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DEFORMATIONS OF LEGENDRE CURVES

D.E. BLAIR, E DILLEN, L. VERSTRAELEN, L. VRANCKEN

1. INTRODUCTION

In contact geometry R*> with the standard Darboux form n = %(dz — ydx) and Sasakian

metric g = ;(dx* + dy*) + 1 ®1 is a central example. Sectional curvatures of plane sections
containing the characteristic vector field 2-& are equal to +1 and sectional curvatures of
planes orthogonal to the characteristic vector field are equal to —3; for this reason we denote
this Sasakian manifold by R*(—3). This is also the contact structure on the Heisenberg

(1 )
group, 0 1 x||xyzeR) ~R’ bothn and g being left invariant. In this paper
\0 0 1 ,,

we first study deformations of Legendre curves in R*(—3) in the direction of the principal
normal, especially 2-minimal curves. In particular we show that 2-minimal Legendre curves
arise from 2-minimal curves in the Euclidean plane which were characterized in [4]. For
deformations of curves in Euclidean 3-space in the direction of the principal normal see [3].

Our result has an application to the theory of 2-minimal curves in the Euclidean plane. In
[4] 1t was shown that closed 2-minimal curves have self-intersections and we show here that
moreover the algebraic area of a closed 2-minimal planar curve in zero.

To prove our main result we need a lemma on Bessel functions which may be of independent
interest and we devote Section 4 of the paper to this lemma.

In the last section of this paper we consider deformations of curves in a general K- contact
manifold in the direction of the characteristic vector field. Critical curves for this variational
problem are the so called C-loxodromes [6].

2. CONTACT MANIFOLDS

By a contact manifold we mean a C* manifold M>"*! together with a 1-form 1} such that
n A (dn)* # 0. It is well known that given 1) there exists a unique vector field & such that
dn(é,X) = 0 and n(&) = 1, called the characteristic vector field. A classical theorem of
Darboux states that on a contact manifold there exist local coordinates with respect to which
n =dz— > ._, y'dx'. Roughly speaking the meaning of the contact condition, ) A (dn)" # 0,
1s that the contact subbundle (1.e. the bundle of 2r-planes annihilated by 1) 1s as far from being
integrable as possible. In particular the maximum dimension of an integral submanifold 1s
only n. From the Darboux theorem it is clear that n-dimensional integral submanifolds exist,
namely, those given by x' = constant, z = constant. A 1-dimensional integral submanifold
is called a Legendre curve, especially to avoid confusion with an integral curve of the vector
field &.

A Riemannian metric g i1s an associated metric to a contact structure n if there exists a
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tensor field ¢ of type (1,1) satisfying
¢ =-I+n®E nX) =gX,§), dX,Y)=gX, D).

We refer to (m, g) or (¢, &, 1, g) as a contact metric structure, If & 1s a Killing vector field with
respect to g, the contact metric structure is called a K-contact structure. It is well known that
on a K-contact manifold

Vx& = —dX, (2.1)

where V denotes the Levi-Civita connection of g. The space R’(—3) discussed above is
K-contact. For a general reference to the ideas of this section see [2].

In the space R>(—3) discussed in the introduction, closed Legendre curves have an inte-
resting elementary property which we now state.

Area Property of Closed Legendre Curves. The projection y* of a closed Legendre curve y
in R3(—3) to the xy-plane must have self-intersections; moreover the algebraic area enclosed
In Zero.

Since dz — ydx = ( along 'y, this follows from the elementary formula for the area enclosed
by a curve given by Green’s theorem,

0:—/dz=/ —ydx = area,
Y v

the area being + for y* traversed counterclockwise and - for clockwise.
One of the results of [1] is the following.

Theorem. The curvature of a Legendre curve in R>(=3) is equal to twice the curvature of its
projection to the xy-plane with respect to the Euclidean metric.

