A CHARACTERIZATION OF CURVES OF MINIMAL ORDER AS REGARDS SINGULAR POINTS AND THEIR MULTIPLICITIES

G. SPOAR

1. INTRODUCTION

In [6] the following theorem was proved: "Let K be a set of order-characteristics in the plane with fundamental number k. Then a normal arc or curve of K-order k+1 contains at most k+1 K-singular points".

Moreover, K-multiplicities were assigned to K-singular points and a stronger result was obtained:

"The sum of the K-multiplicaties of the K-singular points is at most k + 1".

Here it is shown:

Theorem. Let K be a set of order-characteristics in the plane with fundamental number k. Then the sum of the K-multiplicities of the K-singular points of a curve C_{k+1} of K-order k+1 is at least k+1.

2. ORDER CHARACTERISTICS

- **2.1.** Let \mathcal{K} be a family of order characteristic arcs or curves in $G = \overline{G}$, a closed disk in the euclidean plane with fundamental number k satisfying the following axions ([1]; 1.1 and 2.4).
- (I) If $K \in K$ is an arc then K has exactly its two end-points e', e'' in common with the boundary G_b of G.
- If $K \in K$ is a curve, then K has at most one point in common with G_b . Hence for each $K \in K$, $G G \cap K$ (G is the interior of G) is the union of two disjoint open connected sets $K(\alpha, G)$ in which $\alpha = +$ or $\alpha = -$; these two global sides of K in G are denoted by $K(\pm, G)$.
- (II) There exists a natural number $k \ge 1$, the so-called fundamental number with the following properties:
 - 1. Let x_{λ} , $\lambda = 1, 2, ..., k$ be k distinct points of G. Then there is a unique $K \varepsilon K$ with $x_{\lambda} \varepsilon K$.
- 2. Let x'_{λ} be close to x_{λ} , $\lambda = 1, 2, ..., k$. Then there exists $K' \in \mathcal{K}$, $K' = K(x'_1, x'_2, ..., x'_k)$ and $K(x'_1, x'_2, ..., x'_k)$ varies continuously with the x'_{λ} . Note: The class of all compact sets in G is a metric space where $d(A_1, A_2) = \inf(\varepsilon > 0; A_1 \subseteq U_2, A_2 \subseteq U_1)$ where $U_i = U(A_i, \varepsilon)$ is the εG -neighbourhood of A_i (i.e., the union of εG -neighbourhoods of all points of A_i). We use this metric for K.
- (III) Let $K_n \varepsilon \mathcal{K}$, $n = 1, 2, ..., with <math>x_{nu} \varepsilon K_n$ where $x_u = \lim x_{nu}$, u = 1, 2, ..., k, x_u distinct. Then there exists $K \varepsilon \mathcal{K}$ with $x_u \varepsilon K$, u = 1, 2, ..., k (by Axiom II 2), $K = \lim K_n$).
- (IV) For any $K \in K$ and any point $a \in K$, let y_1, y_2, \ldots, y_i be *i* arbitrary, distinct points of G, $1 \le i \le k-1$, $y_i \ne a$. Further, let $x_1, x_2, \ldots, x_{k-i}$ be distinct points of K converging to a on

K. Then $\lim K(y_1, y_2, \dots, y_i, x_1, x_2, \dots, x_{k-i}) = K(y_1, y_2, \dots, y_i; a^{k-i})$ exists uniquely in K. This condition saying that the order characteristics <u>themselves</u> are strongly differentiable arcs or cuves was previously denoted EP_k by Haupt and Künneth ([1], 4.1.4).

Remark. These Axioms I - IV are more restrictive than those in 1.1 and 2.4 of [1]. Also one can see 1.1 of [5] for the conformal definition of strong differentiability.

2.2. Let A be an arc in G (we use the same letter for a point on the parameter interval and its image).

Definition. An order characteristic K has j-point contact (is j-osculating) with an arc A at $a \in A$ if for any two-sided neighbourhood (subarc) N of a there exists a \tilde{K} close to K that intersects N at j distinct points.

In particular one can consider the subsystem $\mathcal{K}(a^j)$ of \mathcal{K} having j-point concact with each other studied in ([6]; 2.3). It was shown that:

- 1) j-point contact is a "transitive" relation on K.
- 2) The subsystem $K(a^j)$ also satisfies Axioms (I) (IV) with fundamental number k-j.

