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4-DIMENSIONAL PROJECTIVE PLANES WITH A 3-DIMENSIONAL ELATION GROUP

D. BETTEN, J.H. IM

Abstract. We consider 4-dimensional flexible topological projective planes with the following
property: There exists a line W such that the elation group with respect to W is 3-dimensionall.
We prove that besides known planes no further planes with this property exist.

1991 Mathematical Subject Classification: 51HI10, 51H20, 51A35.

1. INTRODUCTION

Let > be the group of continuous collineations of a 4-dimensional compact flexible pro-
jective plane (P, L), denote by A the connected component of the identity and let N be the
nilradical of A. By [2, 4, 15] we may suppose that A 1s a 6-dimensional solvable Lie group
fixing some flag v € W. Since the cases dimN > 5 and dim N < 3 are settled in [5] and [11],
respectively, we make the assumption dim N = 4 from now on. There are three nilpotent
4-dimensional real Lie algebras,

0 0
R(R, 10 0 WR, T 1T 0 ),
0 1 0 0 1 0

The first case leads to translation planes, one shift plane or the planes with two fixed
points and two fixed lines [12, 13, 8, 14]. The third algebra is excluded by H. Klein [10],
therefore we concentrate here on the second Lie algebra which is isomorphic to Nil x R, where
Nil := <y, v,n|[n,y] = v>. Note that Nil x R has the one-dimensional commutator algebra
< v > and the 2-dimensional center < u, v >.

Let p,, pw be the minimal dimension of orbits of A on L,\{ W} and on W\ {v}, respectively,
then there are (up to duality) the following 6 cases of orbit types:

(ut’: IJ'W) - (030)1 (0: 1): (0: 2): (11 1)} (112]: (252)-

The first four cases have been settled already [14, 4, 7, 9], therefore only the two orbit cases
(1,2) and (2,2) are left.

Denote by T and o the dimension of the group of translations with axis W and of the group
of elations with center v. We may suppose that both dimensions are < 3 since all flexible
translation planes are classified. In the present note we make the assumption that at least one
of the two numbers T and o is equal to 3, which means that the plane has (up to duality) a
3-dimensional translation group. The study of such planes was begun in [1] and continued in
[20]. We get the result that besides planes already known no further planes of this type exist.

In brief we consider the following three assumptions:
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¢ The maximal nilpotent normal subgroup of A i1s Nil X R.

e The orbit type 1s (1,2) or (2,2) (up to duality).

e The plane has (up to duality) a 3-dimensional translation group (T = 3).

We recall the following two lemmas that are frequently used:
Lemma on quadrangles [17]: If ¢ € A fixes a quadrangle, i.e. four points, no three of which
are collinear, then @ = 1.
Lemma on free stabilizers [2]: Let A be a 3-dimensional connected solvable Lie group acting
transitively on the plane R>. Then either the stabilizer A,,x € R?, fixes some further point
x' # x or the commutator group A’ acts transitively on R>.

Note that by [16, 6] the solvable connected Lie groups that act transitively on R* are known.
The non-affine actions have the lines x = const. as sets of imprimitivity. The action on the
space of these lines may be an L;-action or an R-action.

2. FIXED TRANSLATION GROUP ORBIT

We make the assumption that at least one of the numbers T and o 1s equal to 3 and by
dualizing we take T = 3. So we have a projective plane with a 3-dimensional translation
group as studied in [1]. All orbits of the translation group R® on P\W are homeomorphic to
R? and the space = of these orbits is homeomorphic to R coordinatized by the parameter x.
We considered 1n [1] the following two possibilities: either the group A fixes an element of
=, say x = 0, or A acts transitively on =. Thus we have the following three cases:

1. Fixed translation group orbit,

2. A is transitive on =, N is not,

3. N is transitive on =.

Let us begin with the first case. The fixed orbit determines the orbit number p, = 1
and since we consider only the two orbit types (1,2) and (2,2), the other orbit number has
to be pyw = 2. This means that A acts transitively on W\{v}. Denote the fixed orbit by
F = {(0,y,u,v)|y,u,v € R}. Since the translation group R’ acts regularly on the fixed orbit
F, the group A is the semidirect product of R> with the stabilizer Ay.

