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ON IMBEDDINGS OF WEIGHTED SOBOLEY SPACES

PANKAJ JAIN

Abstract. We obtained the continuous (and also compact) imbedding
WhP(Q,vo,v1) = WHP(Q, w)

under certain conditions on weights, where Q is a bounded domain in RY. Also, for the
case vy = vy, this imbedding is shown to exist under less restrictive conditions. Finally, the

imbedding
Wi (Q,v) — LI(Q, w),

already obtained by Gurka and Opic [3], is established under a different set of conditions.

1. INTRODUCTION

[t 1s well known now that Sobolev spaces provide a natural framework for the modern
theory of partial differential equations and the numerical solution of boundary value problems
and more so if Sobolev spaces with weights are considered, for instance, see [2], [10], [12] etc.
This theory has become richer and richer by the various possibilities of imbedding one Sobolev
(or weighted Sobolev) space in a variety of other such spaces, the corresponding imbedding
being continuous and/or compact. Different types of imbeddings have been obtained by
various authors; for instance, Opic [11], Gurka and Opic [3,4,5], Kufner et. al. [8], Adams
[1], Sobolev [12] and references therein.

In the present paper, we discuss conditions (necessary and sufficient) on the weight functions
vo, v1 and w for the continuous imbedding

WhP(Q, vg,v1) — W'P(Q, w) (1.1)
to hold. Also it is shown that in the case vy = v; = v the imbedding
whe(Q, v, v) — WHP(Q, w) (1.2)

holds under less restrictive conditions. Not only this, the sufficient conditions for the imbed-
ding (1.2) can further be weakened.
Further, Gurka and Opic [3] obtained necessary and sufficient conditions for the imbedding

Whr(Q,v,v) — LI(Q,w). (1.3)

We also show, in this paper, the existence of the imbedding (1.3) under a different set of
conditions. The results of the similar nature have also been discussed in respect of compact
imbeddings.
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We give notations and terminology in Section 2, the lemmas which are required in the
proofs of our main results are given in Section 3. In Section 4, we discuss the continuous
imbeddings while, in Section 5, the special cases of the continuous imbedding (1.1) are
discussed along with the existence of the continuous imbedding (1.3) under a different set of
conditions and finally, in Section 6, the compact imbeddings are considered.

2. NOTATIONS AND TERMINOLOGY

Let Q) be a domain in RY. By a weight function we mean a function which is measurable
and positive almost everywhere (a.e.) in (. We denote by &, the set of weight functions on

Q.
For w € §, let us denote by L(Q,w), 1 < p < o0, the set of all functions u = u(x) on Q2

such that
1/ p
pw = ( / IM(X)i”W(X)dX) < 00.
?

Also, for vg,v; € S, let us denote by W'P(Q, vy, vy), the set of all u € LP(Q, vy) such
that the distributional derivatives % e L¥ (Q,vy),i = 1,...,N. The norm of the space

WhP(Q, vo, v1) is defined by
p ) 1/ p
p.vi

|I”||I:P1Vﬂ:"’l — (”“”P,‘-’n + Z ‘
B(x,R)={yeR", |x—y|<R}

(&

ou
0 X;

Given x € RY and R > 0, we put

and for h > 0, we write
hB(x, R) = B(x, hR).

We denote by C%!, the class of all bounded domains in RY with a Lipschitz boundary (in

sense of Definition 5.5.6 in [9]).
Throughout this paper, we assume that

and further that
a=]Ja, 2.1)

where ), are domains in RV such that
Qn C QH-I-I C Q} Qn-f—] 7é Q

and we write Q" = Q\Q,,n € N.
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Finally, we shall be using the symbols — and —+, respectively, for continuous and
compact imbeddings.

3. LEMMAS

In this section, we collect certain results in the form of lemmas on which we rely heavily
for the proofs of our results in Sections 4, 5 and 6.

Lemma 1. Let X(Q)) and Y()) be two Banach spaces of functions defined on () such that
Y(Q)) has an absolutely continuous and monotone norm l.e.

