THE BERNSTEIN INEQUALITY FOR SOME OPERATORS OF THE SZASZ - MIRAKJAN
TYPE

L. REMPULSKA and M. SKORUPKA

Abstract. We give the Bernstein inequality for derivatives of the operators of the Szdsz -
Mirakjan type introduced and studied in [3 - 6] for functions of one and several variables,
continuous and having the polynomial or exponential growth at infinity

In §1 we consider these operators for functions of one variable.

In §2 we investigate some analogues of these operators for functions of two variables.

The present inequalities are very important for approximation properties of the considered
operators
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1. THE OPERATORS L, ; FOR FUNCTIONS OF ONE VARIABLE

1. Notation

1.1. Let R, := [0,00),N :={1,2,...},Np : NU {0} and let w,(-),p € Ny, be the weight
function defined on Ry by the formula

wo(x) := 1, wp(x) 1= (1 + )~} for p> 1. (D

Similarly as in [1] and [3, 5] for every p € Ny, we denote by Cj ,, the space of realvalued
functions f defined on Ry and such that w,(:)f(-) is uniformly continuous and bounded on Ry.
The norm in C ,, is defined by

[Fll1p == sup wp)lf(x)]. (2)

xERy
1.2. Let g > 0 be a fixed number and let v,(-) be function defined by
ve(x) :=e ¥ for  x € Ry. (3)

Similarly as in [2] and [4, 6] for every g >0, we denote by C, 4, the space of realvalued
functions f defined on Ry and such that w,(-)f(:) is uniformly continuous and bounded on Ry.
The norm in C; 4 18 given by

Ifll2,p := sup v, (X)|f(x)]. (4)

xeRy

1.2. In the papers [3 - 6] we introduced the following operators L, ;, n € N,i = 1,2,3,4
(L, 1 and L, » are considered in [3, 4]; L, 3 and L, 4 were defined 1n [5, 6]):

— 2k
Lﬂ,l(f;x) .= Zﬂn,k(x)f (_;;) ) (5)
k=0
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Y2

LH,EU‘?;X) .= Zan,k(-x)g /zs.- H f(f)df, (6)
k=) n |
| ) = 2k + 1
LH,S()L;):) .= l+fs(1n)hnx | bfz,k(«t)f( " ) y (7)
k=0
L = —L9O 5 " / o )
AV T T Y osinhonx — WD 2 ’

for functions f belonging to C; , or C; , for some p € Np and g >0, x € Ry, where

o 1 (M)Ek
Gk = i T ®)
2k4+1
b a(x) 1= ——— D) ke No, (10)

1 + sinhnx 2k + D!’

and sinh x, cosh x, tanh x are the elementary hyperbolic functions.
L,;,n € N,1 <1i <4, are linear positive operators defined on every space Cy ,, p € Ny,
and
L,(l1,x)=1 for xeRy,neN,1<i<4, (11)

In [3] and [5] it was proved that every L, ; with a fixed n € N and 1 < i < 4 1s an operator
from C; , into C; , for every fixed p € Np.

The operators L, ; are well-defined on every space C3 4, ¢ > 0. In [4] and [6] 1t was proved
that L, ;, 1 < i < 4, is an operator from C, 4, ¢ >0, into C; , with every r > g provided that

—1
n>gq (Zné) .
In [3] and [5] it was proved that if f € C;, with some p € Np, then there exists a positive

constant M, depending only on p such that

+ 1
wp(O|Ln i (f,x) — f(x)] < Myw (f, Cip, a - ) }

forallx € Ro,n € Nand 1 <1 < 4, where w(f, C; ,, ) 1s the modulus of continuity of f, i.e.

w({f,Cip, 1) = |§1?§ f¢-+hm—-fOlh,y t>0.

Similar estimates hold for f € C; 4,4 > 0.
Below we shall denote by M, ;, suitable positive constants depending only on indicated
parameters a, b.

2. Auxiliary results
The following two lemmas were proved by mathematical induction 1n the papers [3, 5].
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Lemma 1. ([3]). For every s € N there exist finitely many positive numbers &gy, Mgk, &5 4
and g, depending only on s and 0 < k < ssuchthatforalln € Nandx € Ry

s+1
S +F [ > ] y2k=1

La(Pix) = ) Esamyp + (tanhnx — 1) > Mor——,
k=0 k=1

i:f:l]
2 2k—1

~.. X ~ . X
L o(F3x) = Zaikns—k - (tanhnx — 1) ) NSk ST
k=0 k=1

and &5 s = 1 = &5 ([y] is the integral part of y € R).