Proposition. The Lie algebra of A is generated by the following three endomorphisms:

1

0
, | B#AEL |1 O cox # O,
0 O

0
0 O
1 0 O &

&
Here the first endomorphism generates shears with respect to the axis 0 V v, which means

o= 3.

Proof. The Lie group Nil x R has a 2-dimensional center C. The one-dimensional stabilizer
Ny fixes the orbit 0¢ pointwise and by the lemma on quadrangles it follows 0¢ = 0V v.
Therefore the one-dimensional stabilizer Ny consists of shears with respect to the axis O V v
and 1induces the first endomorphism (after a suitable conjugation).

Next we note that the transitive action of Ag on W\ {v} is effective. For a kernel of dimension
1 would mean that we have a plane with 3-dimensional translation group of type: "fixed orbit,
with homologies”, and all such planes are classified in [1,20]. Since the commutator of A,
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1s 1-dimensional (otherwise dimN > 5) we know from the lemma on free stabilizers that the
stabilizer of Ay on a point w € W\ {v} fixes further points on W\{v}. Remind the notation of
coordinates [, n] at infinity [1]. In this notation the action of the shears on W\v has the form
[E,m] — [€,n + 51,5 € R, and X, consists of lower triangular 3 X 3-matrices

(a

d b
\fec

The induced action of A on the é-coordinate is like R (and not L,) since the dimension of
the nilradical 1s only 4. This means that the triangular matrices of Ag have all a = b.

The one-parameter subgroup of Ag which fixes the point [0,0] € W\{v} hasd =f =0
for all its elements. If a were identically O then we would get a contradiction to the lemma
on quadrangles. Therefore this one-parameter subgroup is generated by an endomorphism of

the form
]

0 1
0O v P

Here we may assume that (y,3) # (0, 1) since the case "with homologies" 1s already
settled.

As a third generating one-parameter group we choose a group which shifts in &-direction
on W\{v}. Responsible for those shifts is the position (2,1) in the lower triangular matrix.
Hence we may suppose that the generating endomorphism has a 1 at that position. Subtracting
suitable multiples of the former two endomorphisms we may assume O at the positions (1,1),
(2,2) and (3,1). This gives the endomorphism

0
]
0 6 «

Here we may suppose that « # 0 otherwise we would get a 5S-dimensional nilradical.
By commuting the second and third endomorphism we get a matrix which must have a 0
at the position (3,2) since the nilradical has dimension 4. This leads to the equation

5B — 1) — yo = 0.

If @ = 1 then the assumption (y,3) # (0,1) implies v # 0 and we get x = 0 a
contradiction. Therefore 3 # 1 and by conjugation we can bring 'y to 0. From the equation
then follows & = 0.

Proposition. The action of A on F has a unique globalization to

P\W = {(x,y,u,v)|x,y,u,v € R}.
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This global action is the semidirect product of the translation group T with

1 ,2—B)r
0 1 e’
ﬂoz( |HER , , |FER ,
n 0 e
n 0 1 ePr
oo
| (R, )
tER, »).
t ]
eﬂ:!

Proof. Since the group of elations with center v is 3-dimensional, the set of elation axes in
L,\{W} corresponds to the 1-dimensional subspaces of E = {(n, u, v)|n,u,v € R} represen-
tedby x = =,y = -, n # 0. Therefore the horizontal action can be calculated by letting A act

via conjugation on the group E of elations:

e lr €R defines : (x,y) — (¥ P’x, ey),
Br
e

1
t 1 it €R defines :(x,y) — (e”%x,y).
0 0 ¥

Now let us glue together the two half spaces on x > 0 and x < 0 along F (defined by
x = 0). The one-parameter stabilizer A ¢ o) has three orbits in 0 V [0, 0] defined by y = O:
the point 0 and the two one-dimensional orbits for x >0 and x < (. Since the horizontial
action 1s classical, these three orbits are glued together in the standard way. We may choose
the topology on P\ W in such a way that this one-dimensional curve coincides with the x-axis.
By applying the translation group we get then the unique globalization.