3. MULTIPLICITIES OF K-SINGULAR POINTS

- **3.1.** Let a be an end-point of a normal arc A_{k+1} of K-order k+1. Assume that a < r for all $r \in A_{k+1}$. It is also assumed that K is a family of order characteristics with fundamental number k satisfying Ax. I IV.
- **3.2.** Next let i = k, k 1, ..., 2, 1. There are subfamilies $\mathcal{K}(a^{k-i})$ of \mathcal{K} for each i with fundamental number i having k i point contact at a. Moreover, at each interior point $t \in \mathcal{A}_{k+1}$ there are unique one-sided osculating characteristics $K_i^- = K(a^{k-i}, t^i)$ and $K_i^+ = K(a^{k-i}, t^i)$ of \mathcal{A}_{k+1} ([1]; 4.2.6.3 and 4.2.6.4).
- **3.3.** An interior point $t \in \mathcal{A}_{k+1}$ is said to be $\mathcal{K}(a^{k-i})$ -singular if for any two-sided neighbourhood $N = L \cup \{t\} \cup M$ (L below t on the parameter interval, M above) of t on \mathcal{A}_{k+1} there is a member of $\mathcal{K}(a^{k-i})$ that intersects N at i+1 distinct points. Note that this member of $\mathcal{K}(a^{k-i})$ cannot then meet \mathcal{A}_{k+1} again; otherwise the order of \mathcal{A}_{k+1} is k+1.

One can now classify all the $K(a^{k-i})$ -singular points t of A_{k+1} as follows by specifying the kinds of pairs of one-sided osculating characteristic curves of A_{k+1} at t:

- (a) (i, 1)(1, i) point
- **(b)** (i, 1)(0, i) point
- (c) (i, 0)(1, i) point
- (**d**) (i, 0)(0, i) point

where t is assigned the symbol (i, r) (s, i) if for any neighbourhood $N = L \cup \{t\} \cup M$ of t on A_{k+1} there are members K_{Ni}^- , K_{Ni}^+ of K (a^{k-i}) one, K_{Ni}^- , that intersects L at i points, M at r points and one, K_{Ni}^+ , that intersects M at i points and L at s points; r, s = 0, 1.

Remarks. 1) $\lim K_{Ni}^- = K_i^-$, $\lim K_{Ni}^+ = K_i^+$ ([1]; 4.2.6.3 and 4.2.6.4).

- 2) In words
- (a) t is a K (a^{k-i}) -singular point with respect to both $K_i^-(a^{k-i}, t^i)$ and $K_i^+(a^{k-i}, t^i)$,

- **(b)** t is $K(a^{k-i})$ -singular with respect to $K_i^-(a^{k-i}, t^i)$ only,
- (c) t is $K(a^{k-i})$ -singular with respect to $K_i^+(a^{k-i}, t^i)$ only,
- (d) t is $K(a^{k-i})$ -singular with respect to neither $K_i^-(a^{k-i},t^i)$ nor $K_i^+(a^{k-i},t^i)$.
- **3.4.** Again let z be an interior K-singular point and let i = k, k 1, ..., 2. At each stage each of the types (a), (b), (c), (d) may be subclassified as

 α^i : z is of type α^i if z is \mathcal{K} , \mathcal{K} $(a), \ldots, \mathcal{K}$ (a^{k-i}) -singular but not \mathcal{K} (a^{k-i+1}) -singular, β_1^i : z is β_1^i if z is \mathcal{K} , $\mathcal{K}(a), \ldots, \mathcal{K}(a^{k-i})$, \mathcal{K} (a^{k-i+1}) -singular and both K_i^- , K_i^+ do <u>not</u> meet the arc (a, z) again.

 β_2^i : z is β_2^i if z is \mathcal{K} , $\mathcal{K}(a), \ldots, \mathcal{K}(a^{k-i})$, $\mathcal{K}(a^{k-i+1})$ -singular and both K_i^- , K_i^+ meet (a, z) again.

 γ_1^i : z is γ_1^i if z is \mathcal{K} , \mathcal{K} $(a), \ldots, \mathcal{K}$ (a^{k-i}) , \mathcal{K} (a^{k-i+1}) -singular, K_i^- , meets (a, z) again but K_i^+ does not.

 γ_2^i : z is γ_2^i if z is \mathcal{K} , $\mathcal{K}(a)$, ..., $\mathcal{K}(a^{k-i})$, $\mathcal{K}(a^{k-i+1})$ -singular, K_i^- , does <u>not</u> meet (a, z) again but K_i^+ does.

