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ON GLOBAL STABILITY OF SETS FOR LINEAR IMPULSIVE DIFFERENTIAL-
DIFFERENCE EQUATIONS

D.D. BAINOYV, .M. STAMOVA, A.S. VATSALA

Abstract. Some results for stability of sets of general type for linear impulsive differential-
difference equations with variable impulsive perturbations are obtained. The main results are
proved with the aid of piecewise continuous functions, which are analogues of the Lyapunov
functions.

1. INTRODUCTION

The impulsive differential-difference equations are adequate mathematical models of nu-
merous real processes and phenomena studied at physics, biology, population dynamics,
bio-technologies, control theory, industrial robotics, etc.

In spite of the great possibilities of applications, the theory of these equations 1s developing
rather slowly.

The difficulties arising when one studies impulsive differential-difference equations with
variable impulsive perturbations due to the presence of phenomena as "beating” of the solu-
tions, bifurcation, loss of property of autonomy, etc. On the other hand, the presence of delay
in the argument needs to introduce new methods, as well as to modify the standard methods
In the investigation of these equations.

At the present work suftficient conditions are found tor global stability of set with respect
to linear system of impulsive differential-difterence equations with variable impulsive per-
turbations. The main results were carried out with the aid of piecewise continuous auxiliary
functions [2].

2. PRELIMINARY NOTES AND DEFINITIONS

Let R, = [0,00); R" be the n-dimensional Euclidean space with elements x = col
(x1,...,Xn), the norm | - | and the distance d(-, -).

Leth>0and 1y € R.
We consider the linear system of impulsive differential-difference equations

[ A(t) x(t) + B(O)x(t — h), x(t) > 0,1 # T (x()), t > to,

x(1) = <
0, x(?1) <0,t # 1 (x()), t > 1y,

\

(1)

Cix(t), x(1) >0,1> 19,
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where x : (tp, 00) — R", A(?) and B(¢) are n X n-matrix valued functions; Ci, k = 1,2, ...,
are n X n-matrices; T : R" — (tp, 00) and Ax(¢) = x(t + 0) —x(¢ — 0).

Let to(x) = 1o for x € R”.

We introduce the following conditions:

H1l. 7, € C[R"? (t9,00)],k=1,2,...

H2. (pn <ti(x)<To(x)< ..., x e R,

H3. 1(x) — oo as kK — oo uniformly with respect to x € R”.

Under the assumptions that conditions H1, H2, and H3 are fulfilled, we introduce the
following notations:

Gy = {(1,%) € [to,0) X R" : i () <t <m0}, k=1,2,...,

O = {(I‘]"r) S [IU!DG) X R” = ’T;;(I)},

1.e., O,k = 1,2, ... are hypersurfaces with the equations 1 = T;(x(?)).

Let @ € Cl[tg — h, 10], R"] = Cp.

We denote by x(¢) = x(t; ty, @¢) the solution of the system (1) which satisfies the initial
condition

x(1) = @o(1), t€ [to—h,tl, (2)

and let J*(1p, @9) denotes the maximal interval of the type (¢, B), at which the solution
x(t, to, @o) is defined; || @o|| = max,e(y—n,) |Po(f)| is the norm of the function ¢g € Cy.

We shall describe the solution x(f) = x(¢; ty, ©¢) of the initial problem (1), (2):

1. For t9 — h < t < 1y the solution x(¢) coincides with the initial function @g € Cj.

2. The function x(¢) is piecewise continuous on J* (¢, o), it is continuous from the left
and x(t + 0) = x(t) + Cyx(¢) fort € JT (1, @o), t # Te(x(1)), t A B, k=1,2,....

3. Fort € J*(ty, ©o), t # T(x(2),k = 1,2,..., the function x(¢) is differentiable and

x(t) = A@)x(¢) + B(t)x(t — h).

Let M C [ty — h,o0) x R",
We introduce the notations:

M) ={xeR":(t,x)eM,t e (th,0)},

Mo(t) ={x e R": (t,x) e M,t € [ty — h, 1]},

d(x,M(1)) = infyepm |x — y| is the distance between x € R" and M(?);

M(t,e) = {x € R" : d(x, M(t)) < e} is an e-neighbourhood of M(¥);

do(@, Mo()) = max,ep,—n.1, (@), My(2)) 1s the distance between ¢ € Cy and My(?);
My(t,e) = {@ € Cy : do(p, My(1)) < €} is an e-neighbourhood of M(¢);

So = {x € R : |x| < &}, (> 0);

$5a(Co) = {9 € Gy : |l@] < a}.