Proposition. This transformation group cannot act as a collineation group of a projective
plane.

Proof. The 2-dimensional subgroup of Ay fixing (x, y) = (1, 0) 1s:

| 1 \

d1° neR ‘ rerb)
ne , r e
n 0 1 re e
0 n 0 1 & )

The action of this group on W\{v} is

(&l — [E+r,en) [E,n] — [E,n + 7]
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and this action 1s transitive. The induced action on the vertical line ¥ o 1s
(1,0,u,v) = (1,0,€"u,e”v),(1,0,u,v) — (1,0,u,v + n)

and this action is not transitive. Since the perspectivity 0 : Yo ;) — W\{v} in the plane is a
bijection, we have constructed a contradiction.

3. AIS TRANSITIVE ON =, N IS NOT

We now suppose that A acts transitively on P\ W but N fixes some translation group orbit,

say x = (. Similarly to the last section we see that N 1s the semidirect product of the translation
1

group T = {(y,u,v)|y,u,v € R} with the group 0 1 In € R } of shears. Note

n 0 1
that we have also a 3-dimensional group of elations with center v:

t

E =

Proposition. The linear action of A on the translation group T = {(y,u,v)|y,u,v € R} is
generated by the following two endomorphism

0 aj
Hn = 0 0 y Xl = C aj y C1 750
1 0 O 0 e b

Proof. Let us first show that A induces on W\{v} a 3-dimensional transitive action with
a one-dimensional commutator. The kernel Ay, of this action contains 7 and 1s at least
3-dimensional. If the kernel were at least 4-dimensional then the plane would be a translation
plane, but all flexible translation planes are known. We may assume that the action 1s transitive
since a fixed element would lead to the planes in [7] and a one-dimensional orbit would mean
the dual situation of the last section. Since the points of W\ {v} correspond to one-dimensional
subspaces of T, the action of A / Ay on W\{v} is an affine action. The induced action on
the &-coordinate on W\ {v} is similar to R (and not L,) since dimN = 4. This implies that the
commutator of A / Ay, has dimension 1.

By duality the same holds for the induced action of A on L,\{ W}, the so called horizontal
action. By the lemma on free stabilizers both actions have the following property: the
stabilizer on one element fixes further elements. Using the lemma on quadrangles this implies
that the 2-dimensional stabilizer Ay is transitive on W\{v}. This means ¢; # O in the
endomorphism above. Since the action on the &-coordinate is similar to R, the two entries at
position (1,1) and (2,2) of the lower triangular matrix are equal. Dually we have
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Proposition. The linear action of A;,[0,0] € L,L # W on the elation group £ =
{(n,u,v)|n,u,v € R} is generated by the two endomorphisms

0 a»
-y=10 0 X2 =1 C2 @ ¢ # 0.
1 0 O 0 e b

To describe the Lie algebra £(A) we calculate the action of adx, and of adx, on the nilradical
N = {(v,n,y,u)|v,n,y,u € R}

[ b e b, ex
by — aj a»
adx) = ,adx; =
aj by —as
\ C1 aj C2 a /
The commutator of these endomorphisms is

0 e — e e\(ay — by) — ex(a) — by)

0 O 0 0

0 O 0 0

0 c2ay—by) c(by—2a;) O J

Since adx, adx, — adx|adx, = ad|x;,x>] and [x{, x2] € N, this commutator must have zero
at all positions # (1,2), (1,3). Using ¢; # 0 and ¢, # 0 this implies b, = 2a;, b, = 2as.
Here, a; # 0 (similarly a; # 0), for otherwise

0 0
(T! 0 0 y C1 0 >
1 0 O ep 0
would be a 5-dimenstonal nilpotent ideal. Changing to ;-—IL we may suppose a; = 1, by = 2

and similarly a; = 1, b, = 2. From this we get ¢; = ¢; := e and we have the two simplified
endomorphisms

adx) = ,adx, =

Cl 1 C? ] /

We now see that < x; — x, N > 1s a 5-dimensional nilpotent ideal of £(A), a contradiction
to our assumption.
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ITIVE ON =

he nilradical N acts transitively on P\W. The 3-dimensional translation group
bit x € = and the fourth parameter of N 1s transitive on =Z. The group A is the

semidirect product of N and the stabilizer Ay.