0 gf <ga.e. in Q= ‘lfll}ffﬂ} < ||3||1’(!2)=

where () is a domain satisfying (2.1) and (2.2). Let X(Q1,) — Y(£2,), n € N, where

(i) X(Q),) and Y((),) are the sets of restrictions to (), of the functions, respectively, from
X(Q) and Y(Q));

(ii) The space X(£2,) is equipped with the norm || - ||x , satisfying

Hfllxaﬂn — C”“.f”x-,.ﬂi

with an appropriate constant C, independent of f, and
(iii) The space Y(L),) is equipped with the norm

flly.2, = IIf - X llv. e,

where X, is the characteristic function of the sets (2,; Then a necessary and sufficient
condition for the imbedding X(Q)) — Y()) to hold is that

lim B, = B< oo, 3.1)
where
B, = sup !lf“l",ﬂ"* (3.2)
Ifllx.a=1

Proof. See [8]. K

Lemma 2. Ler X(Q), Y(Q)), X(Q,) and Y(£2,) be as in Lemma 1. If X(Q2,) —+— Y(L2,),
n € N, then a necessary and sufficient condition for the imbedding X({)) —w— Y({)) to hold
is that

lim B, =0,

where B, is given by (3.2).
Proof. See [8]. B

Lemma 3. (Besicovitch Covering Lemma). Let A C RY be a bounded set and p be a
positive function defined on A. Then, there exists a sequence {x;} C A such that the sequence
of balls { By} with By = By (xi, p(xy)) satisfies:
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(i) A C UJ,—, Bx.
(ii) 34 a number © depending only on the dimension N such that

ZXH&(Z) <0, vz € RY,
k=1

XB, being the characteristic function of By.
(iii) The sequence {By} can be divided into & families of disjoint balls (the number &
depends only on N).

Proof. See [6]. B

Lemmad. Let 1 < p<oo,R>0andx € R. Then
[ weoray < xRy [R—P [ wowar+ [ mo»)wdy] |
B(x . R) B(x,R) B{(x.R)

: N
for all u € W'P (B(x, R)), where |Vu)IP = 3,
dent of x, R and u.

Proof. See Lemma 3.51in [3]withp=¢q. R
From now onwards throughout the paper, unless specified otherwise, we shall be making

the following assumptions:
(A) Q is a bounded domain in RV.
(B) {Q,} c C%! is a sequence of domains such that

P
%U)‘ and K > 0 is a constant indepen-

{x eQ n! <d(.x)} C Q,C {x ceQ n+ 1! f:d(x)} .

where d(x) = dist (x, 9 2), 0 Q) being the boundary of Q) and x € Q.
(C) 3#ng € N, ng > 3, a positive measurable function r defined on ("™ such that

rix) <d(x)/3, x € Q",

Note that ((2,) in (B) satisfies (2.1) and (2.2).

Lemma 5. Suppose that n > 3m, m € Nand m > 3. If B(x,r(x)) NQ" # (, then
B (x, r(x)) C Q™.

Proof. See Lemma 3.6in[3]. B

4. CONTINUOUS IMBEDDINGS

Theorem 1. Let the following conditions be satisfied:
S1. W'P(Q,, vo,v1) = wHP(Qu,w), 1> ny.
S2. d positive measurable functions ay, a; defined on (O™ such that

w(y) < ap(x), and (4.1)
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(1+r 7)) ailx) < vi(y), (4.2)

forall x € Q™ and for a.e. y € B(x, r(x)).
S3. 3 a constant Ko > 0 such that

vi(xX)r~?(x) < Kovo(x), fora.e. x € Q™.

S4. J a constant c, (depending upon r) such that

x€e Q" ye B(x,r(x) = c,._l < ) < ¢,.

SS. lim, o A, = A < 00, where

ap(x)

A, = sup (x). (4. 3)
xegn a1(x)
Then
WhP(Q, vg, vy) — WP(Q, w) (4.4)
holds.

Proof. If we take X(Q) = W!'P(Q, vy, vy), Y(Q) = W'P(Q, w) and Q3, instead of ), in
Lemma 1, then the imbedding (4.4) is established if we verify (3.1).
Taking A = Q™ and p = r in Lemma 3, 3 a sequence {xx} C (2™ such that

Q™ c (B, Bi= Bi(x, r(xw), (4.5)
k=1

Y x8@ <O, VreRY. 4. 6)
k=1

Let n > ng be fixed. Write
K, ={k€N,B, N Q" # 0} .