We introduce the following assumptions:

H4. The matrix-valued functions A(¢) and B(?) are continuous for ¢t € (¢, 00).

HS. The elements of the matrices Ci,k = 1,2, ... are nonnegative.
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H6. The integral curves of the system (1) meet successively each one of the hypersurfaces
o1, 02,... exactly once.

Lett),1h,...(t1g<t) <t <...)are the moments at which the integral curve (z, x(t; ty, ©9))
of the problem (1), (2) meets the hypersurfaces o3,k = 1,2,....

We shall note that if conditions H1-H4 and H6 are fulfilled, then t; — oo as kK — oo and

J T (19, ©o) = (tg, 00).

Definition 1. The solutions of the system (1) are said to be uniformly M-bounded if:

(Yn>0)(3R = BM) > 0) (Vi € R)(Vax > 0)

(Vo € Sa(Co) N Mo(t,m)(Vt > to) :
x(t;00, ©0) € M(t, 3).

Definition 2. The set M is said to be:
a) stable with respect to the system (1), if

(Vg € R)Y(Vax > 0)(Ve > 0)(3dd = 0(¢fy, &, €) > 0)
(Vo € Sa(Co) N Moy(t, 0))(Vt > 1p) :

x(tt0, @o) € M(1, €).

b) uniformly stable with respect to the system (1), if the number 0 in a) depends on € only.
c) uniformly globally attractive with respect to the system (1), if

(Vn > 0)Ve >0)do = o(n, ) >0)

(Vtp € R)YVax > 0)(Vg € Sa(Co) N My(2,1))
(Vt € [to + 0,00) N J T (tg, ©o)) :
x(t;t, o) € M(t, €).

d) uniformly globally asymptotically stable with respect to the system (1), 1f it 1s uniformly
stable, uniformly globally attractive with respect to the system (1), and the solutions of the
system (1) are uniformly M-bounded.

In the following investigations the class V, of the piecewise continuous functions V :
(10, 00) X R" — R will be used. These functions are analogues of the classical Lyapunov’s

functions [2].

Definition 3. We will say that the function V : [f, o0) X R" — R belongs to the class Vj, if:
1. The function V is continuous in | J,-., G and it is locally Lipschitzian with respect to its
second argument on each of the sets G,k = 1,2,....
2. V(t,x) = 0for (t,x) € M,t > 1ty and V(t,x) > 0 for (t,x) € {[tp,00) x R"} \M.
3. Foreachk = 1,2,... and (#j,x3) € o there exist the finite limits

V(tg — 0,x5) = lim  V(t,x), V(g +0,x5) = lim V(¢x).

L S . *® %
: txY—IT
u..ﬂ—i-:rn ,.m” ) (r,x) 0 lﬂ )

“...H.'JEGL. {’”EGL_}_ I
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4. The equality V(r; — 0,x5) = V(3, xy) holds true.

We introduce the following functional classes:

PC[[ty, 0), R"*] = {x : [ty, 00) — R" : x(¢) is piecewise continuous function with points of
discontinuity of the first kind (i.e., the left and right limits exist there, and they are bounded)
belonging to the interval (fy, 00), at which the function is continuous from the left;

Q = {x € PC[[ty,00),R"] : V(s,x(s)) < V(t, x(1)),t —h <s<t,t > 15,V € W}.

LetV € Vy and x € PC[[ty, 00), R"].
Lett # T,(x(9),k=1,2,....
Introduce the function

D_V(t,x(t)) = liminf 1 [V(t + 0,x(1) + o(A(Ox(1) + B(D)x(t — h))) — V(1,x(1))] .

o—0— O

Definition 4. Let A : (fp,00) — R, be a measurable function. Then we say that A(7)
is integral positive if L?\(r)dr = 00, whenever J = Ufil[cq, Brl, o < Pr < xxsp and
Bk—ﬁk > G}O,kz 1,2,....

In proving the main results of the paper we will use the following statements:

Theorem 1. Let the following assumptions hold:

1. Conditions H1-H4 and H6 are met.

2. g € PC[[tp,00) X Ry, Ry ]and g(t,0) = 0 fort € [ty, 00).

3. By € CIRy, R, ], Bx(0) = 0 and the functions Py : Ry — R, Yp(u) = u + Bi(u) are
nondecreasing with respecttou,k =1,2,....

4. The maximal solution r(t; ty, uy) of the problem

u=g(tu), t#Ft, k=172...,

u(to +0) = up 2 0, (3)
Au(ty) = Br(u(te)), k=1,2,...

is defined on the interval (ty, 00).
5. The function V € V) is such that

V(to, ©o(f0)) < up

and the inequalities
D_V(t,x(t)) < g, V(t, (1)), t# nu(x(®), k=1,2,...