4.1. The nilradical N

Proposition. We can assume by conjugation that the fourth one-parameter group acts on 7
in one of the following ways (described by the generating endomorphism):

V

0 0 \ 0
=10 o0 h=|1 0 5= 0
1 0 0 0/ 1 0

Note that these three groups induce on W\{v} the following actions: vertical shifting in
direction of 1, horizontal shifting in the direction of & and shears with respect to the n — axis.

Proof. The fourth endomorphism has the form

0 \
a 0 ,
c b 0

where at least one of the numbers a, b and c is # 0. Let us assume first that ab # 0. Then,
up to conjugation, we may suppose a = b = 1 and ¢ = 0. This endomorphism generates the
one-parameter group

| ItER },

/1
I
2

r
— I
\ 2

which induces on W\{v} the following action:

2
En) = (E+1,1 + 15 + %).

Since N / T is a normal subgroup of A / T, the orbits of this one-parameter group on W\{v}
are permuted by A. If one of these orbits would be invariant, then the induced (affine) action

of A on W coul
set of these orb

d only be 2-dimensional, a contradiction. Therefore A acts transitively on the
its and the affine action of A on W\{v} has the form

{(§,n) — (r& +m,rn + n)|r>0,m,n € R}.

This group has a 2-dimensional commutator, which implies that the nilradical of A is

5-dimensional,

a contradiction.
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It follows that we need only consider the following three possibilities:

0 0
0 10 O , 0
c 0 O 1 O 1 0

0

&

In the first two cases conjugation with
1 /1 \
0 1 or c |
0 —c 1 \0 0 0

brings ¢ to 0.

Since the orbit case (2,0) is already settled in [7], we need only consider the orbit types
(2,2) and (2,1), in other words, the action of A on W\{v} is either transitive (2) or it has a
one-dimensional orbit (1).

4.2. The collineation group A

Proposition. For the action of A on the translation group T via conjugation there are at most
the following possibilities (described by generating endomorphisms):

0 0 |
2v 0 11 0 , 1 Y # 1,
| 0 | Y
0 ] ]
2h 1 0 , 1 , o O F 1,
0 1 1 ]
0 x 3
lv,l:( 0 : | , 0 ,
1 0 0 1
0 x 3
lv,Q:( 0 , | : 0 ,
1 0 1 1 0
0 1 \ 0
ls: 0 , o J} ] — Jo £ 1,
1 0 1 1 1
0 x 3
1h 1 0 , 1 , 0 L, B # 1.
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Proof.

2v: The action of A on the set of parallels of the n-axis on W\{v} is an R-action since
dim N = 4. Therefore the lower triangular matrices for the endomoprhisms have equal entries
at the position (1,1) and (2,2). Hence we may assume that the endomorphisms generating a
shift group in &-direction and the stabilizer on [0,0] have form
( a x

1 a Y = ot

\ec € Y

Since the group induced on W\{v} is 3-dimensional with a one-dimensional commutator,
the stabilizer on [0,0] fixes further points on W\{v}. So it is either the group of shears with
respect to the n-axis (y = «, € # 0) or up to conjugation it fixes the &-axis elementwise
(e = 0,v # a). Note that we may exclude a group of homotheties which would lead to a
translation plane by the theorem on homologies and elations [19, 61.20]. In the first case we
get the Lie algebra Nil which has

commutator = center, generated by 0
1 0

This implies a = ¢ and @ = y and hence dimN = 5, a contradiction.

In the second case L, X R we may switchto « = 1,y # 1. Commuting X and Y gives the
entry e(1 — y) at the position (3,2) and all other elements of the commutator are zero. Since
dimN = 4 it follows e = 0. Changing from X to X — aY brings X to

0
1 0
Cf
and by conjugating suitably we get
0
¢ 0
C}'

Dividing now by ¢’ we get the endomorphisms of the proposition.