3. k-DEFORMATIONS AND k-MINIMALITY

The theory of k-deformations, k-minimality and k-stability was developed in [4] and we
briefly review this theory here. Let M be a compact Riemannian manifold and A the Laplacian
acting on the space C*°(M) of C*° functions on M. Define a metric on C°°(M) by (f, g) =
| 1 J8dA where dA 1s the volume form on M. It is well known that A is a self-adjoint operator
which has an infinite discrete sequence of eigenvalues 0 = Ag <Ay <Ay <... / 4+00. For
each i1 € N the eigenspace V; of A; is finite dimensional; V| is 1-dimensional and consists
of constant functions. The eigenspaces are mutually orthogonal and their sum is dense in
C*°(M). Therefore one can make a spectral decomposition f = fy + > -, f;, for each real C>°
function f on M, where fj is a constant and Af; = Af; fori > 0. The set T(f) = {i € Ny|f; # 0}
1s called the type of f and f 1s of finite type if T(f) is a finite set.

The subject of the study in [4] was compact oriented hypersurfaces x : M" — Nt
isometrically immersed in a Riemannian manifold N"*!. For a unit vector field ¢, usually
normal, defined on M, define a deformation by

Exp,r{p) gf(p)c(p)l P S M‘! I € (_E: E)
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and 1n [4] the area functional for these deformations was studied. Here we are concerned
with closed curves y : [0,L] — M in a Riemannian manifold M parametrized by arc length
and we study the length integral L(¢) under various deformations.

For each g € Ny, let F, be the class of all deformations (in direction () associated to
functions f € > ;5 Vi. Clearly 7o O F; D F, D .... A deformation in F; is called a
k-deformation. A closed curve vy is said to be k-minimal if L'(0) = 0 for all deformations in
Fi. If v 1s k-minimal, we say that y 1s {-stable, £ > k, if L"(0) > 0 for all deformations in F;.
One of the results of [4] 1s that every compact k-minimal hypersurface i1s g-stable for some
g > k; 1t was also shown that a k-minimal plane curve 1s k-stable.

ﬂrl

Consider a closed plane curve of length 27t. The Laplacian 1s just — 7, the eigenvalues are

A, = n* and a basis of the corresponding eigenspace is given by {cos ns, sinns}. By Lemma
4.1 of [4], a closed plane curve is k-minimal if and only if its curvature k is of finite type < k;

in particular
k—1

K(s) = apg + Z{a,, cosns + b, sinns}.

n=—1|1

We now state the following result from [4].

Theorem. For each zero jo ,, of the Bessel function Jy of order {, the curve vy, ,, defined by

5 5
Yem = ( / cos(fu + jy ,, Sin u)du, / sin(fu + jg ,, SIN u)du)
0 0

is a closed 2-minimal curve. Conversely up to rigid motions every 2-minimal plane curve can
be obtained in this way.

4. A LEMMA ON BESSEL FUNCTIONS

In this section we prove a formula involving Bessel functions which is not found in the
treatise of Watson [7] and seems to be new.

Lemma. 0 L(2_,(0) = /2, ,(0) = Jo(x) S2d 2l S g,

m=1 m

Proof. That the series on the left converges for all x follows from Watson p. 31. We will use
the following well known properties of Bessel functions

In—1(x) + Jp41(x) = %J,I(X), [7,p. 17] (4. 1)
Jn1(x) = Jup1(x) = 2J,(x),  [7,p.17] (4.2)
J3(x) + Zijf(x) =1, [7,p.31] (4.3)
r=1
J_n(x) = (=1)"Ju(x). [7,p.43] (4.4)
Setap ) = f,z:‘i'] for 0 < k<land ap; = 0 for k <0. The following are immediate or easy
to prove

dye ¢—1 = 2€ (4. 5)
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g = Ap—y j—1 +2( — k — Dap— &, (4.6)

Qg1 k-1 — 2kag_ 1 x — Qe p—2 +2kag_24-1 =0, 0<k<l-1. 4.7)

for £ = O there 1s nothing to prove in the formula of the Lemma. For { = 1, (4.1), (4.2) and
(4.3) yield

o0 >

4 !
mzl Hil— l('x) m—|—[(*x)) - mZ::] ;H@J”I(I)JHI(X) _(”IZ_: m(}f))
2 1 2
=~ =I5 = ==Jo(x)Jox)

