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ON THE ESTIMATE THE L; AND L., NORM OF THE ERROR FOR THE INITIAL VALUE
PROBLEMS

HASAN H. YMERI

Abstract. Our objective in this paper is to examine conditions under which the variational
principle has a global extremal properties and to complete the error estimate procedure of
[5]. We will use the value of the functional to estimate the Ly and L., norm of the error
for the initial value problems, described by a non-linear second order differential equation
belonging to the class treated in [5]. In our analysis integral inequalities given in [1-4] are
of central importance. The analysis will be illustrated by an concrete example.

1. INTRODUCTION

In our earlier paper [5] we derived an extremum variational principle for a class of boundary
value problems described by a second order non-linear differential equation. The main
characteristics of this variational principle are: a) the value of the functional on the exact
solution is equal to zero; b) its stationary and extremal properties are independent of the
boundary conditions and therefore are unchanged if the initial instead of boundary conditions
are prescribed. Also, in [5] an error estimate procedure (for estimating the L, norm of the
error) for boundary value problems was presented. All considerations in [35] are based on
local extremal properties of the variational principle.

In this paper, the conditions under which the variational principle has a global extremal
properties are examined and the error estimate procedure of [5] is completed. We will use
the value of the functional to estimate the L, and L., norm of the error for the 1nitial value
problems described by a non-linear second order differential equation belonging to the class
treated in [5]. The analysis will be illustrated by an concrete example.

2. THE VARIATIONAL PRINCIPLE

Let us consider the following second order nonlinear differential equation
g— F(q,t) =0, t€(a,b) (1)
subject to the imitial conditions
q(a) = c1, g(a) = ca. (2)

In (1) and (2) a, b, ¢ and c; are arbitrary constants. We assume that the function F and the
initial conditions (2) are such that the solution of the problem exists and is unique. For the
problem described by the differential equation (1) a variational principle was constructed in
[5]. If we set

q
£(g,1) = / F(y, 1)dy 3)
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and use F~!(z, 1) to denote the solution of the equation F(g, f) = z with respect to g, then from
[5] we conclude that the following functional

b
I(q) = / [G* +f(q, 0+ gF~'(g,1) — f(F~'(g, 1), ldt — (Gq), (4)

1s stationary on the exact solution g of equation (1) with initial conditions (2). Moreover
I(q) = 0. The above statement could be easily checked by calculating the first 6/ variation of

(4).

3. ERROR ESTIMATE PROCEDURE

Let Q = g+ 6g be an approximate solution to the problem (1), (2). Here, we must underline
a very important fact that in our analysis 6g can be a quantity of any finite magnitude. It is not
necessary that dg be a small quantity. We assume that Q satisfies exactly the initial conditions
(2) of the problem. This implies that

0g(a) =0, 0g(a) =0, (5)
1s satisfied. The value of the functional (4) on Q could be written as
I(Q) = I(g) + 8I(g, 8g) + 6°I(¥, 8¢), (6)

where

Y=g+e@—-¢q), 0<e<L (7)

Using the fact that /(g) = 0 and that / is stationary at g, i.e., 8/(q, 6g) = 0 and calculating
the second variation of (4) we get

1 b
Q= / [AY)54” — 268 + C(¥)5)dr. ()

In (8) the form of functions A(Y¥) and C(W) depends on F and F~! and could be determinated
in each specified case.

i) Case 1. Suppose that A(W) > 0. For ¥ of the form (7) suppose also that there exist numbers
D,, D, (which depends on Q so we sometimes denote them by D, = D(Q), D, = D,(Q))
satisfying

A(Y) = D(Q) >0, 9)
CY) = D, (Q). (10)
We transform now the second term in (8) by using the following inequality [3]
b 2 pb
(b — a) .2
fa 6,0;]dt < D)7 /ﬂ dg-dt. (11)
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With (9) - (11) and equation (8) becomes

i
21 :‘}D——b—az] 54|12, + D5||8q]|?. . 12)
@2 Dy~ 7z (b - | 841, + Dalsall (
To obtain the relation between the L, norm of g and 64 we use the inequality of Troesch
(2, (1.1)]
1 _ 2 ] 1
/ h(t)f2dt > — / hdt f fidt, (13)
0 4 Jo 0

which is applicable because of (5). By substitutingh = 1,f = dgand h = 1, f = dg in (13)
it follows that