2s: If the fourth endomorphism is
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then we commute it with an endomorphism belonging to a shift group in &-direction

and get

(0

0 0

\ -1 c—b O

This 1s a contradiction since the commutator algebra of a solvable Lie algebra is contained
in the nilradical.

2h: The N- orbits on W\{v} are the parallels of the &-axis and they are permuted under
2.. The parallels of the 1n-axis are permuted and since in n-direction there 1s only the group R
(because of dim N = 4) the induced action on W\{v} is uniquely determined and isomorphic
to L, X R. The shift group in n-direction is induced by an endomorphism

a
a a#*0

] a

where we may put a = | up to conjugation and multiplication by a constant. The stabilizer
on [0,0] fixes all points of the n-axis and comes from an endomorphism

1 \
5 S # L

1/

1v: The one-dimensional orbit on W\{v} has the form & = const., say £ = 0. Since the
n-axis 1s fixed, all 3 x 3-matrices have zero at position (2,1). The 2-dimensional subgroup
of A which fixes [0,0] € W\{v} and a point p € P\ W, say the origin, is commutative since
dim N = 4, Therefore the action of Ay on 0 V v 1s either

{(u,v) — (au,dv) : a,d > 0} or {(u,v) — (au,du+ av):a > 0,d € R}.

This leads to the two cases 1v, 1 and 1v, 2 as stated in the proposition.

1s: Since
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generates on W\{v} the group

{[&,n] — [E,m + s&],s € R},

the one-dimensional orbit must be a vertical, say & = 0. Since dimN = 4 the induced action
on this orbit is only R (not L,) and by these conditions the induced affine action on W\{v} is
uniquely determined:

{[E,n] — [«&,s&+n+1],a>0,s,l € R}.

The 3 x 3 matrix which induces the group

{[&,n] — [a&,n],a >0}

has the form

ol Y # 0.
Y

Here, v # 0 otherwise the lemma on quadrangles would lead to a contradiction. So this
endomorphism may be assumed to be

|
X co £ 1.
I

The 3 x 3 endomorphism which generates the group {[&,n] — [&,n+1],1 € R} on W\{v}

1S
3
& B #0

or, by conjugation

1 1

Subtracting the previous endomorphism we get the proposition for this case.

1h: The one-dimensional orbit on W\{v} has the form i1 = const., say n = 0. Since the
coordinate lines & = const. are permuted, the induced action on W\{v} is the group L, X R
acting as

{[Eﬂﬂ] — [{ZIE,"' rlbn]!a!b:}O!rER}‘

The endomorphisms of 7 now tollow.



76 D. Betten, J.H. Im

4.3. Trying to construct the projective planes

We shall prove these transformation groups act as a collineation group of a projective plane.
Let us begin with the 2v case.

Case 2v:

We may take the following action of ¥ on the affine space P\W coordinatized by R* =
{(x,y,u,v) |x,y,u,v € R} : ¥ is generated by the translation group R> and the following three
linear one-parameter groups:

/1 1
1

]
X €ER }, IsER ),
1 1

\ x 01 e’

/1 1
1 0 1
r teR,y#1),where N = lx,y,y,v €R
e y 1

\ e v X ]

Hence we get the regular action of N on itself:
(%, 5, i, )™ = (x + X,y + §,u + i, v + ¥ + xy).

Conjugation by the s— and —parameter groups gives the isotropy groups:

(X, y,u,v)’ = (€'x,y,u + sy, e’v),

(x,y,u,v)! = (7" Dx €'y, e'u, e?).

This plane has a 3-dimensional translation group R® = {(&y,u,v)|y,y,v € R} and by
[1] the points p € W\{v} correspond to the 1-dimensional subspaces (y,u,Vv)R,y # O,
of R?. We describe these subspaces by (y,u,v)R = (1, f, ﬁ)R and 1ntroduce coordinates
[E,1], & = ;—‘f,n = 3"5 on W\{v}. The action of ¥ on W\{v} corresponds to the action on the
set of 1-dimensional subspaces (y, u, V)R, y # 0, of R® induced by conjugation. Thus we have
the following actions of the x—, s— and 7—parameter groups on W\{v}:

1) action of x-parameter group on W\{v} : [{,n] — [&,n1 + x],

i1) action of s-parameter group on W\{v} : [, n] — [& + s, €'1],

iii) action of z-parameter group on W\{v} : [£,n] — [&, 7" Dm], v # 1.

