ON MALLIOS A-CONNECTIONS AS CONNECTIONS ON PRINCIPAL SHEAVES

EFSTATHIOS VASSILIOU

Abstract. Motivated by [5], we associate a vector sheaf & with a principal sheaf P(&),
called sheaf of frames of £. We show that A-connections on £ correspond to connections on
P(E). The latter are defined by an appropriate family of local matrices or, equivalently, by a
morphism acting on P (&), analogously to the operator of an A-collection.

1. INTRODUCTION

In his abstract version of Weil’s integrality theorem, published in this journal ([5]), A.
Mallios introduced the notion of an .A-connection. Roughly speaking, this 1s a connection
defined on a vector sheaf, that is on a locally free .A-module of finite rank, over a topological
space, where A is sheaf of commutative, unital and associative C-algebras.

This 1s a remarkable extension of the classical theory of linear connections within a purely
algebraic and topological context, without any notion of differentiability, and constitutes the
hard core of the forthcoming book [6]. In this framework one is freed from many constraints
and is able to extend a great part of the traditional differential geometry to spaces which are
non-smooth at all, a fact that seems to be particularly interesting for modern physics (in this
respect see, for instance, [4] and [5]). Yet, the “structure sheaves” involved in [5] are not
necessarily “functional” ones (viz. sheaves of germs of functions), as was the case so far
(see e.g. [4]), but quite abstract algebra sheaves, a fact that broadens the applicability of the
technique in question (see also the relevant comments in [4; p. 358]).

On the other hand, going back to the classical context, it is customary, as well as convenient,
to associate linear connections on vector bundles with connections on the corresponding
principal bundle of frames.

The purpose of the present note is to apply the last idea within the aforementioned abstract
framework. More precisely, for a given vector sheaf £, we construct a principal sheat P(£)
with structure sheaf G L(A, n) (in the sense of [3]) and we show that £ is associated with P(£)
(Propositions 3.2 and 3.3). Analogously to the classical case, P(£) is defined to be the sheaf
of frames of £. Moreover, we prove that the local connection matrices of an .A-connection
(corresponding to the classical local connection forms), though they cannot be globalized to a
form on P(£), give rise to an appropriate sheaf morphism D on the latter. This is the principal
sheaf analogue of the operator of .A-connection and its classical counterpart of covariant
differentiation. As a result, we establish a bijection between A-connections and morphisms
D (Theorem 5.5 in conjunction with Theorem 5.4).

The main results, outlined above, are given in Sections 4 and 5. Sections 2 and 3 are
preparatory and mostly review what we need from the theory of vector sheaves and A-
connections. Of particular importance is Theorem 3.4, describing such connections by means
of local matrices. The final section contains a brief discussion on the curvature. It 1s included
here as an example of the effectiveness of the proposed study of .A-connections within the
framework of principal sheaves.

The present approach and [7] motivate the study of connections on certain arbitrary principal
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sheaves (not necessarily related with vector sheaves), as it 1s fully explained in ([8]).
Acknowledgement. 1 wish to thank Professor A. Mallios for many exciting discussions

on the subject and for communicating to me unpublished parts ot [6].

2. PRELIMINARIES

Although we are motivated by [5], to which we refer for the main terminology and notations,
for the reader’s convenience we review some of the basic material needed in the sequel.

We start with a fixed algebraized space (X, A), where X is a topological space and A a
sheaf of commutative, associative and unital (linear) C-algebras over X. We also assume
the existence of a differential triad (A, d, Q'), where Q! is an A-module (that is, a sheaf of
A-modules) over X and 9 : A — Q! is a C-linear morphism satisfying the Leibniz condition

o(s. 1) = 5.0(2) + 1. 9(s), (2.1)

for every s,t € A(U) and U C X open.

Remarks. 1) The term differential triad, as well as any similar terminology involving the
adjective “differential”, is used in order to connect the classical differential geometry with
the present non-smooth context.