Definition. Each K-singular point z is given an initial multiplicity equal to 1. At each stage (i) changes to the multiplicities may be assigned as indicated by the following chart. The total is then called the K – multiplicity of z.

	(a)	(b)	(c)	(d)
	((i,1),(1,i))	((i,1),(0,i))	((i,0),(1,i))	((i,0),(0,i))
α^i	0	0	0	0
eta_1^i	+1	0	+1	0
eta_2^i	-	-	-	0
γ_1^i	_	-	0	-1
γ_2^i	-	+1		

The entry - indicates that this situation cannot occur. The motivation for this definition comes from [5] for the conformal case with k = 3. Note that the \mathcal{K} -multiplicity is always non-negative even though there is a possibility to decrease it in the case where z is γ_1^i .

Remarks.

- (A) In the case k = 2 ([1]; 3.2.1) the points of inflection and the cusps of the second kind each have multiplicity 1 (using the definition of multiplicity in 3.4) while a cusp of the first kind has multiplicity 2.
- **(B)** In the case k = 3 in [2] the differentiable singular points with the characteristic (1, 1, 2), $(1, 1, 2)_0$, $(1, 2, 1)_0$, $(2, 1, 1)_0$ have multiplicities 1, 1, 2, 3, respectively.

4. K(a)-SINGULAR POINTS

Since induction will be the method of proof for the main result, it is necessary to see how $\mathcal{K}(a)$ -singular points with certain $\mathcal{K}(a)$ -multiplicities give rise to \mathcal{K} -singular points with their \mathcal{K} -multiplicities using the monotony, contraction and expansion theorems of Haupt and Künneth ([1]; 2.4).

4.1. Let z be a $\mathcal{K}(a)$ -singular point of \mathcal{A}_{k+1} with $\mathcal{K}(a)$ -multiplicity s. If z is \mathcal{K} -singular, then

Possible type	K-multiplicity	
$\beta_1^k (k,1) (1,k)$	s+1	
$\beta_1^k (k,0) (1,k)$	s+1	
$\gamma_2^k (k,1) (0,k)$	s+1	
$\gamma_1^k \ (k,0) \ (0,k)$	s-1	
$\beta_1^k (k,1) (0,k)$	s	
$\gamma_1^k \ (k,0) \ (1,k)$	s	
$\beta_1^k (k,0) (0,k)$	s	
$\beta_2^k (k,0) (0,k)$	s	

Notice that an α^k K-singular point is not possible since z is already K (a)-singular.

4.2. Let z be a \mathcal{K} (a)-singular point of \mathcal{A}_{k+1} which is not \mathcal{K} -singular. Then z has \mathcal{K} (a)-multiplicity 1.

Proof. Since z is of K-order k, A_{k+1} satisfies EP_{k-1} at z (i.e. the (k-2) strong differentiability condition). Hence there is only one K (a)-osculating characteristic at a and z is not K (a^2)-singular. Thus z has K (a)-multiplicity 1.

4.3. Let $z_1 < z_2$ be two $\mathcal{K}(a)$ -singular points on \mathcal{A}_{k+1} .

If z_1 is one of $\begin{cases} \beta_1^k & (k,1)(0,k) \\ \beta_1^k & (k,0)(0,k) \\ \gamma_1^k & (k,0)(0,k) \end{cases}$ and if z_2 is one of $\begin{cases} \gamma_1^k & (k,0)(1,k) \\ \gamma_1^k & (k,0)(0,k) \\ \beta_2^k & (k,0)(0,k) \end{cases}$ one \mathcal{K} -singular point in (z_1,z_2) .

Proof. Consider the case where z_1 is $\beta_1^k(k, 1)(0, k)$ and z_2 is $\gamma_1^k(k, 0)(1, k)$. The proof for the other cases is similar.

Since z_1 is $\beta_1^k(k, 1)$ $\underline{(0, k)}$ there is an order-characteristic close to \mathcal{K}_k^+ (z_1) that meets \mathcal{A}_{k+1} at k points $z_1 < y_1 < y_2 < \ldots < y_k$ near z_1 and does not meet (a, z_1) . Since z_2 is γ_1^k $\underline{(k, 0)}$ (1, k) there is a member of \mathcal{K} close to $\mathcal{K}_k^ (z_2)$ that meets \mathcal{A}_{k+1} at k points $x_2 < x_3 < \ldots < x_{k+1} < z_2$ near z_2 and meets (a, z_1) at one point x_1 .