By (4.5), we have

e /ﬁ O)PwOMy+ [ [TuO)Pw Ny

EZ(

kek, B

o words + [ mmr’wmdy) . @.7)
By

Using Lemma 4 and (4.1), we have

/ U)Wy + / Vuly)Pwiy)dy
B, By
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< ao(xy) ( f u(y)[Pdy + f I‘U’u(y)lpdy)
B B;.

< an(xk)((Kr(xk))”{r‘p(xk) / u(y)|Pdy
B,

m(yw’dy} ; I‘?‘u@)l"’dy)

B;; bi.'

_ ao(xk)KW(xk)(r“P(xk) / u(y)[Pdy (4.8)
By

\Vu)|lPdy + K Pr P(x;) | |Vu) dy) :
Bj_- Bk

< ao(xx)K 1 r° (xx) (F'p(xk)f u(y)|" dy
By

F(L+r7P(x)) | |Vu@)P dy)

By

< ag(xp)Kr’ (xk)( |a‘--‘5(.Y)|ﬂr (y)

1
+c Vu(»)|P(1 )dy) . (4.9)
H,r,,rl | rp(y)

using S4, where K; = max(K?, 1). Inequality (4.2) implies that

ai(x) < vi(y).

Using this together with S3 and (4.3) in (4.9), we get
[ opwoiy+ [ [9uG)PROXy
Bk B.l:

vl(y)
rf’(v)

< "“E‘“‘;Kup( k)( u)P?

a\ Xy
o \wwwvlmdy)
By

ao(xx)

aj(xg) "

<

Ky rP (x) (K{] lu(y)Pvo(y)dy

IVu(y)Ipvno»)dy)

By

< K7A, ( / u(y)|Pvo(y)dy + / |Vu(y)|P Vl(J')dJ’)-
By By
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where K, = ¢/ K; max(Ky, 1). Thus (4.7) reduces to

6 gm0 < Kot 3 ([ BOIPro01ay
By

+ |vu<y>|ﬂv1@)dy)
By

< @KEA””HHT,F,Q,W],F[’ (4.10)

in view of (4.6) and Ufil B, C (). Hence condition SS verifies (3.1). B
Towards the converse of Theorem 1, we prove the following

Theorem 2. Let S4 and the following conditions be satisfied
N2. d positive measurable functions ay, a, defined on (™ such that

w(y) 2 ao(x), ai(x) 2 vi(y). (4. 11)

for all x € Q" and for a.e. 'y € B(x, r(x)).
N3. 3 a constant Ky > 0 such that

Kovo(x) < vi(x)r ?(x). fora.e. x € Q™.

NS. lim,_... A, = 00, where

A, = sup 2% . (4.12)

o~

xem HI(I)

Then WYP(Q), vy, vy) is not continuously imbedded in W'P(Q,w).

Proof. By NS, 3 an increasing sequence of natural numbers {n;} and a sequence {x;} with
x; € (% such that

W) b Vs k. keN (4.13)
ap(xy)
Take
Her'(xk)}fS(x3f4Bg;)1 k= 15 21 ..o (4* 14)

where R, is a mollifier with radius € defined in sense of Gurka and Opic ([3], Theorem 2.4).
We note that the functions u;, k = 1,2, ... satisty the following:

(Dux € CPBy), 0<my <1,

(i =1 on -;-Bk, (4. 15)
(ii))3#c > O such that

C
E__

xe,i=12,... N,
r(xy)

0 Uy
a_IJ(X)

)
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(i, € WHP(Q, v, v)).

Again, working on the lines of Gurka and Opic [1bid], 1t can be shown that
/ ) |Pvo(y)dy + f \Vu(0)|Pvi(y)dy
Q 0

< LA 7P(xp)a (x), (4.16)

where L = (K ' + NcP)|B(0, 1)| with ¢, given by S4.
Further, as a consequence of (4.15), we have