2) 9 figuring in (2.1) is in fact the induced morphism between sections. The customary
identification of a sheaf with the sheaf of germs of its sections, as well as the 1dentification
of a sheaf morphism with the one between the corresponding presheaves of sections, will be
applied without any particular mention. Our main references concerning sheaf theory are [1]

and [2].

We denote by A°® the sheaf of units (. invertible elements) of A, 1.e. A® is generated by
the (complete) presheaf of abelian groups U — (A(U))®, for every open U C X. Theretore,

A*(U) = (A(D))*.

We define now the morphism of sheaves of (abelian) groups d : A* — Q! given by

i

o(s) := s . 9(s),s € A*(U), (2.2)

for every open U C X. In analogy to the classical case, 0 is the logarithmic or total differential
derivation of A, induced by 9. It is straightforward that

5(s.1) = d(s) + O(?), s,t € A*(U). (2.3)
We consider also the complete presheaf of matrices
U— M, (AD)), U C X open.
It generates the matrix algebra sheaf M ,,(A)n > 1) with

M (A)U) = M, (AU)).
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Thus we may define the .A-module
Mu(Q1) 1= Mu(A) @4 Q' = QD
on which 9 induces the morphism (using the same symbol)
3 1 Mu(A) — M, (QY)

given by
d(a) := (9(ay)), (2.4)

ifa = (a:'j) c Mp(A)U) = MH(A(U)):- U C X open.
Analogously to A®, the general linear group sheaf of A (of order n), denoted by G L(n, A),
i1s the sheaf of units of M,,(A), defined by the (complete) presheaf

U— GLn,A(U)) = M,(A(U))*, U C X open.

Hence, GL(n, A)(U) &£ GL(n, A(U)) and GL(n, A) = M, (A)*, n > 1. We define a loga-
rithmic differential on G L(n, A) by setting

da):=a"".09(a), a=(ay) € GL(n, AW) = GL(n, A)). (2.5)
Finally, the adjoint representation
Ad : GL(n, A) — End(M,(A))*,

given by [LAd(g)](a) := g.a.g™', induces the representation Ad : GL(n, A) — Aut(M,(Q"))
.= End(M,(Q'))* with
Ad(g)a®0):=(g.a.g7H)® 8, (2.6)

forany g € GL(n, A)(U),a € M, (A)N(U),0 € Q'(U)and U C X open.
Combing (2.5) and (2.6) we readily check that the following formulas hold true:

d(a.b) = Ad(b™1).d(a) + O(b) (2.7)
d0(a~ " = —Ada").d(a) (2.8)
Ad(a.b). w = Ad(a).(Ad(b). w), (2.9)

for every a,b € GL(n,A)U), w € M,(Q")U) and U C X open.

3. VECTOR SHEAF CONNECTIONS

In the sequel € = (£,X, 7tg) denotes a locally free A-module of finite rank, say n, over

X. By definition, this means that £ 1s an .4A-module such that there exists an open cover
C = {U,|x € I} of X and .A-isomorphism

{

bo: v, A"u. = Alu,)" (3.1)
—
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For simplicity, such an £ is called a vector sheaf of rank n (see also [5], [6]).

Definition 3.1. An A-connection on & is a C-linear morphism
V:E—=E240 = Q&)
satisfying the Leibniz (or Koszul) condition
V(x.5s) = . Vs + 5 ® 0cx, (3.2)

for every x € A(U),s € E(U) and U C X open.

For the existence of .A-connections, examples and related topics we refer to [5] and [6],
where V is denoted by D (the latter 1s used here for the principal connections of Section 4).