Construction of the geometry

Let L be the line joining (x,y,u,v) = (0,0,0,0) and [¢,m] = [0,0]. Then ¥, is a 2-
dimensional group containing the f-parameter group and the translation group in the direction
[0,0].
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Letw_,z_,wy,z4+ € R be such that (—-1,0,w_,z_) € Land (1,0,w,,z,) € L, then L
contains also the #-orbits of these two points:

{(—e‘"”“”’,(], w_e',z_e")|t € R} U {(e“‘”’,(], wy, e, z.e7)|t € R}

Using now the translation gorup in the direction [, 1] = [0, 0], we get the affine part of L:
L = {(x,y,f(x), g(x)|x,y € R}, where

vwv_(—)f)*r_l—'T . x<0 2 (—=x)v—=1 = x<0
flx) = . ,8(x) = oy :
wixy—1 . x>0 zoxy—1 . x20

In order to get the other lines, we first apply the shift map ¢ (i.e. x-parameter group):

(X, ¥, f(x), gx) ™" = (x — t,y,f(x), g(x) — ty) and get the lines
L' = {(x,y,f(x+ 1), 8(x+ 1) — y)|x,y € R}.
We apply the s-parameter group to L' and get the points

(€x,y,f(x+ 1)+ sy,€(gx + 1) — 1y)).
Substituting 1 = e°x and denoting 1 by x again, we get the lines
L ={x,y,fe’x+ 1)+ sy,e'lgle’x+ 1) —tyD|x,y € R}.
The corresponding parallels through the origin (0,0,0,0) are
Ly’ = {(x,y,fle " x+ 1) — f() + sy, &’ (g(e *x + 1) — g(t) — ty))|x,y € R}.
Then the set of lines {LE;5|I,5 € R} U {(0,0,u,v)|u,v € R} is the pencil of lines through

the origin.
We now intersect the lines of this pencil with the vertical line at (x,y) = (1, 0). This leads

to the map
h:R*— R :(s,0) = (fle™* + 1) — f(2),€*(g(e™" + 1) — g(1)),

and this map would be a homeomorphism if the plane existed. But since A(s,0) = (f(e™),
e’g(e™)) = 7= (wi,z4) = €*(wy, z4), o # 0 the map A is not proper, a contradiction.

Case 2h: Here we get the following action of X on the affine space P\ W coordinatized by
R* = {(x,y,u,v)|x,y,u,v € R} : ¥ is generated by the translation group R? and the following
three linear one-parameter groups:

{ 1 1
1

x 1 e’

\ 1 se’ e’
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1 1 \ "
e y 1
t€R,6F# 1 ) ,where N = lx,y,u,v ER .
e u x |

e’ V 1} )

Hence we get the regular action of N on itself:

%, 3, u, V) = (x+ X,y + ¥, u + i + X3, v + V).

Conjugation by the s- and ¢- parameter groups gives the 1sotropy groups:

(x,y,u,v) = (x,ey,e’u,e’v+ se’y),

(x,y,u,v) = (© Dy e'y e%u e'v).

Similarly to the case 2v we have the following actions of x, s and t-parameter groups on
W\{v} by conjugation, coordinatized by [£,n], & = ¥,n = 7
1) action of x-parameter group on W\{v} : [§, 1] — [& + :r,n],
i1) action of s-parameter group on W\{v} : [E,n] — [&,n + 5],

iii) action of ¢-parameter group on W\ {v} : [&,n] — [e®~V'E n].

Construction of the geometry

Let L be the line joining (x,y,u,v) = (0,0,0,0) and [{,n] = [0,0]. Then 2, 1s a 2-
dimensional group containing the -parameter group and the translation group in the direction
[0,0].