Lemma 2. ([5]). For every s € N there exist finitely many positive numbers A i, Ps.x, Aj po
o5 depending only on s and 0 < k < [%] such that for all n € N and x € Ry

[%] [5_-1-2_|_} Ve—1

X x
Lny(t'%) = S0) Y Asse—— +T0) D, s~y
k=1 k=1

[%] 2k—1

5
E : * § % X
Lm-’-l(rf:'-x) — S(nx) }":;Jc ns—k I T(HI) pﬁ‘:Jirc ps+1-2k"’
k=1

k=1

sinh nx cosh nx
T — 12
1 + sinhnx’ () 1 + sinh nx (12)

S(hx) :=

and )"-Zm,m =1 = ?\*mmﬁ?rm - N and pgm+1!m+1f0rm e Nand p2m+1ﬁm+1 =1 = p§m+hm_+l
for m € Ny. (We assume that ZE:H, vie =0ifn; >noy).
Using Lemmas 1 and 2, we shall prove two lemmas.

Lemma 3. For every fixed p € Ny there exists a positive constant M, such that for alln € N
and 1 < i < 4 one has
1
Ln,,z' (_=>
Wy (1)

Proof. The inequality (13) is obvious for p = 0 by (1), (2) and (11).
Leti = 1. Then by (1), (5) and Lemma 1 we get forn € N and x € Ry

< M,. (13)

-—

l.p

1 1 1
a1l ——x ] = 14+L,tx) = —1{1 tanh =
wi(x)L, 1 (wl(r) .:t:) 1—1—x{ + L, (%)} 1+x{ + x tanh nx}
1 + — {tanhnx — 1} < 1
p— ”x_..
1 4+x -

and forp > 2

1 1
wWp (X)L, | (Wp(r) ;x) = 3 7 {1+ L, (#x)} <
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i
2

p—1 Ue—1

ﬂil—[—Z&plirxp kz ’nP+1 21i{“:.cinhf'z.:t:—1|

But for every r € N,n € N and x > 0 we have
2x
w4 ]

< 421"

0 < |tanh nx — 1|x”'....
Hence, forx > 0and n € N, we get
-1 7]
) 1+Zapk+ > M2 7@k = Din ™" < M,

=1 k=1

Wp(x)Ln,l (

Wp

which implies (13) fori = 1.
The proof of (13) for i = 2 is analogous by Lemma 1.
Leti =3 ori=4. From (12) it follows

0<Smx)<1 and O0<Tmx)<1 forall x>0and n € N. (14)

Using these inequalities and Lemma 2 and arguing as in the case i = 1, we immediately
obtain (13) fori = 3,4.
From (1), (2), (5) - (10) and Lemma 3 we derive the following

Lemma 4. For every fixed p € Ny there exists a positive constant M, such that for every
feCipandforalln € N, 1 <i<4onehas

Lo i (F @510 < Mplif]l1p-
This fact and (5) - (10) show that L, ; is an operator from the space Cy p, into Cy p, p € Np.

Lemma 5. Let g >0, r > g and let ng be a fixed natural number such that

—1
no > 1 (mf) . (15)
g

Then there exists a positive constant M, such that for all n > ng one has

1
Lﬂi )"
| T (Vq(f) ) 2

Proof. From (5) - (10) we get foralln € Nand x € Rg

<M, 1<i<4 (16)

q
cosh (e n m.:)

Ln,1(e%3%) = cosh nx

L,>(e¥:x) = ;q (E“l:f — 1) n1(e?,x),
1 + sinh (EEM)

Ln3(e%5%) = 1 + sinh nx

7 2 n 2 ]
gr. n Tml)Lﬂ qt. 1___(7;'_1) ,
Lna(e™:x) 29 (E 3(€75x) { 2q ‘ } 1 4+ sinh nx
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For a given g > 0 denote by
P (e"i - 1) . neN. | a7
The sequence (g,,) 1s decreasing and
q{qn{qeg < ge? for n>ny.