: 1
a”“(y) =0,#y€ =B, #i=1,2,... N#k=12,...
0 X; 2

which gives

1
Vi (y)|P = 0,#y € EBk,#k= 1,2,... 4.17)

Now, from (4.11), (4.15) and (4.17), we get

IOy + f VmOIPwO
{

> / w(y)dy
(1 /2)By

> 27N|B(0, D)) aoCa)r” (xp). (4. 18)
Now, 1f we suppose that the imbedding
WhP(Q, vg, v1) — WP(Q, w), (4.19)
holds, then from (4.16) and (4.18) 1t follows that
277 |B(0, DaoCx)r’ () < KLFY P (xi)a (xx),

for k € N, where K is the norm of the imbedding operator from (4.19). But this contradicts
(4.13). Hence, the theorem 1s proved. B

Remark 1. Theorem 1 gives sufficient conditions for the imbedding (4.4) to take place
whereas Theorem 2 gives necessary conditions. None of the sets of conditions i1s both
necessary and sufficient. It remains open to find intermediate conditions which are both
necessary and sufficient.

Remark 2. Towards an example of the imbedding (4.4), we show in [7], however in some
other context, that a sufficient condition for the imbedding

WhP(Q,d" P, d") — W'P(Q, d°)

to hold is € — 1 > 0 whilw a necessary condition is € > 1 — p, where d° etc. are the power
type weights on the domain C!.
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S. SPECIAL CASES OF CONTINUOUS IMBEDDING

If we assume vg = v; = v, then the sufficient conditions for the imbedding (4.4) can be
obtained under less restrictive conditions in the sense that we do not require condition S4 and
also the inequality (4.2) is replaced by a weaker one. More precisely, we prove the following

Theorem 3. Let S1 and S3 with vo = vy = v alongwith S5 and the following condition be
satisfied:
S2. 3 positive measurable functions ag, a, defined on Q™ such that (4.1) and

a)(x) < v(y) (inplaceof (4.2)) (4.2)

for all x € Q™ and for a.e. y € B(x, r(x)).
Then the imbedding
WhP(Q,v,v) —» WHP(Q,w) (5.1)

holds.
Proof. Using S3 with v = v; = v and (4.2) in (4.8), we get

/ W) Pwoddy + [ [Tue)Pwindy
By

By

< ao(Xk)
—oa ()

K:ar"’(xk)( u)|Pv(y)dy + | |[Vu)|P V()’)dy),
By,

By
where K3 = K” max(Kp, (1 + KoK~?)). Now, the proof follows on the same lines as that of
Theorem 1. B

Towards the converse of Theorem 3, we have

Theorem 4. Let N2 with vo = v, = v alongwith N5 be satisfied. Then the space W''P(Q), v, v)
is not continuously imbedded in the space W''7(Q, w).

Proof. It can be obtained on the same lines as that of Theorem 2.

Remark 3. In this case also, as seen in Remark 1, there is a gap between the set of sufficient
conditions and necessary conditions.

[t is interesting to note that the sufficient conditions for the imbedding (5.1) can further be
weakened but in that case the condition SS changes. More precisely, we prove the following:

Theorem 5. Let S1 with vo = v = v alongwith S2 and the following condition be satisfied:
SS. lim,_, o A, = A < 00, where

A, = sup ap(x)

xegnn H](.r)

(5.2)

Then the imbedding (5.1) holds.
Proof. Since Q) i1s bounded and r(x) < d(x) /3, x € (2™, it follows that

P(x) < (diamQ /6y, kekK,.
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Using this in (4.8), we have

u)Pwy)dy + [ [Vu@)|Pw(y)dy
By

By
< amw( u(y)Pdy
By

+(K™? 4 (diam Q) / 6)°) Vu(y)|P dy)

By,

< ap(xx)K3 ( \u(y)Pdy +/ |VH(Y)|‘”¢3}’)
B, B,

ay(xy)

< %) ( / u)Pv()dy + f vu(yw’vcy)dy)
By By

using (4.2), where K4 = max(K?, 1 + KP(diam Q) / 6)?). Now the proof follows on the lines

of that of Theorem 1.
Gurka and Opic [3] have given necessary and sufficient conditions for the imbedding

W2 (Q, v, v) — LI(Q,w) (5.3)

to hold. In fact they proved the following result:

Theorem A. Let 1 < p < g< oo and ﬁ—lh, > ;l? — ~. Let S2 and the following conditions be

satisfied.:
S1’. WhP(Q,,,v,v) — LI(Q,,w), n> np.
S5°. lim,,—~ B, = B < 00, where

1
q

aé/‘!(x)

B, = sup
" xefr &‘: fp(x)

N_N
ria r(x).