Letw_,z_,wy,z+ € R be such that (—1,0,w_,z_.) € Land (1,0,w,,z4) € L. Then
similarly to case 2v, we get the affine part of L:

L = {(x,y,f(x),gx))|x,y € R}, where

_(— = . < _(— =i : <
f= YT I‘O,gu):{“x). ¥ =0

L o owax™= . x>0 Z4x3-1 xEU'
Applying to the shift map x = —t and the s-parameter group we get the following lines:

LY = {(x,y,ef(x+1) — ty,e’g(x + 1) + sy)|x,y € R}.

The corresponding parallels through the origin (0,0,0,0) are

Ly" = {(,y,€f(x + 1) = f(O) + te™°y], €°[g(x + 1) — (O] + sy)|x,y € R}.

Then the set of lines {L;’|¢,s € R} U {(0,0,u,v)|u,v € R} is the pencil of lines through
the origin.

We now try to join the origin (0,0,0,0) with the points {(1, 0, «, v)|u,v € R} of the vertical
line at (x,y) = (1,0). This leads to the map & : R* — R? : (s5,1) = (&°[f(1 + ) —f ()],
e*[(g(1+1) — g(0)]). But since (s, 0) = (€f(1), e°g(1)) = (w4, 2. ), the map h is not proper
and cannot be a homomorphism.
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Case 1v, 1: This case lead to the following action of X on the affine space P\ W coordinatized
by R* = {(x,y,u,v)|x,y,u,v € R} : ¥ is generated by the translation group R’ and the

following three linear one-parameter groups:

[ 1 1

|IER y s |SER

\ X | |

e ) \vx 1

We get the regular action of N on itself:

&, y, i, ) = (x + X,y + J,u + i, v + v, xp).

Conjugation by the s- and r-parameter groups gives the isotropy groups:

(J[', }’1 u, v)x — (Ennﬁxﬁ Eﬂj.y: ESH! V)a
(x,y, u,v) = (e1=Px, Py u,e'v).

tE R, » , where N = x,y,u,v € R
|

We have the following actions of x—, s— and t—parameter groups on W\ {v} by conjugation,

coordinatized by [, 1], & = §,m = {:

y'

1) action of x-parameter group on ‘W\{v} :[&€,m] — [€,1 + x],
ii) action of s-parameter group on W\{v} : [§,n] — [e!! 7¥E e~ ¥n],
iii) action of r-parameter group on W\ {v} : [£,1] — [e77'E, el =Pm].

Note that in this case the action of ¥ on W\{v} has a 1-dimensional orbit, that is, the

coordinate line & = 0 is invariant under the action of ¥ on W\{v}.

Here, o # 0, otherwise the s-parameter group would lead to a contradiction to the lemma
on quadrangles. The one-parameter group defined by s = ‘—;ﬁ—-t fixes each point (x,0,0,0) €
P\W and each point [0,n] € W, a contradiction to the lemma on quadrangles. Therefore

there exists no plane in case 1v, 1.

Case 1v,2: ¥ is generated by the translation group R and the following three linear

one-parameter groups:
i / 1 \ 3 l

< xER }, : s €R
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1 1 \ "
e y 1
it €R } ,where N = ' lx,y,u,v ER .
1 u |
t 1 V X ] } )

The regular action of N on itself is:
(X, 9, i, V)5 = (x + X,y + y,u+ it,v+ v + x9).

Conjugation by the s- and 7-parameter groups gives the isotropy groups:

(x,y,u,v)’ = (e =, eXu, eu, e'v),

(x,y,u,v) = (e P'x, e’y u, tu +v).

We have the following actions of x—, s— and —parameter groups on W\ {v} by conjugation,
coordinatized by [£,n],& = 5,1 = |t

i) action of x-parameter group on ‘W\{v} [&,n] — [E,n + x],

ii) action of s-parameter group on W\{v} : [£,1] — [e!'~®*E ! =*¥n],

iii) action of t-parameter group on W\{v} : [§,n] — [e P&, te™ P& + e P'n).