If r>g and ng is a fixed integer given by (15), then r > qe% > pn, > qn for n>ng. From
above we get for every r > ¢ and n > ng,x € Ry

cosh (EEHX)

cosh nx

1
Vq(f)

Vi(X)Ly,1 ( < 2N < 2

which implies

;x) =e "Lyie”x)=e""
< 2 for n>ng. (18)

1
LJ'L —"
! (vqm )

Since 0 < ¢* — 1 < xe* for x > 0, we have by (18)

| 1
L:LZ <_=) = EEq Ly ( ;') < ZEZq
Vq(r) 2.r | Vq(f) 2.r
for all n >ng and r > g.
Similarly, from above we get forr >¢g,n >npgand x > 0
1 —FrX f
Ur(x)LﬂJ — X | =€ Lﬂ.3(€q ;.XT) <
Vc;(f) |
sinh (E‘%Hx) o
< 1 —r < 1 =X LD
SR 1 +sinhnx — e -
which yields
1
Ly3 (—) < 2 for n> ng. (19)
vi}'('t) 2.r
For g >0 and n € N we have
29 2 i g 2 2¢
O<er —1< A3 |1—£(e%—1) < 24,73
n 2q n

Using these inequalities and (19), we get for ¥ > g and n > ny

1 |
Ln. —y LH — "
¢ ("’q(f) ) > (Vq(f) )

< e + 2ge* < 2(1 + g)e.

2.r

2.r
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Thus the proof of (16) 1s completed.
Using Lemma 5 we easily obtain

Lemma 6. Suppose that f € C, , for some q > 0,r > q and let ny be given by (15). Then
HLHJU;')HZJ < Mi“f“lq: 1 =1,2,3,4,

for all n > ngy, where My = M3 = 2, M, = 2¢* and My = 2(1 + g)e*.
This proves that L, ; is an operator from a given C, 4 into Cy ,, 1 >¢g > 0.

Using the mathematical induction for s € Ny, we can prove the following lemma on
derivatives of the order s.

Lemma 7. For every s € Ny there exist a finitely many real numbers 0 j, X541, 0 <j < s
and B2, Pas+1.j 0 < j < 2s, depending only on s and j such that for eachn € N and x > 0

one has

d*s L
= ;j(tanh nx)¥
dx?s (cosh mc) :::Ushm: Z Ocgs j(tanh XY,

d23—|-1 1 H2.3i+l S .
— Z X2s+1 J(tﬂﬂh M)zj_l_l ,

dx?s+1 \ coshnx cosh nx pos

dz.i' 1 nzs |
5 hnxy,

dx2s (1 + sinh m:) (1 + sinh nx)2s+! ?_; 325 j(sinh nxy

d25+1 | p2st+1
s sinh
dx* (1 T sinhnx) (1 + sinh nx)>+2 ?_,; Bas,j+1(sinh nxy.

From above and by (12) and (14) we immediately obtain the following

Corollary 1. For every fixed s € Ny there exists a positive constant M; such that for all x > 0
and n € N one has

1 (s) 1
< M , 20
( cosh m{:) ~  “coshnx (20)
(5)
1 n’
< M, . 21
(1+5inhm:) ~— "1+ sinhnx @)

Lemma 8. For every fixed s € Ny and p € N there exists a positive constant M, s such that
for all n € N one has

sup wp(:x:)Z ¢ (x)| s < My, 22)
XERy )

bﬂ(x)‘ <M, 1. (23)
xRy p (527
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Proof. The inequalities (22) and (23 for s = O are given in Lemma 3. Lets > 1. By (9),

(10), (20) and (21),
§ g 1 (5=J) ( " x)ﬂ: ()
Z (j) (cmsh nx) ( (2k)! )
Jj=0

. s ()
n’ 1 nx)?k
M. Z .(( ) ) }
* cosh nx par W\ (2k)!

s (s—J) 2%+1\ V)
(s) S 1 (nx) )
b k(x)‘ Z ) ( 1_+Sinhm:) ((Zk—l— 1)!

s ' 1 nx)2k+1 ()
<Mty ()
1 4 sinh nx i w \ (2k + 1)!

foralln € N, x € Ry and k € Ny. Hence

|

A x)

I\

(24)

I:s} (I)‘ <

p (%) 7

n "Wp(X) (nx)**=7 | 1
mshnx ZZ 2k —N! w, (H)

j=0 :c::-f n

But by (1) and (5) we have forj = 2m,m € N
(nx)>—i (nx)** o
Z (Zk ]) Wp 2 Z (Zk)l Wp "J,!C- Hzm] =~