T
dall;, > de¢ 14
|dqllz, > 5 |ldg] (15)
qLZ—-— Z(b—ﬂ) qLE'
Using (14) and (15) in (12) the bound on ||8¢||;, becomes
( \ 1/2
21
[84l.. < ¢ - b (16)
|02+ D1 = 9| [ |

which is valid if the denominator 1s positive.
To estimate the L., norm of dg

18¢|Loc = sup [6g(D)| (17)
te(a,b)

we use first the following inequality [3]
1841Iz, < —elldgllz, + K(@)lI5q|L,, (18)

where ¢ > 0 is an arbitrary constant and K(¢) = (1 / ¢) + 12 /(b — a)*. From (18) it follows
that

]
2 > —[lldgll?. — elldgl|?.]. 19
16g]lz, = K(E)[”dqni.g elldgllz, ] (19)
Suppose now that, instead of (9) and (10) we have the following estimates
AY) > D\(Q,m)>0, (20)
C(¥) > Dy(Q, m). (21)

In (20) and (21) D, and D, are constants depending on Q, its derivatives and m = ||3¢|| ...
Using (11), (14) and (19) - (21), relation (8) becomes

9

s { [
NQ) 2 2(b — a)

. i
f:Dl — \76(&3 — ﬂ)":| -+
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which 1s valid for further application if the right hand side is positive.

fjg Tt 2]
| 1 — dq||7
Ke) | ° (259 _ za) }” ali

However, by Cauchy inequality and (5)

Therefore from (22) and (2

(I

Dym) |

K(¢)

y

18G| 200 = (B — @)/ ?||d||1,-

3) we have

T ‘T, (b — a)’
[Z(b—m] [D‘(m)_ NG }

\

7t 2
|- ¢ (Qb . M) < 2(Q)(b - a),

(22)

(23)

(24)

Remark 1. In principle, for a particular problem, (24) can furnish us with: a) an upper and
a lower bound on ||5¢||.__; b) only an upper bound; c) only a lower bound. Also, it is possible
that no bound on ||8¢||;__ follows from (24). If D; and D, in (20) and (21) do not depend on
m, then (24) explicity gives an upper bound on ||8¢||, ..
Remark 2. Since (18) is valid for any ¢ > 0, we may choose it in the optimal way, i.e., so

as to make the upper bound on ||8g]|. ., that follows from (24), minimal.

i1) Case 2. Suppose that A(W) <0 and there exist two constants (depending on Q and its

derivatives) such that

—AY) 2 D3(Q) >0,
—C(Y) > D4(Q).

Using the same procedure as in Case 1 we get

”6‘:?”{.2 E

Also, if instead of (20) and

then

1 /2

—21(0)
4
(b—a)? T
D+ Dy = U5 | [

(21), we have

_C(LP) :_:" E)4(Q,m),

6 2(b — a)

] e ,
m*< | D3(m) ® a)[ n J-I—

o

(25)
(26)

(27)

(28)

(29)
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Dy(m) | © \’|
25 1—5(%_2&) < —20(Q)(b - a),

- - A

m = ||8q||Lo.. (30)

Estimates (27) and (30) are useful if the denominator in (27) and the left hand side in (30)

are positive.
The nequality (30) can be used for error estimates 1n the same way as it 1s indicated by
Remarks 1 and 2. Only, (24), D, and D, must be replaced by (30), f);; and Dy, respectively.