2
= —Jo(0)J1(x).
X

For | = 2, proceeding in the same manner we have

o0

o0 1 ?
Z; Jin—2(x) — HW(X))“Z——(J,, (%) = T2 () + T4 (%) — J5, (X))

m=1

4 — 1 , 4(m + 1 /
— Z( (m )JH;I'-—F](X)JHI—[(X) | (m )J,?,+1(I)J,,,+1(I))
mx mx

m=]1

= —(Z( 2 10+ 2,000 — -(Z L) = Py G

m=1 m=]|

2 1 1 2 2
= =(Jo() + (1 = Jg@x) + 5 (1 = Jo(x)) = Ji(®) = (o)1 (x))

4 4 4 4
——Jz (xX)J](x) + -—Ju(-:r)Jl (x) + JZ(X) — —Jn(x)fl(x)

4 1
= (—EJ{](I) + =J1ON=J1(x) + =J1(x))
X X X

4 4
= (zJolx) + —J1(x))2(x).
X X

Now we come to the induction step of the proof for { > 3.

OO 1 o0
Z; - g()i) rr:—l—f(X)) - z:! _(J-’z-’! E(x) m €+2('x) + ”?—F+2('r)
— Jype—a(X) + Tt e—2(%) = T 10(X)
4im — L+ 1 4 g —1
:Z( o )Jm—€+l(x)f:n—£+1(-r) | (mj;m ) m'-i-f l(x)f m—+£€— 1)(3‘:)
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+ (Z ot OV

2 — 20 — 1
2R+ By - DS L2 @ @)

X

m=1 m=1

£—3
+ (O RN e-2()
k=0

2 20—1) <
:;(l —Ji_,(x)) — ( . )((kzz ig ll iJL(I))JF 1 (X))

- 2+ 1
Z = “ s )Jk-l-l(x)—fk+2(x)))ff—2(x)
k=0 "

2 200 — 1) <2 (0 —1—k)ap_
2T U2 () — Je() + 2 )(Z( g_,f”f S (0 =1 (x)
X X o X

=2 f—
20— 1) = ar-1x 200 — 1) = o1
— QoM e () = = (kz T Oy (%)

k=0
£—1

ety 4
+Z L g0 e—a(x) - Z T2 L0 -2 ().

k=0{) k=

Reindexing and using (4.5) this becomes

2 2(0 — 2
— ;JE—I(X)(JE—Z(I) — Je(x)) — ( » )Jﬁ_l(x)JE—z(I)

2 2ka g —
"'Z( 0—2 k— 1 0—2.k— E)JA(X)JE—E(I)
k=

1k
+(Z( DLk 1 (0) g2 (0) + Je(x)

]
—(Z T 5 Uke 1) = Jep ) Ue—2(x) + Je(x)

£—2
= (0= D S RN e—2() = o).
k=0

Using (4.1) on the next to last line and reindexing again, this line is

l

l £-2

kar 11
ap— H. T pr () + Jo(x)) — Z if;_i_i J(@X)(Jp—2(x) 4 Jo(x)).

.1.' k—0

£

=
|
-
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Now looking at the coefficients of Jy(x) and J,_,(x), applying (4.6) and (4.7), and using (4.5)
one more time gives the result.

5. DEFORMATION OF LEGENDRE CURVES IN DIRECTION OF PRINCIPAL NORMAL

Let v : [0,L] — R’(—3) be a closed Legendre curve parametrized by arc length in the
space R’(—3). Differentiating n(y’) = 0 along y we see from (2.1) that V.y" is orthogonal
to & and hence that V.,y’ is in the direction ¢y’. Thus

vﬁ,f‘}"’ = |<.¢V}f'r

where k > 0 is the curvature and ¢y’ the principal normal.
Now consider a deformation of 7y in the direction of the principal normal,

Yi(s) = exp. ) tf($)PY'(5)

and the length
L
L(t) = / g(y, v/ 2ds.
0

Computing L’(0) in the usual manner we have

L
L'(0) = —/ fe(dY', V,ry')ds.
0

Using the orthonormal basis e = 2—%, e = 2(6‘1 | yaa:), £ =2
we have ¢y’ = —% x'e + % y'$e and hence

n R

b

/ / 1 I 7w / Taspi /
gOY, Vyry) = 20/x" —xy" = (x* + y (' = yx))