V(t + 0,x(r) + Cex(?)) < Pr(V(t, x(0)), t = Tu(x(0), k = 1,2, ... (4)

are satisfied fort > ty and x € Q).
Then

V(I,X(I;f[], (p{]')) S F(f;t{},ﬂ[}), S ('&]1 Dﬂ). (5)
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Proof. The maximal solution r(t; tp, uy) of the problem (3) for ¢t € (#y, 00) is defined by the
equality
ro(tito, ug ), h <t <ty

rnn,u’), n<t<n,

where r.(t;t, uﬂ') 1s the maximal solution of the equation u = g(¢, u) without impulses in the

interval (5, #,41), k = 0,1,2,. .., for which u; = Py(re—1(testi—1, u;_)),k = 1,2,... and
+ _
”ﬂ — H[}.
Let t € (t,t1]. Then, it follows from the corresponding comparison lemma in the conti-

nuous case [1], that
V(t, x(t;t0, ©o)) < r(t;to, Up),

1.€., the inequality (3) is satisfied for ¢ € (%, 1 ].
Now, suppose that (5) holds for ¢t € (t;_;, ],k > 1. Then, using (4) and the fact that the
function \»; 1s nondecreasing, we obtain

V(tx + 0,x(t + 0520, ©0)) < Wir(V(tk, x(2k300, ©0))) <

< Py (rtesto, uo)) = Wr(ri—1(tste—1, Uy ) = uy .

Applying again the comparison lemma from [1] for ¢ € (#, #x+1], we obtain

V(t, x(tit0, ©0)) < r(tite, u; ) = r(t;to, up),

1.e., the inequality (5) remains true for t € (f, tx+1]. The proof is completed by induction. W

Corollary 1. Let the following assumptions hold:
1. Conditions H1-H4 and H6 are met.
2. The function V € V), is such that for t > ty and x € ) the following inequalities are

valid:
Dy(t,x(1)) < 0,t # Tu(x(D)), k= 1,2,...,

V(t + 0,x(r) + Cex(1)) < V(1 x(D),t = T(x(1) )k = 1,2, ...

Then
V(t, x(t;t0, ©0)) < Vl(tg, @olto)), € [#,00).

3. MAIN RESULTS

Theorem 2. Let the following conditions hold:
1. Conditions H1-H6 are fulfilled.
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2. There exists continuous, real n X n-matrix-valued function D(1),t € (ty, 00), which is
symmetric, positively definite, differentiable for t # T (x(t)), k = 1,2,... and it is such that

+T [AT(I)D(I) + D(OA() + f,)(;)] x < —a()|x?, ©)
x € R, t# T(x(®),
T [CID(t) + D(t)Cy + CTD(1)C] x < 0, )

t = T(x(1)),

where a(t) > 0 is a continuous function.
3. There exists an integrally positive function A(t) such that

b(t) = a(t) — max{x(HA(), B(DA()} > O, (8)

2B /2(n)
<1720 — y |POBO] < b(1), (9)

where x(t) and [3(t) are respectively the smallest and the largest eigenvalues of D(t).
Then the set M = [—h,00) X {x € R" : x < 0} is uniformly globally asymptotically stable
with respect to the system (1).

Proof. First of all, we shall prove that the set M is uniformly stable set with respect to the
system (1).

For arbitrary £ > 0 we choose the positive number § = 8(¢) > 0 such that f(#5)8% < a(f)e?,
[ > 1.

Let x>0, Q¢ € So(Co) N My(z, d) and let x(¢r) = x(t; 1y, @) be the solution of the initial
problem (1), (2).

We define the function

(X"D()x  for x>0,

V(t, x) = |
h‘0 for x<O.

The fact that D(#) 1s a symmetric, real and positively definite m;ttrix ensures that for x € R”,
a()|x]* < x"D@)x < BO)|x|*. (10)
For the function V(t, x), the set () is defined by the equality
Q = {x € PC[[ty,00), R"] : x"(s)D(s)x(s) < x"O)D(O)x(t),t —h < s < 1,t > tp}.
For ¢ € (ty, 00) and x € Q) the following inequalities are valid:
(t — h)|x(t — h)|* < xT(t — Dt — h)x(t — h) <

x'OD@)x(1) < BO)|x@)|?.
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The above inequalities lead to the estimate

B/ 2(r)
oal/2(t — h)

lx(t — h)| < lx(0)|. (1)

We will estimate D_V(t, x(t)) for t € (1, 00),t # Tr(x(?)) and x € (). It follows from (6),
(8), (9) and (11) that