4. GLOBAL EXTREMAL PROPERTIES

From the previous analysis, it is obvious that the inequalities (16) and (24) can be written
as

I(Q) >0 (31)

while (27) and (30) yields
1(Q) <0. (32)

Therefore, and remembering that: a) the first variation of the variational principle (4) is
zero for exact solution g of the equations (1) and (2); b) I(Q) is equal to zero; ¢) the trial
function Q is arbitrary and it is not necessary that the Q is close to the exact solution g; we
can formulate following theorems:

Theorem A. If conditions (9) and (10) are satisfied and the denominator in (16) is positive,
or if conditions (20) and (21) are satisfied and the left hand side in (24) is positive then the
varitational principle (4) has a global minimum at ) = q.

Theorem B. If conditions (25) and (26) are satisfied and the denominator in (27) is positive,
or if conditions (28), (29) are satisfied and the left hand side in (30) is positive then the
variational principle (4) has a global maximum at Q = q.

Remark 3. Sometimes conditions of the Theorem A or B are not satisfied for an arbitrary
class of functions Q, but for some subclass of functions Q (for example: bounded functions,
monotonically decreasing functions, etc.). In such cases we have the global extremal pro-
perties of the variational principle (4) in the appropriate subclass of trial functions Q. The
subclass is defined by some general property of solution to the equations (1) and (2).

5. AN EXAMPLE

In that follows we consider the nonlinear electric oscillator
G+kg =0, 1€(0,b), (33)

where k > 0, go and b are constants. The value for b we will choose later. The functional (4)
in this case 1s

b

5 k 3 _ . .

1=/ [q'~— gff‘—zk 3(—g)t/3 dr—(qq)’ﬁ- (35)
0
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The functions A(Y) and C(V¥) in the present case are

|
 3kl/3

A(Y) = (W), ) = -3kY, (36)
We take now the approximate solution in the subclass of monotonically decreasing functions

in our interval of consideration as
0 = go COS Wi, (37)

where w 1s constant to be determined and choose b = 7t/ 2w. With this value for  and (37),
equation (35) becomes

1 [, ok 3m 3-2Y/3 4,

w¥/*B(7/6,7/6) (38)

where B(x,y) = I'(x)I'(y) /T(x + y), T being the Euler Gamma function. Extremizing (38)
with respect to w, we get

w =0.82527 - gok' /2, Iw)= —2.624-10"2g3k" /2. (39)

Using the fact (that follows from the following first integral kg* = kg — 24* of the equation
(33)) that g(r) < go, assuming that Q(¢) < g, and (37), we get the following estimates for

AY) and C(Y)

] 1 M
—A(Y) 2 D3 = —, C((¥) 2Dy =0. (40)
3kqy

In this case, we see that the inequality (30) 1s useful for
b=A/w, where A<0.7457. (41)

Then the error estimate follows from (30)

) /2
—24N 10, \)

| /2,02 3 32
qok! /2m2(0.82527) [1 — = 22|

13420 < (42)

where I(Q, ) must be calculated from (35) for b = A / w and for selected A. For example,
for A = 0.7 the final result is

18g||L0e < 0.18764 - go. (43)

In the time interval ¢ € [0, b], where (41) is satisfied, conditions of the Theorem B are also
satisfied. Hence, the variational principle (35) has a global maximum on the exact solution of
the equations (33) and (34) in the subclass of monotonically decreasing functions satisfying
(34) and in the time interval ¢ € [0, b].



On the estimate the L, and L. norm of the error for the initial value problems 127

REFERENCES

[1] K.M. DAS, An inequality similar to Opial’s inequality, Proc. Amer. Math. Soc. 22 (1969),
258-261.

2] B.A. TROESCH, Integral Inequalities for two functions, Arch. Rational Mech.. Anal. 24
(1967), 128-140.

3] D.S. MITRINOVIC, Analytic Inequalities, Springer-Verlag, Berlin, 1970.

(4] L.E. SHAMPINE, Error bounds and variational methods for nonlinear boundary value
problems, Numer. Math. 12 (1968), 410-415.

[5] H.M. YMERI, Error bounds using a new extremum variational principle, Arch. Rational
Mech. Anal. (to appear).

Received March 1, 1996 and in revised form September 23, 1996
Hasan M. Ymeri

Higher Technical School

University of Prishtina

38220 Mitrovicé, Kosové

Ex YUGOSLAVIA