1
— z(yf-xn . x:’yn)

since n(y') = %(Z’ — yx") = 0 for a Legendre curve. Thus in view of the theorem in Section
2, Legendre k-minimal curves in R?(—3) arise from k-minimal curves in the xy-plane [0, 27]
— E% by 7z = f[f ydx, s being arc length on the plane curve. The condition for Legendre
k-minimal curves becomes

k—1
1 -
E(y%" — X'y =qy + Z a, cos ns + b,, sin ns.

n=1

If the plane curve is closed, the Legendre curve is closed if z(27) = 0.

Thus 0-minimal curves correspond to lines in the plane. Integration of ydx gives a parabola
as the Legendre curve; this parabola is a geodesic in R*(—3) but clearly there are no closed
O0-minimal Legendre curves.
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Since x 2 + yrz = 4 for a Legendre curve, if y'x" — x'y" = const., the curve in the xy-plane
1s a circle. Thus from the area property of closed Legendre curves given in Section 2, there
are no closed 1-minimal Legendre curves. Since some closed 3-minimal curves in the plane
(see e.g. fig. 7 of [4]) fail to satisty this property we cannot expect a general result. For
2-minimal curves we have the following theorem.

Theorem 1. Every closed 2-minimal curve in the plane gives rise to a closed 2-minimal
Legendre curve v in R*(—3) by integration of 77 = yx’ and conversely.

Proof. Closed 2-minimal curves in the plane were described explicity by the theorem stated
in Section 3 and we have just noted the correspondence between k-minimal curves in the
plane and k-minimal Legendre curves in R?(—3). Thus it remains to prove the closure of the
Legendre curve 7y, 1.e. to show that

27 v
z(2m) = / cos(fv + jom SIN V) / sin(Cu + jo m Sinu)dudv = 0.
JO JO

Set

fi(v) = cos(bv + je mSinv), fo(v) = f sin(fu + j¢ n Sin u)du
0

each of which is a periodic function of period 27t. Now consider the Fourier expansions of f;
and />,

O
filv) = Ao + ZA,H cos my + B,, sin my

n=1

2o
Hv)=Ay + ZA:I cosmy + B, sinmv

m=1

and we must show that AgAJ + >~ A,AY + > " BB = 0. Now since jg , is a zero

of Jg, it follows from ([7], p. 19) that Ay = 5~ [, cos({v + jgm sinv)dv = 0. Moreover

By =+ UZH fi(v) sinmvdv = 0 as is easily seen by shifting the interval to [—7t, 7t] and noting

that the integrand is an odd function. Thus we must show that > >°  A,,A* = 0.
First of all by [7], p. 19,

S
L [ L

A, = — cos(v + jg ,u SIN V) COS mvdy
T Jo '

1 27 27 |
E{f cos((m — {)v — Je.m sin v)dv + / cos((m + O)v +j‘£,m SIn V)dl?}
0 0

— 2{Jm—f’(jf.m) + Jm—}—f(_jfim)}-
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Secondly

1

27 y
A = — f ( / sin(u + j¢ m Sin u)du) cos mvdy
T Jo 0

1 27

—— sin(fv + jg , SIn v) sin mvdy
m7t J,

1 2 27
— —{/ cos((m — Qv — jy SN V)dy — / cos((m+ v + je ,, sSinv)dv}
mit 0 ' 0

2 . .
- {Jm—f.’(]f,m) - Jm—|—£(*f€,m)}-
m

Thus the proof reduces to showing that

o0 4 ' -
>~ Unelem) = Jnyeliem) =0

m=1

but since j, ,, 1s zero of Jy, this 1s consequence of the lemma of Section 4.

We have just seen that the theory of 2-minimal curves in the plane contributes to the
theory of Legendre curves and we now show that our result on 2-minimal Legendre curves
contributes to the theory of 2-minimal curve in the plane. In [4] it was shown that every
closed 2-minimal curve in the plane has a line of symmetry and a point of self-intersection,
the proof of the latter assertion being somewhat extensive. Now we see from the area property
of closed Legendre curves that by projecting a 2-minimal Legendre curve in R*(—3) to the
xy-plane, the self-intersection 1s immediate and that the algebraic area vanishes. Thus we
have the following result.