In the sequel we shall express V, locally, by appropriate matrices. First we observe
that, in a standard way, the isomorphisms (3.1) determine a coordinate cocycle (g,g) €
Z'(C,GL(n,.A)), classifying, up to isomorphism, £. Thus, for each g,z3, we may write

gap = (85 )1<i j<n € GLI, A)(Uap) = GL(n, A(Uup)),

if U,g := U, N Ug # (. For simplicity, we shall drop the superscript «f3 in the elements of
the matrix, whenever it is clear that we are restricted over U,g. Similarly, (3.1) determines a
natural basis e® := (e, ...,e;) of £(U,) by

() = 07 Oxy . Ly on,00), X € U,

if 0, and 1, (in the i-th entry) are the zero and unit elements of the fibre A, respectively.
Therefore, any s € £(U,,) takes the form

s=) 7€, s € AUa). (3.3)
=1

Since now £(U,) is a free module of rank n, we can show (see also [6; Vol. II, p. 100,
formulas (1.9) and (1.10)]) that

(€ @4 ONYUa) = EWa) @ awy Q1 (UL, (3.4)

implying (as in the ordinary case) that
Vi) =) efowi, 1<j<n, (3.5)
=1

where each UJEF c QY (U,). Hence, we obtain the n X n matrix

W* = (WF) € Mo(Q (Un)) = Mu(AUL)) ® 4wy Q1 (Ua), (3.6)
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the last identification being proved analogously to (3.4). The matrix w<, called local conne-
ction matrix (with respect to U, ), completely determines the restriction of V on £|y, . Indeed,
an easy computation, based on (3.2) and (3.5), shows that

Vi) =) (7 V(e +e®@0s) =) ef@@sP+» sF-wd), (3.7
i=1 i—=1 =1

for any section of the form (3.3).

Lemma 3.2. The local connection matrices (W) ¢y, With respect to C, satisfy the compati-
bility condition (viz. local gauge equivalence)

wP = Ad(ggé) c WS 4+ égﬂﬁ. (3.8)

Proof. Considering also the pair (Ug, dg), Upg € C, we have a natural basis e? of E(U 3) and
the matrix w? = (w ) determined by

V() = Y efowl, 1<j<n (3.5")
=1

To find the relation between w® and w”, in case Uy # 0, we first observe that, on the
overlappings,

i
3 :
;=) gje¢, 1<j<n (3.9)

i=1

(recall the convention about the matrix g,z above). Substituting (3.9) in (3.5’), we get

v(Ef) — Z} (; ki * Ef{) @ ('UU ZEL & (Z Eki ) : (3.10)

Also, applying V on (3.9) and using (3.5), we obtain

V() =V (ZEH'E?) =y (Zemw;:;) g ter®dgy) =
i=1 k=1

i=1

N
Z‘Ek (Zwk: ij) +Z"3k ® 08y = zwﬁ:: 8ij + 0 &kj»
k=1

=1

which compared with (3.10) implies that

D e wi = wp-gy+ 08y (3.11)
i=1

i=1
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and, 1n turn,
gap - W’ = WY gop + 0 gap-

Taking into account the definition of the adjoint representation Ad and that of the logarithmic
differential (see Section 1), we conclude the proof.
Conversely, we prove

Lemma 3.3. Assume that we are given a family
W € Ma(QNUa) = (Mu(A) @4 QNUs) = M (Q'(Un)), a€l,

(with respect to C), satisfying (3.8). Then there exists a unique A-connection V with local
connection matrices the given w< ’ s.

Proof. Motivated by (3.7), we set

N

Vos) =) e ®@sd +Zs wd), a€l (3.12)

i=1 j=1
for every section of &, expressed locally (over U, ) by (3.3). Since, over U,g,
— Z 8ij Sf&
j=I1

taking into account (3.8) in its equivalent form (3.11), and formula (3.8), the analogue of
(3.12) for s|Ug is transformed in the following way:

Vi) =) do@s?+) s w) =
i=1 j=1

IO gu-e)@@s?+Y 7wl =
i=1 k=1 =1
Zﬁ‘k @*(Zgh d 57 —1—77&@ i - ﬁ):

=1 j=I1

ng ®[Z£h as‘(ﬂ—kZS (th -8 + 0 8K)] =

=1

Zekm(Zgh asﬁ+Zsﬁ ag;a)JrT(ng 57) - wil =

=1 1=1

Zef‘ ® (057 + Z 57 wi) = V).
i—1 j=1
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The previous equalities show that the V¢ ’s determine a connection V on £. The rest of the
proof is clear.

