximal value on this interval. Clearly |u/'(T)| > |u'(#;)] >0
and |/ ()| < |W/(D)| forg, < 1.

For s > T observe that, using the mean-value theorem and the fact that T > 1,

u(s)| = |u(s) — u(ty)| < (s — 1)|u'(T)]

so that
u(s)|

5

< min{M, |u'(D)|},s > T.

Integrating (2) on [T, f] we get

u' (1) — u'(T) + / h(s)wg (%S)) ds =0,t > T,
T
thus -
W (D) < | ()] + f h(s)wo ('“fjl) ds,t > T.
T
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Since lim,_, o #/ () = oo, in view of the previous remarks, we can write

W (T)| < / " hsywo (]“f)') ds < Q /‘m ()2 g5 <
T T

5

< Q|u'(T)| f h(s)ds < Q|u'(T)| ] h(s)ds < |u'(T)),
T Ik

a contradiction that concludes the proof.

Lemma 2.3. Assume that F € C(Ry,R,) is such that F(t) >0 for t >0 and

[Fa
 F(@) —

If G € C(Ry,Ry) is such that for some w € R and some constant M > 1,

Lodt
G < F(w (/1 F(}")") 1 2> M,

/""“: dt .
L F() + GQ@)

then

Proof, Let us denote

L ods f ds
— — = > M
v /1 F(s)’ W) /ﬁ; F(s) + G;(S):'lF -

We have that

; 1 o)
Wi = > JE> M,
7) F(r)—l—G(t)_ler(fﬁ)

and an integration yields

O ds
W(t) > / i > M. (3)
von 1+ w(s) |

ds —_— Sl:Te
Twiy = and since

Since w is nondecreasing it is easy to see that w € R implies f fﬁ
lim;_, ~ V() = o, by (3) we get lim,_, .o W(r) = oc.

The spherical mean m(r, u) of a continuous function # : R" — R over the sphere §, of
radius r 1s defined by (see [4])

1
o6 ./5,, u(x)ydw

m(r,u) =

where w denotes the measure on §,.
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Theorem. Assume that (A), (B), (C) hold and that there is an M > 1 such that for some w € R,

x(r)
. 4
" (flr S{I(S)dS) r2M )

m(r,p) >

The necessary and sufficient condition for (1) to be oscillatory in an exterior domain in
R, n > 3, is

f rm(r, p)dr = 0.
0

Proof of Sufficiency. As noted in Section 1, the operator L is nonoscillatory in X~ whenever
(1) has a positive solution u(x) in G, for some b > a.

Assume that there is a positive solution u(x) in Gy for some b > a.

An easy calculation shows that if we denote

“odt
d(u) = / —— u>0,
( o @)
(well-defined in view of (C)), then

A
AD () = (p(':) — ' (W)|VBwW)|?

from which, in view of (1) and assumption (C), we get
AD(u) < —p — @' W)|VEW|*

and so
—A®(u(x)) = p(x),x € Gp. (3)

The spherical mean of any function z € C?(G,) satisfies (see [2, page 69]),

d [ _.dm(rz) 1
— |7 = Az(x)d
dr[ dr ] WS Js Ax)dw
so that, on the basis of (5),
b
LN D2 5 iy, p). ©)
dr dr

The change of variables

|

) " () = sm(B(s), D))

b
n—?2

r=p(s) = (

transforms (6) into

1
—H"(s) > s [BE)I"*m(B(s), p) = mﬁ’(s)ﬁ(s)m(ﬁ(s),p). (7)
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Integration over (B, s) where B = 37 1(b),s = B~ (r), yields

—h'(s) + K(B) > % tm(t, p)dt. (8)

Observe that A(s) > 0 for s > B and #’(s) is nonincreasing on [B, oc) by (7). This shows that
H'(s) > 0on [B, oo) - otherwise, there is a C > B with 4’ (C) < 0 and we get by the mean-value

theorem and the monotonicity of A’ that —A(C) < h(s) — W(C) < W (O)(s — C) — —oo as
s — 00, 1mpossible. By (8) we get

/ rm(r,p)dr < (n — 2)h'(B) < o0
b

and so —
/ rm(r, p)dr < oo
0

if there is a positive solution in G, for some b > a>0. This shows that the condition
ff rm(r, p)dr = oc 1s a sufficient condition for (1) to be oscillatory.