Then the imbedding (5.3) is satisfied.
In what follows, we show the existance of the imbedding (5.3) under a different set of
conditions than that given in Theorem A.

Theorem 6. Let p,q be as in Theorem A. Let S3 with vy = v; alonwith S1°, S2 and the
following condition be satisfied:

lim B, = B’ < 0o, where

H— OO

H{l}f‘q(x) N_N

re 7 (x) (5.4)

B = sup
1
XE€EN" a, fp(x)

Then the imbedding (5.3) holds.
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Proof. Using S3 with vy = v, and S2, we have

u|*w(y)dy < aolxx) | |u(y)|?dy
By B,

< [Kay/ =5 )|

q/p
" [rﬂw) uO)Pdy + m@wy]

B; By
149

< |K ra P+l(x)
< | K57, k

qg/p
+ [ / \u(y)|Pdy + l‘?u(y)lpdyJ ,
B, B,

where K5 = K(max(Kp, 1))' /7. Now, the proof follows on the same lines as that of Theorem
1. B

6. COMPACT IMBEDDINGS

We discuss below results concerning compact imbeddings. Since the proofs of these results
are obtained following the lines as in Sections 4 and 5, we omit the details for conciseness.

Theorem 7. Let 82, S3, S4 and the following conditions be satisfied:
S1* WhP(Q,,, vo, vy) —— WHP(Q,. w), n> ny.
SS* lim,,— o0 Ap = 0, where A, is given by (4.3).

Then, we have the imbedding

WHP(Q, vo, v1) == WHP(Q, W), (6. 1)

Proof. It is obtained in view of Lemma 2 if we use S5* in the inequality (4.10). B

Theorem 8. Let S4, N2, and N3 and the following condition be satisfied:

N5* lim,,_, oo A, > 0, where A, is given by (4.12).
Then the space W''"P(Q), vy, v)) is not compactly imbedded in the space W'P(Q,w).
Proof. Setting ity = uy / ||u||1 p.2.vo.0» K € N, where u; are the functions given by (4.14),
and working on the lines as in the proof of Theorem 2 with #; instead of u;, we get the
assertion.

Theorem 9. Let S1*, and S3 with vy = v; = v alongwith S2 and S5% be satisfied. Then we
have the imbedding
WP (Q, v, v) == WHPQ, w). (6.2)

Theorem 10. Let N2 with vy = v, = v alongwith N5* be satisfied then the space W'P(Q), v, v)
is not compactly imbedded in the space W''P(Q,w).
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Theorem 11. Let S1* with vy = v| = v alongwith S2 and the following condition be satisfied:
S5* lim,, .o Ay = 0, where A,, is given by (5.2).
Then the imbedding (6.2) holds.

Remark 4. As in the case of Theorems 1 and 2 (and similarly Theorems 3 and 4), here too, it
1S open to seal the gap between the sufficient conditions and the necessary conditions given in
Theorems 7 and 8 (and also Theorems 9 and 10). Theorems 9 and 10 are the special cases of
Theorems 7 and 8, respectively, which have been derived under weaker hypothesis analogous
to Theorems 3 and 4. The hypothesis in Theorem 9 1s further weakened to result in Theorem
11.
Analogous to Theorem 6, a result can be derived giving the sufficient conditions for the
imbedding
WhP(Q, v, v) —— LI(Q, w) (6.3)

to hold. However, this imbedding has already been shown to exist by Gurka and Opic ([3],
Theorem 6.3) but under a different set of conditions. We formally state the result and omit
the details.

Theorem 12. Let p, g be as in Theorem A. Let S3 with vy = v, = v along with S2 and the
following condition be satisfied:

S1#°, WLP(Q,, v, v) > LI(Q,, W), n > np.

S5*°, lim, o B, = 0, where B, is given by (5.4).
Then the imbedding (6.3) holds.

Finally, I take this opportunity of thanking Professor R. Vasudevan and Professor P.K. Jain
for their help and encouragement in the preparation of this paper. I am also grateful to the
refree for his critical comments and observations tovards the impronement of the paper.
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