Summarizing we obtain the following basic result

Theorem 3.4. Let (£, X, i) be a vector sheaf of finite rank n. Then, an A-connection on £
corresponds bijectively to a family of local matrices {w® € M,(Q"YWUy)|x € I} satisfying
compatibility condition (3.8), relative to an open cover C = {U,|x € I} of X, over which &
is isomorphic to A".

Remarks. 1) An analogous proof is given in [6, Vol. 2; Theorem 4.1, p. 116]. An open
cover C, as above, is called therein local frame (see also [5]).

2) in a more sophisticated way, the family (W®),¢; is a zero-cochain (W%)qe; € CU(C,
M,(Q1)). Influenced by the classical case, it could legitimately be called the O-cochain of
local connection forms of V, if we think of Q! as representing the analogue of differential
1-forms of the classical case.

4. THE SHEAF OF FRAMES

In this section we fix a vector sheaf (£,X,7r) of rank n. We denote by 5 the basis of
topology on X consisting of all open V C X such that V C U, for some « € 1.
If Iso 4y, (A" |Uq, £|U,) is the group of all A|U,-module isomorphisms, then

U Iso 5 y(A"|U, E|U), 4.1)
U running in B, is a presheaf.

Definition 4.1. The sheaf P(£), generated by (4.1), is the sheaf of frames of the given vector
sheaf &.

By the very construction, since (4.1) is a complete presheaf, we have the identification (viz.
bijection)
P(ENU) = Iso 41y, (A" |Uq, E|U), (4.2)
for every U, € C. The same identification clearly holds for every U € B.
On the other hand, for every U € B, the mapping
Sy : Iso a (AU, E|U) x GL(, A|U) — Iso 4 y(A"|U,E|U),
given by
dulf,g) =f.g:=fog, (4.3)

determines an action. Thus, in turn, we get an action of GL(n,.A) on P(£). Moreover, each
isomorphism (4.1), in conjunction with the action &, induces a G L(n, A)(U,)-equivariant
iIsomorphism

Qo : PE)Ua) = GL(I, A)(Uq) 1 f = Rulf) i= da of, (4.4)

of course after (4.2). Since an analogous 1somorphism holds for every V C U,, we get a
GL(n, A)|U,-equivariant sheaf isomorphism

PENUL = GLR,A|U,, U, €C. 4.5)
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The previous considerations in fact prove

Proposition 4.2. The sheaf of frames P(E) of £ is a principal sheaf (it the sense of [3]), with
structure sheaf GL(n, A). Moreover, it is of type GL(A), i.e. Condition (4.5) holds.

It is quite standard to show that (£) is fully determined by the 1-cocycle (g.g) € Z'
C,GL(n,.A)), given by
gap = (Do 0 5 )(1ap), (4.6)

where 1,4 is the unit element of

GL(n, A)YUqaP) = GL(n, A(Uqp)) = Iso py,, (A"|Uap, A*|Unp)

(for the last relations cf. also e.g. [5; Vol. II, p. 91]).

Remark. Equality (4.6) implies that (g,3) coincides with the coordinate cocycle of £. Thus,
starting precisely with the latter, one can construct (by the general methods of e.g. [3]) a
principal sheaf P of type G L(n, .A) and with structure group G L(n, . A). It can be proved that
P and P(£) are isomorphic.

For the sake of completeness we also prove that £ is associated with P(£) in a natural
way. To this end, for every U € B, we define an action of GL(n, A)(U) on (the right of)
PEWU) x A*(U), given by

(f,a).8 :=(fog,g 0a), (f,a)€ PENV) x A"(U),g € GL(n, A)V).
This induces an equivalence relation on P(&)(U) x A"(U) and determines the quotient
Q) := PENU) xgw) A1),
where, for the sake of simplicity, we have set
GWU) := GL(n, AYU) = GL(n, AlU).
Therefore, we obtain the (not necessarily complete) presheaf
U— QU), UEeDB,

which, in turn, generates the quotient sheat

Q = (P(€) xx A") / GL(n, A).