< (2m+ 1)’(coshnx)L, ; (wl(” ;x) :
p

Ifj = 2m + 1,m € Ny, then, by (1) and (5) - (10), follows for x > O and n € N

Z (m:)ik—i 1 B i (nx)zk—'lm—} 1 B
| - %
> 2k —jw, (3%) Sy, Ck—2m— D! w, (Z)
(nx) ! 1

— 2k + Dtw, (ZHTH)

. |
< (2m+ 3)P(1 + sinh nx)L, 3 (wp(t) ,x) :

Consequently,

a®) (x)\ 7y <
p (%)

Wp(x) Z
k=0



284 L. Rempulska and M. Skorupka

. 1 1 4+ sinh nx 1
< MPJH Ln.l " | Lﬂ,3 - :
| T A\ wp(1) Ly cosh nx wp(1) Ly
which by Lemma 3 and the inequality
1 inh
0< TSI MEZ for x € Rog,n €N,
cosh nx

gives the desired assertion (22).
Similarly, using (24), we obtain (23).
Analogously, using Lemma 5 and Corollary 1, we can prove the following

Lemma 9. For every fixed s € Ny and r > q > 0 there exists a positive constant M, , s such

that
::.;: T 1
(s) )
sup vy(x) a, (x) <M, -1, (25)
o0 ) 1
sup v,() 3 (B0 s < Mawrs -1, (26)
XERo k=) V‘f( A )

for all n > ng, where ng is given by (15).

3. The Berstein inequality

In this section we shall give an inequalities of the type (14) and (19) for derivates
LO(f,-),s € N, called the Bernstein inequalities for the operators L, ;(f, -) ([7]).

n.

Theorem 1. For every fixed p € Ny and s € Ny there exists a positive constant M, ,
depending only on p and s, such that for every f € Cy , and foralln € Nand 1 <1 < 4 one
has

Proof. The inequality (27) for s = 0 i1s given in Lemma 4.
Leti =1ands > 1. From (5) and (9) we get for every fixedn € Nandx > 0

= 2k
<D la@) P (;) }

k=0

Lﬁ'(ﬂ')” 1. < M, 7’ |If]]1p- (27)

%Ln,l(f;x)

oc ' 1
< \Ifllip Y @] ,
- g g Wp (g)

n

which by (2) and (22) immediately yields (27) fori = 1. The proof fori = 2, 3,4 1s analogous,
but we use (21) - (23).
Arguing as the proof of Theorem 1 and using (25) and (26) we easily obtain

Theorem 2. Suppose that q,r,s and ny are a fixed numbers such that r >q >0, s € Ny and
no satisfies (15). Then there exists a positive constant M™ = My, s n,, depending only on
q,r,s,no, such that for every f € Cy 4, 1 < i < 4 and for all n> ng one has

L, < M7|[Fll2.q- (28)
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From Theorems 1 and 2 we derive the following two corollaries.

Corollary 2. L, ;,n € N,1 < i < 4, is a linear positive operator from C, , into CY', for every
p € Ny.

Corollary 3. L,;,n € N,1 < i < 4, is a linear positive operator from Cy 4 into C55, for
r > q >0, provided that n > ngy, where ng satisfies (15).

2. THE OPERATORS L,, , ; FOR FUNCTIONS OF TWO VARIABLES

1. Notation
In this section we shall introduce an analogues of definitions given in g1.
1.1. Let R := {(x,y) : x,y € Ro} and let for a fixed p;,p> € No

Wp, pr (6, ) 1= Wy, ()W, (1), (x,y) € R;, (29)

where w)(-) 1s defined by (1).
Denote by Cj p, ,, the space of real-valued functions f defined on R such that wy, ,,,(-,-) (-, )
is uniformly continuous and bounded on R3. Let the norm in Cy , ,, be defined by

”ful-ﬂhpz .— sup wﬂhf?z("x:y)[f(x:y)‘- (30)
(x.y)ER]

1.2. Applying (3) we define for a fixed gy, g» > 0 the weight function

Vo, .46, ¥) 1= Vg, (X) - vy, () (x,y) € Ry, (31)

Let Cy 4, 4, be the space of real - valued functions f defined on R3 such that v, ,,(-,-) f(-, ") is
uniformly continuous and bounded on R3. Let for f € Cy 4, 4,

IV“Z-.E?I-I?E .= Sup V@lfffz(x:y)[f(x:y)‘- (32)
(x.Y)ER;

For a fixed s € N and p(,p> € Ny we denote by

YTk f
0X 0y

{:P!TFE ‘= {f S CLPI-F'E : = CLPI-PI& 0 £]+k i‘: 5}

and analogously we define C} with g1,g> >0 and s € N.