Note that in this case the action of ¥ on W\{v} has a 1-dimensional orbit, that is, the
coordinate line & = 0 is invariant under the action of ¥ on W\{v}. The 2-dimensional
stabilizer > 00,0y fixes also the point [0,0] at infinity and consists of the s— and the r—
parameter subgroups. This stabilizer fixes also the line (0,0,0,0) Vv [0,0] and the one-
dimensional curve in it which is defined by y = (0. Now the one-dimensional subgroup of
the stabilizer defined by (1 — &)s = —[3¢ acts trivially on the parameter x and fixes therefore
every point of this one-dimensional curve. It also fixes each point [0,1],11 € R at infinity, a
contradiction to the lemma on quadrangles. We have thus shown that the case 1v, 2 does not
lead to a projective plane.

Case 1s : ¥ is generated by the translation group R’ and the following three linear one-
parameter groups:

1 \ 1
e

xER >,

xl/ e’

E,{1 —a)t

t€ R,ax# 1) ,where N = [.x,y,u,vERI.
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The regular action of N on itself 1s:
(x, 9, i, V)5V = (x+ %,y +y,u+ i, v+ v+ xin).

Conjugation by the s and z-parameter groups gives the isotropy groups:

(x,y,u,v)’ = (1" x ey e*Su, e'v),

C,y,u,v) = (e~ U=y y el =0y 1y + ).

We have the following actions (by conjugation) of the x—, s— and t—parameter groups on
W\{v}, coordinatized by [&,n], & = i‘_’;,n =T

1) action of x-parameter group on W\ {v} [E,n] — [E,1 + &x],

ii) action of s-parameter group on W\{v} : [£,n] — ['*~'¥E n],

iii) action of the r-parameter group on W\{v} : [§,1] — [e! =& n + 1.

By combining the s- and the t-parameter groups we get the following one-parameter group:
(x,y,u,v) — (x,e'y,e’'u,re’y + e'v), r € R inducing on W the action:

[&,m] — [E,n+r]r € R.

This group fixes the points (0,0,0,0) and (1,0,0,0), their joining line and its intersection
with W. This is a contradiction since the r-parameter group acts freely on W.

Case 1h: ¥ is generated by the translation group R’ and the following three linear one-
parameter groups:

/1 \ "/l
l s

X €ER ), < ) sER a#1p,

\ 1) L\ !

teER,B#1 ) ,where N = x,y,u,v € R
1 u x 1

E"/ V 1/

The regular action of N on itself is:

&, ¥, i, )" = (x + X,y + J, u+ it + xp,v + V).

Conjugation by the s- and r-parameter groups gives the isotropy groups:

('1.1 Y, U, U).‘i — (E?“_H)SI, Ef:u‘y} E‘TH, V),

(x,y,u,v) = (e P'x, e’'y, u, e'v).

We have the following actions of the x-, s- and 7-parameter groups on W\ {v}, coordinatized

by [€,n],& = $,n = i:
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1) action of the x-parameter group on W\{v} : [§,n] — [& + x, 1],

ii) action of the s-parameter group on W\{v} : [{, 1] — [e!!7¥¥E e ],

iii) action of the r-parameter group on W\{v} : [E,11 — [e /¢, ! =P,

Note that in this case the action of ¥ on W\{v} has a l1-dimensional orbit, that is, the
coordinate line 1) = 0 is invariant under the action of ¥ on W\{v}.

Now let us combine that s- and the #~parameter group in such a way that the action on the

(1 —cx)s

x-coordinate will be trivial. For this we take the product of the map s and the map 1 = *~—
This leads to the one-parameter group

(]l —x)s
(x,y,u,v) = (x,e'y,e’u,e ¥ v),r €RR.
Here we may assume 3 # 0O for otherwise the t-parameter group would give a contradiction

to the lemma on quadrangles. The r-action on W\ {v} is:

[&,n] — [&,f(ex, B, s)n].

The r-parameter group fixes the point v at infinity, each point (x,0,0,0),x € R and each
point [, 0] on W. This is a contradiction to the lemma on quadrangles, hence there exists no
plane in this case.
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