Proposition 4.3. With the previous notations, £ is isomorphic with the quotient sheaf Q.
Proof. For each U € B, we define the mapping

Yy : QW) = &) If,al — foa.
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It is straightforward that Wy is well defined and 1-1. On the other hand, for its surjectivity it
suffices to observe that a given section s € £(U) coincides with Wy ([(do|U) ™!, (o |U) 0 s)),
it U C U, and ¢, 1s the isomorphism (3.1). Therefore (Wy)yen induces the desired
isomorphism.

Finally, for later use we define the natural section of P(£), with respect to C,
0o = P2 '(1,), 4.7)

where 1, := id| A"(U,) and (4.2) is still employed.

5. CONNECTIONS ON THE SHEAF OF FRAMES

Recalling from Section 3 that
MH(QI) .= M”(.A) ® A El
as well as the action (4.3), we give the following

Definition 5.1. A connection on P(€) is a morphism of sheaves of sets D : P(£) — M, (QY)
such that i
D(c - g) = Ad(g™"). D(0) + 0g, (5.1)

for every o € P(EYU),g € GL(n, AYU) and any U C X open.
Evaluating (the induced morphism) D at the natural sections (4.7), we obtain the local

connection matrices of D
0% = D(o,), «€l. (5.2)

Lemma 35.2. The local connection matrices of D satisfy the compatibility condition
07 = Ad(g5) - 6% + 0gap. (5.3)

Proof. Direct consequence of equalities (5.1) and 03 = 0, - go3, Under appropriate restrin-
ctions on U,g # 0.

Conversely we get

Lemma 5.3. A family of local matrices {6 € M,(QY)U,)|«x € I}, satisfying (5.3),
determines a unique connection D on P(E) with corresponding local connection matrices
precisely the given <’ s.

Proof. For any open U C X and o € P(£)(U), there 1s a unique g, € GL(n, A) U NU,)
such that 0 = 0, - g onU NU,. Since U = UQEI(Z/{ N U,), we define the mapping

Dy : P(EXU) — M,(QYWU)
by requiring that Gf U NU, # 0)

Dy(0)|uru, := Ad(g2 Dlunu, + 0(8alunu,)- (5.4)
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We prove that Dy is indeed well defined by showing that (5.4) coincides on U N U,z with its
analogue i
Dy(D|unu, = Ad(gz") - 0% |unu, + 0(gslunsy).

for any Ug € C withid NU,p5 # 0. This is the case, since g, = ga3 - g3 onU NU, 3. Hence,
taking into account equalities (2.7) - (2.9) and omitting the restrictions,

Ad(gz") - 0% + 0gp =

Ad(g;" - 8ap) - (Ad(g5) - 0% + Ogap) + (gL} - 8a) =
Ad(gy") - 0% + Ad(g;") - 8gap + Ad(g™ &) - 085 =
Ad(ggl) ) e& + égcu

which proves the assertion.
It is clear that (Dy)yec is a preashef morphism which determines a morphism D. Itis a

connection since, forany ¢ € P(E)U)and g € GL(n, A)U), 0 ¢ = 0o - (ga - g) OnU NU,;
thus (5.4) gives (by omitting again the restrictions)

Dy(c-g) = Ad(g™" - g2") 0%+ 0(gs - 8 =

Ad(g™") - (Ad(g3") - 8% + 0ga) + 0(g) =
Ad(g™") - Dy(o) + 0(g).
Finally, assume there exists another connection D’ such that D'(c,) = Dy _(0,) = 6%

Then, for each D7, and o as before,

Dy (O)|unu, = D'lunu, (Calunu, - 8o) =

Ad(é’;l) ' DI[MHMQ(UalﬁﬁM.};) + égﬂ: —
Ad(g2") - 0% |uru, + 08 = Du(|unu,
by which we conclude the proof.

Summarizing the above lemmata we state the following principal sheaf counterpart of
Theorem 3.4.

Theorem 5.4. Let P(E) be the sheaf of frames of a vector sheaf £. Then, a connection D
on P(E) corresponds bijectively to a family of local matrices {8% € M,(Q")U,) | € I}
satisfying the compatibility condition (5.3 ), with respect to the open cover C, over which P(&)
is isomorphic to GL(n, A).