192
1.3. In the spaces Cjp, ,,,P1,02 € No and Co g, 4,,41,92 >0, we define the following
operators Ly, ,;,,myn € N, i =1,2,3,4,

e 2 2k
ngﬂ,l(f;xry).:: y: :ﬂmlf(x)anﬂk(ylf ( / _) ) (33)

m’ n
Jj=0 k=0
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2i42 242

GC_.,,* DG_.,,' 11 m n
L.';-I,;I,Z(f;x:y) $= > ., > p ﬂm._;‘(x)ﬂn,k(}’)% [ / f(u,v)dudv? (34)
j=0 k=0 S IR
o 2+ 1 2k+1
L, i, S(f I;}‘) = B, Jl(xjy)f(o 0) + L L bnrJ(x)bn1k(y)f ( jm ) " ) : (35)
0 k=0
Lm?n_-ﬂl(f;x;y .= m._n(-x:- y)f(o} 0)+
- - m” i H
> > b.’ﬂ,j(x)bll._k(y)_ / / f(u: v)dudv, (36)
e 4  Ja+r 2+

Jj=0 k=0 Y Tm ) "

(x,¥) € R§, where a,, j(-), by j(-) are given by (9), (10) and

1 + sinh mx + sinh ny

Bm Ay = . . .
%) (1 4+ sinh mx)(1 4+ sinh ny) (57)

From (33) - (37) and (9), (10) it follows that
Lnni(1,x,y) =1, (x,y) € R§, mneN and 1<i<4, (38)

Moreover, we see that L,, , ; are linear positive operators. We shall show that L, ,, ;, m,n € N,
1 <i < 4 act from the space C) , ,,, p1,p2 € Ny, into C1p,.p,- Lemma 13 shows that L, ,, ;
act from C, 4, 4,,91,92 >0, into C, ,, ,, with every r; > g1, r» > g, provided that m > mg and
n > ngy, where my, ng are natural numbers such that

—1 — 1

¥ r

o > g (lni) , no > q» (1}”1—2) . (39)
q1 q2

2. Auxiliary results
Using the results given in §1 and the above definitions, we shall prove

Lemma 10. For every p1,p; € Ny there exist a positive constant M, ,, such that for all
mne Nand 1 < i< 4 holds

Lm.n,f ( : 'y )
| WFI Jf-'z(rr Z)

Proof. From (29), (30), (33) - (38) and (1), (2), (5) - (10) we derive the inequality

L ( L y) <L ( : )L ( : ) (41)
m.n.l vy S L | ——X nil >
Wp, pa(t,2) S\ Wy, (1) -\ Wp,(2) !

forall m,n € N,(x,y) € R§ and 1 < i < 4, which implies
1
Lﬂ,i ( ;‘)
WPE (Z)

1 1
L AL ;'a' Lm.z' —,"
- (szﬁpz(fsfi} ) | (Wpl(f) )

E MP1 P2 (40)
lff}l 2

.

Iepiapi

11P] 13P2
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Further (40) follows by Lemma 3.
Using Lemma 10 we immediately obtain

Lemma 11. Letf € Cy p, p, for some p1,ps € Ny. Then there exists a positive constant M, ,,
such that

| L iG55 My s < My

forallmne Nand 1 <i <4,
This fact and (33) - (37) prove that Ly, is a linear positive operator from C p, 5,
P11, D2 € Ny, into Cl__php;,_.

Similarly as Lemma 10, using Lemma 5, (31), (32) and (41), we can prove the following
two lemmas.

Fll1p1 (42)

Lemma 12. Forevery fixed ry > gy > 0, rp > g, > 0 there exists a positive constant My, 4, 1, 1,
such that

Lo i My < Moy oo (43)

forallm>my,n>ngand 1 < i <4, where mg and ng are given by (39).

Lemma 13. Suppose that f € Cy 4, 4, for some q1,q> >0 and ry > qy,r> > qy. Then there
exists a positive constant M, 4, », », Such that

HLm'-H’E(f" R *)“2._.*'1 72 < M’-’:‘l 271 J‘z“f 2,q1.92 (44)

forallm>my,n>ngand1 < i < 4, where mg, ng are given by (39). Hence we see that L,, ,, ;,
m > mq,n > ng is a linear positive operator from Cy 4, 4, into Cy y, ., With r1 > qy, 12 > qa.