Theorem 2. Every closed 2-minimal curve in E* has a point of self-intersection and algebraic
area zero.

In particular we reproduce the following six figures from [4] which illustrate the area
property in an interesting and attractive manner.

FIGURE 1. FIGURE 2.
K= jﬂ,l cos (s) k = Jo.2 €08 (5)
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FIGURE 3. FIGURE 4.
-]+JHED*~‘.{3} —1+j]2{305(5]
FIGURE 5. FIGURE 6.
k=2 +J, ; COS (5) k=2 + J5 5 €OS ($)

6. {-DEFORMATIONS

In this section we consider deformations of curves in the direction of the characteristic

vector field £ in a K-contact manifold M*"*!, we call such a deformation a &-deformation.
For a curve v : [0, L] — M t! set

Yi($) = exp,, Hf($)E(Y(s))
and consider the length integral L(f) = fﬂL g(ys, vh! /2ds. Calculating L'(0) now yields
L
L'(0) = - f fo(&, V\ry')ds.
0

Therefore by virtue of (2.1), L'(0) = O for every C*° function f if and only if
g(Eu v‘}*’?;) = 7’8(51“{’) =0
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i.e. the angle O between £ and v’ is constant along the curve; such curves were called
C-loxodromes by Tachibana and Tashiro [6]. Note that even in the space R’(—3) a closed
C-loxodrome which is not a Legendre curve (0 = 7t/ 2) is possible. For example

.25 2s 1 . 4s
Y = (SIn —=, COS —=, — SIN —=

V5 V54 VS

is a closed C-loxodrome in R*(—3) for which 8 # 0, 5

Computing the second variation in the usual manner and noting that the spectrum of the
Laplacian for closed curves of length L is {(27tk / L)*|k € N} we have

L
L"(O):/ 200 =n(y")) = fAa(y")*ds
0

L ok ,
> f ((%)2(1 - N = n@y' ) ds
()

201 _ N2y 12 2 L
_ (@mk)"(l n(';) ) — Lm(Y') / £ds.
J0

Thus we have the following result.

Proposition. A Legendre curve in a K-contact manifold is 0-stable and a C-loxodrome is
{-stable for some ¢,
For the question of 1-minimal curves under &-deformations, y’'g(&, y’') = const # 0 implies
cos O = As + B and hence there are no closed 1-minimal curves for é-deformations.
For 2-minimal curves, one expects closed 2-minimal curves to exist. The condition of
2-minimality 1s
27Ts 27ts

vY'e(&E, v = ay + a; cos (L) + b, sin (T) :

In R3(—3) this becomes

1 "o 27TS . [ 2ms
2(z yx') ag+a1ms( 7 )+blsm(L>.

So the problem 1is to choose x(s), y(s) periodic such that

L? 27 L2 27T,
7 = /yx"ds—alﬁms (TS) —blﬁsin ({—E) +cs+d

1s periodic and the arc length condition

L 1 "2 ' 12

ﬁ—t(x +y "+ @ —yx)) =1
1s satisfied. For example the vertical circle

x=2s8ins, y=0, z=2co0ss
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easily satisfies these conditions.
The above situation is analogous to studying variations of curves in a fixed direction a in
Euclidean space. If 7' 1s the unit tangent field the k-minimality condition 1s

k—1
2 2
(T-a) =ay+ Zan COS (?5) + b, sin (?5) .

n=1

Thus 0-minimal curves would be the generalized helices but they are not closed; 1-minimality
means T - a 1s linear in s and hence the curve 1s not closed. For 2-minimal curves for defor-
mations in the direction of the z-axis with ag = 0,z" = a; cos z—f—s + b, sin £&s. Integrating

L
and taking the first constant of integration to be zero,

al/ COS 27 b, L/ sin 2ﬂs - ¢
— —.5' —_— —
¢ 4712 L 4712 L

with x(s), y(s) subject only to being periodic and x 2+ yﬁz + zfz = 1.
Deformations of this type for all directions give a variational characterization of curves of
finite type [3].
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