[ — a@®x(®))* + 2|D@OBO||Ix®||x(t — b)|, x(#) >0,

Dy(t, <
v(t, x(1)) < < 0 1) < 0

“

[ — [a(r) — bO1x@®))?, x()>0, |
< < —AOV(t, x(1)). i2
Vo x0<0 < —ANOV(t, x()) (12)

A,

Let t = 1;(x(¢)). Using (7) we obtain
V(t + 0, x(7) + Cix(2)) =

<" &T(0) + x"(OCHD)(x(t) + Crx(2)),  x(1) >0,
~. 0, x(0) <0

| A @DOx(t) + X" (ICED() + D(0)Cr + CeDNCL],  x(1) >0,
10, x»<0

< VIt x(0)). (13)

Hence, the conditions of Corollary 1 are fulfilled, and therefore

V(t, x(t;t0, o)) < V(to, ©o(t0)), t € (10, 00). (14)

The last inequality implies the inequalities
(D) < x"(ODOx(E) < @4 (10)D(t0) Polto) <

< Bto)|@o®|* < Blo)||@oll® < B(to)d* < x(t)e®, &> to.

Since d(x, M(t)) = |x| for t >ty and x > 0, then x(¥) € M(t, ) for t > t,. Thus it is proved
that the set M is uniformly stable with respect to the system (1).

Now we shall prove that the set M is uniformly globally attractive with respect to the system
(1).

Let € >0 and n > 0 are arbitrary chosen. We choose the number & = 0(¢) > 0 such that
B(1*)0% < a(t)e?, t > t* > 1.

We will prove that there exists ¢ = o(¢,n) > 0 such that for each solution x(#) = x(¢; #o, Qo)
of the problem (1), (2), such that 7y € R, @g € Sa(Co)N Mp(t,m) (x> 0 is arbitrary), and for
each t* € [1y, 1o + o], the inequality

d(x(r7), M(1")) < 8(¢) (15)
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1s valid.
We suppose the opposite. Then for each o > 0 there exists a solution x(t) = x(¢; ty, @g) of
the problem (1), (2) for what ty € R, @g € So(Cp) N My(2,n), o > 0, and such that

d(x(1), M(1)) < d(¢) (16)

fort € [to, 10 + O).
[t follows from the inequalities (12) and (13) that

Ve, x(0)) — V(to, @olto)) < / D_V(s, x(s))ds <

In

<_ f AS)V(s, x(s))ds < — / A(s)oc(s)|x(s) e, (17)

o fo

fort > 1.
The properties of the function V(t,x) = x'D(f)x € V, in the interval (fy, oo) imply that
there exists the finite limit
Iim V(z, x(¢)) = vy > 0. (18)

[— OO

Then (10), (16)-(18) yield
f A ()| x(®)|*dt < B(t)* — vo.

By virtue of the integral positivity of the function A(¢) and the fact that D(r) 1s positively
definite matrix it follows, that the number ¢ can be chosen so that

fy+o 2
f Aoty > PO A 3

Io

Thus . -
B(ton* — vo > / A o(t) |x(2)[>dr > _/ A o(t)|x(r)[>dr >

o Iy

ln+o
> 52(¢) / Aot > Blto)n? — vo + 1.
fo

The contradiction obtained shows that there exists a positive constant ¢ = o(e, 1) such that
for each solution x(¥) = x(¢; ty, o) of the problem (1), (2) for which fp € R, @9 € S,(Cp)
NMo(t, 1), ox > 0, there exists t* € [ty, to + o] such that the inequality (15) holds true.

Then for ¢ > ¢* (and thus for ¢ > 15 + ¢ also) it follows from Corollary 1 the validity of the
inequalities

X'(OD)x(t) < xT ()D(E*)x(r*) < BEH)|x(e*))* <
B(r*)6% < a(p)e?,

ox(t)|x(t)|>

IA A
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which show that the set M 1s uniformly globally attractive with respect to the system (1).

Finally, we shall prove that the solutions of the system (1) are uniformly M-bounded.
Letn >0 and let 3 = 3(n) > 0 be such a number that

B(ton® < x(t)B*, t> 1.

We choose arbitrary o« > 0, g € So(Co) N Mo(z,m) and let x(¢) = x(z; ty, @o). Then for t > 1,
the following inequalities hold:

(DD < xT(OD@x(?) < @ (t0)D(t)@o(to) < B(to)| @olto)|* <
< Bl wo®|)* < Bltom* < a(t)B?, t>1o.

Therefore, x(1) € M(t, [3) for t > ty.
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