3. Theorems

Now we shall give an analogues of Theorems 1 and 2.

Theorem 3. For every fixed p;,p» € Ny and s,,57 € Ny there exists a positive constant
M* =M, ,, s, 5, such that for every f € Cy,, », and for allm,n € N and 1 < i < 4 one has

H 85]‘|‘52

Lo n,i(f3%, ¥) <M m n|[f |1y s (45)

1.p1.p2

a x5l a };31

Proof. If s; = sp = 0, then (45) is identical to (42). Leti = 1. Then by (33) and (29, (30) we

have
e (e S 2j 2k
<) _fl“)mlla“"@)lp(*’ )|

=0 k=0

aﬂl'l'-i‘z
0 X’ 9 y*

ngml (f;){,

oy H

g H}C”Iapl o472 Z ‘ {SI)(X)I : 2j (Z |a(‘r"2)(y)‘ 1 2k )
j=0 Wp, ( ) e ( )

m

for all m,n € N and (x,y) € R5. Now by (29) and Lemma 8, we get

aS|+Sz
Wplﬂpz('x}y) m M I(fx y)I Pl 22 ShSzmj]”ﬂ Hf”LF;-.P:

a_x*SI ay-‘?:
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for all (x,y) € R§ and m,n € N, which implies (45) for i = 1.
The proof of (45) for i = 2 is identical by (34) and Lemma 8.
Let: = 3. Then by (35), (29) and (30) we have for all 51,5, € Ny, (x,y) € R% andm,n € N

g5 t+s2 s +s2
Lm.ﬂ , ) {_i Bm_ﬂ -x:, 0, 0 + 46
— 2j+1 2k+1
(.F]) {:51) j
'I'ZZlbm_j(I)Hbﬂ!k@)l}f( m 7 )’ <
j=0 k=0
aﬂl+52
< Wlinn {| 52 g B0 +
+ [ D IS —— (EZWEkwl %+1)
Jj=0 : Wp, (%tl) k=0 Wp, ( n )
From (37) 1t follows that
| | 1 1
Bmﬂ 3 = . I . o . ] y 47
a(%Y) ]l +sinhny 1+ sinhmx (1 4+ sinhmx)(1 + sinh ny) (47)

which by (21) implies

asl + 52 1 (s1) l (52)
Bm.n(-x:r }’) — . .
oxs gy 1 + sinh mx 1 4+ sinh ny

A

msips2

< M, ‘ . <
— (1 + sinh mx)(1 + sinh ny) —

M;, s, m’'n>?

for all (x,y) € Rﬁ,m,n € Nand s;,s, € N.
If 51 - 5o = 0, then from (47) or (37) we get

Bunl, )| <1,  (x,y) R},  mn¢EN,

and by (21)
0™ Bk y) sinh 72y 1 1
m.n x: - . . _ 51 h)
oxst Y 1 + sinhny |\ 1 + sinh mx "
0~ . x.y) sinh mx 1 (52) < Mo
m.n\X, — : : o~ £ y
dys2 ™ Y I + sinhmx |\ 1+ sinhny 7

for (x,y) € RZ, m,n € N.
Using these inequalities and Lemma 9 to (46), we easily obtain the desired Bernstein inequality
(45) for i = 3.
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The proof of (45) for i = 4 is analogous to i = 3. Thus the proof is finished.
Arguing as in the proof of Theorem 3 and using (43), (44) and Lemma 9, we can prove

Theorem 4. Let ri >¢q1 >0,r>q2 >0, 51,50 € No and let f € Cy 4, 4,. Then there exists a
positive constant M™* depending only on q1,q2,7r1,72,51, 52 such that

a-‘s'l-i"ﬁ':
“ a bl a y51

Linni(fix,y) < M*m“ﬂ“‘“llbf\lz,ql..qj:

2.r1.m2

forall 1 < i < 4, m>mgy and n>ny where my and ny are natural numbers satisfying
conditions (39).
Theorems 3 and 4 imply

Corollary 4. 1°)L,, ,;,m,n € N,i = 1,2,3,4, acts from the space C, p, p, into C7,  ,
P1,P2 S Nﬂ*

2Ly nivi = 1,2,3,4, acts from the space C, 4, 4, into C5, with every r; > qy >0 and
rs > g» > 0, provided that m > my and n > ng, where mg, ny are given by (39).
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