Proof of Necessity. It is enough to prove that if

/ rm(r, p)dr < oc (9)
0

then (1) has a positive solution in G}, for some b > a > 0.
We show that if (9) holds, then

f re(r)dr < oo (10)
0

and that (10) implies the existence of a positive solution of (1) in G tor some b > a > 0.
Let us assume that (9) holds and that fﬂx ro(rydr = oo
Observe that there is a constant K > 1 so that p(x) < K«(|x|) for all x € ¥ (we can take

K=1+ WEH) and this shows that m(r,p) < Ko(r) for [x| = r> 0.
Define 1 |
F(r) = F(r) + G(r) = JF>a,
Kroa(r) + T +])3 rm(r,p) G +”

and extend F, G to [0, a] so as to make them continuous and positive on Ry.
An easy computation shows that (4) implies

" d
G(r) < KF(r\w f ) r>M+a,
1 F(s)
thus, by Lemma 2.3 (since Kw € R), the assumption | 1&: F‘E"f} — oc 1mplies fl' Ha}fﬁm oC.
Since fﬂ { f"l’)g < oo we get [D rm(r,p)dr = oo, a contradiction with (9). This proves that

if (9) holds, we have
/ ro(r)dr < oc.
0
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We consider the ordinary differential equation

d 1 dy —] _
E_{rﬂ E}_Hﬂ x(Nwoe(y) = 0, (1)

where we define wyo(y) = —wo(—y) for y < 0 (we can do this Since wy(0) = 0). The so-defined
wo € C(R, R) 1s continuously differentiable on R as one can easily check.
The change of variables

1 n—2
r=Bs) = (H - zs) h(s) = sy(B(s))
transforms (11) into
1 f h
H16)+ B0 aBsymo (* ) =0 (12)

By Lemma 2.2, (12) has a positive solution in some interval (B, oc) with b = s~ (B) > a if

/ B'($)B(s)o(B(s))ds = fm ro(r)dr < oo.
0 0

Returning to (11), we have that if fﬂm ra(r)dr < oc then there 1s a positive solution y(r) of
(11) forall » > b > a>0. Using Lemma 2.1 we will show that this yields a solution of (1)
which 1s positive in Gy.

Let us define v{(x) = y(r),r = |x| > b. We have

7' vy (x) = d {r”“dy} - () <
dr dr

< {% {F‘”_l%} + Pl r)wo(y(r))
and hence Lv;(x) < O for all x € G;. Clearly vo(x) = 0 satisfies Lv,(x) > 0 in G,. Lemma
2.1 shows that (1) has a solution u(x) with 0 < u(x) < vi(x) = y(r) for |x| > b with
u(x) = vi(x) >0 for |x| = b. Since u(x) > O for |x| = ¢> b, by the maximum principle
(Au(x) <0in {x € R" : b< |x| < c}) we get that u(x) > 0 for b < |x| < c¢. The arbitrariness of
¢ > b shows that u(x) 1s a positive solution of (1) in G,.

- 3. To compare our theorem with the results of Swanson [S5] observe that if we consider (1)
with

f(t,x) = ~tln(1 +1),t > 0,x € R°, (13)

(1+[x
we can deduce by our theorem that (1) is oscillatory whereas the results of Swanson [5] are
powerless. This shows that our condition (B) allows sometimes a higher degree of liberty
than in the case of [5].
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The- main difference lies however in condition (4). To make this clear, assume that

tg(r,t) = o(r)wo(t) where g 1s nonincreasing in ¢t >0 for every fixed r > 0. As observed
before,

p(x) < Ko(r), x| = r>0,

for some constant K > 1. In [5] one works under the limited assumption

. x(r)
lim sup " < 0OC

that 1s, for r large enough,

As we said before, the right-hand side bound is natural. It appears that the left-hand side
bound 1s very restrictive. Observe that in our theorem we allow in the oscillatory case

lim,_,.. ™P) — () controlling the way it goes to zero (slower than - - in the
r=oC o) g Y g - ( w(fi sct(.?)d;s‘) )
l

oscillatory case |, Dm sx(s)ds = oo so that : goes to zero as r — oc.
w(f sc‘z(.!rjds)

This improvement becomes clear when oné specializes (1) to the equation

Au+ p(x)|u|"sgnu = 0,0<y<1l,x € &, (14)

where p(x) is non negative and locally Holder continuous in an exterior domain ¥ C R”,
n> 3. Let

P(r) = sup {p(x)}.

x|=r

The results of [5] enable us to conclude that if

. P(r)
lim sup (D) < oC

then the necessary and sufficient condition for (1) to be oscillatory is

-
[ rm(r,p)dr = o (15)
Jo
whereas our theorem works also in cases when

. P(r)
lim sup

oo m(r,p)

ol

provided that the growth is controlled by w ( f 1.*‘ SP(S)ds) - take ou(r) = P(r) for r > 0. In such
cases we still have that (15) 1s the necessary and sufficient condition for (1) to be oscillatory.
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