As a consequence, we obtain the following main result.

Theorem 5.5. There exists a bijection between A-connections on £ and connections D on

P(E).
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Proof. It suffices to observe that a family of local matrices satisfying the compatibility
condition (3.8) = (5.3) determines, by Theorems 3.3 and 5.4, a connection V on &£ and a
connection D on P(&) respectively.

Applying the definition of the local matrices of V (cf. equality (3.5)) and that of D (cf.
(5.2)), Theorem 5.5 implies

Corollary 5.6. Over each U, € C, the following formula holds:
Vief) =) e ®@(Daa)j, 1<j<n.
i=1

where (D0 );; is the ij-entry of the matrix Do,.

6. THE CURVATURE IN BRIEF

We shall close this note by a brief discussion on the curvature of a connection D, as another
example of the effectiveness of the present approach of .A-connections. More details can be
found in [7] and [9], whereas in [5] and [6] the same subject is treated directly within the
vector sheaf context.

In order to be able to define the notion of curvature, both for connections on £ and P(£),
we should extend the 1nitial differential triad to the curvature datum (ctf. [5], [6])

(A4,9,Q',d",0Q%),

where Q% := Q' A Q% and d' : Q! — Q2 is a C-linear morphism satisfying the following
conditions:

d'(s-0)==s-d(0)— 8 A ), (6.1)
for every s € A(U),0 € Q' (U) and open U C X,
d 0oy =0. (6.2)
Definition 6.1. The curvature of a connection D on P(£) is the morphism of sheaves of sets
RP : P(E) = M, (Q?) = M, (A) @402 given by RP :=DoD, if D : M,(Q}) - M,(Q?
is the morphism defined by |
DO):=d'0+0A0=d'0+1/2-[6,6], (6.3)

for every 8 € M, (Q"YWU) and U C X open.
The corresponding local curvature matrices are determined by

O% := R°(04) € MA(QH)(U.).
By the definition of R” we get the structural equation

O% = d'0% + 0A* =4'0* +1/2.[6%,0%]. (6.4)
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Furthermore, it is easy to show that
0° = Ad(g.z) - 6%, (6.5)

which is the compatibility condition of the local curvature matrices on the overlappings.

Lemma 6.2. If D = (0%),¢; is a connection on P(&), then its curvature RP is completely
determined by (6.4) and (6.5).

Proof. Modifying the proof of Lemma 5.2, we define the morphism R : P(£) — M, (Q?),
given by -
R(0) := ./ild(g;l) - 0% onlUd NU,,

if o € P(e)(U)and g, € GL(n, ANU,) with c = ¢* - g, onU NU,. We readily check that
R=RP.
If we interpret now the 6“’s as the local matrices of the connection V corresponding to D

(by Theorem 3.5), 1.e.
w* = (0 )i<ij<ny X EI,

and the ©%’s as matrices of the form
O% = Ri<ij<n, R € QX (Uo),

then (6.4) implies that
Ry =d wj + Z(wﬁ A W)
k=1

or, in virtue of (3.6),
(Ri) =d'w® + w™ A w®, (6.6)

Similarly, (6.5) leads to

(RY) = Ad(g )R =g f - (RY) - gap (6.7)

(note the difference between the adjoint representation Ad, acting on matrices as above, and
Ad acting on M,,(QH(U,) by (2.6)).

Therefore, similarly to the proof of Lemma 3.3, (6.6) and (6.7) determine an .4-morphism
R : & — Q?(&) such that

R(e) =) e @R,
=1

It is not hard to show that R coincides with the curvature RY of V, defined otherwise by the
Ist prolongation of V (for details see [5] and [6, Vol. 2; Chapter VIII, Sections 3-4]).
Hence we obtain

Theorem 6.3. Under the bijection of Theorem 5.5, the corresponding curvature operators R”
and RV have the same local curvature matrices, over C, from which they are fully determined
by means of (6.4) and (6.5), or their equivalent (6.6) and (6.7).
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