Now let a point t_2 move from x_2 toward y_1 , keeping x_3, \ldots, x_{k+1} fixed. Then there is a point u which moves from x_1 toward z_1 . If u reaches z_1 first, then there is a k+1-tuple of points

in $[z_1, z_2)$ and an order-characteristic containing these points. By contraction, one obtains a \mathcal{K} -singular point in (z_1, z_2) . If t_2 reaches y_1 first, then let t_3 move from x_3 toward y_2 , t_4 move from x_4 toward y_3, \ldots, t_{k+1} move from x_{k+1} toward y_k , if necessary. The point u must reach z_1 first. Otherwise there is a member $\mathcal{K}(t_2, t_3, \ldots, t_{k+1}) = \mathcal{K}(y_1, y_2, \ldots, y_k)$ meeting (a, z_1) ; contradiction. Then one obtains a \mathcal{K} -singular point in (z_1, z_2) as above.

Similarly one obtains

4.4. Let z_1 be $\mathcal{K}(a)$ -singular but not \mathcal{K} -singular.

If
$$z_2$$
 is
$$\begin{cases} \mathcal{K}(a)\text{-singular} & \text{but not } \mathcal{K}\text{-singular} \\ \gamma_1^k & (k,0)(1,k) \\ \gamma_1^k & (k,0)(0,k) \\ \beta_2^k & (k,0)(0,k) \end{cases}$$
, where $z_1 < z_2$, then there is a \mathcal{K} -singular point in (z_1,z_2) .

4.5. Let z_2 be $\mathcal{K}(a)$ -singular but not \mathcal{K} -singular.

If
$$z_1$$
 is
$$\begin{cases} \mathcal{K}(a)\text{-singular} & \text{but not } \mathcal{K}\text{-singular} \\ \beta_1^k & (k,1)(0,k) \\ \beta_1^k & (k,0)(0,k) \\ \gamma_1^k & (k,0)(0,k) \end{cases}$$
, where $z_1 < z_2$, then there is a $\mathcal{K}\text{-singular}$ point in (z_1, z_2) .

4.6. Let $a < z_1 < z_2 < \ldots < z_r < a$ where z_j is a $\mathcal{K}(a)$ -singular point of $\mathcal{K}(a)$ -multiplicity m_j , $j = 1, 2, \ldots, r$, on a curve \mathcal{C}_{k+1} of \mathcal{K} -order k+1.

Then the sum of the K-multiplicities of the K-singular points is at least $\left(\sum_{j=1}^{r} m_j\right) + 1$.

Proof. (A) Each z_j is \mathcal{K} -singular and not γ_1^k (k,0)(0,k).

By 4.1, the sum of the \mathcal{K} -multiplicities is at least $\sum_{j=1}^{r} m_j$ and will be at least $\left(\sum_{j=1}^{r} m_j\right)$ +1 if any of the z_j are $\begin{cases} \beta_1^k & (k,1)(1,k) \\ \beta_1^k & (k,0)(1,k) \end{cases}$. $\gamma_2^k & (k,1)(0,k) \end{cases}$

If z_1 is $\begin{cases} \gamma_1^k & (k,0)(1,k) \\ \beta_2^k & (k,0)(0,k) \end{cases}$ then $\mathcal{K}_k^-(z_1)$ meets (a,z_1) and a characteristic close to $\mathcal{K}_k^-(z_1)$ meets (a,z_1) and meets \mathcal{C}_{k+1} at k points $x_1 < x_2 < \ldots < x_k < z_1$. By contraction there is a \mathcal{K} -singular point in (a,z_1) . Similarly, if z_r is $\begin{cases} \beta_1^k & (k,1)(0,k) \\ \beta_1^k & (k,0)(0,k) \end{cases}$ there is a \mathcal{K} -singular point in (z_r,a) .

Hence assume that z_1 is $\begin{cases} \beta_1^k & (k,1)(0,k) \\ \beta_1^k & (k,0)(0,k) \end{cases}$, z_r is $\begin{cases} \gamma_1^k & (k,0)(1,k) \\ \beta_2^k & (k,0)(0,k) \end{cases}$, and z_2, \ldots, z_{r-1} are $\begin{cases} \beta_1^k & (k,1)(0,k) \\ \gamma_1^k & (k,0)(1,k) \\ \beta_1^k & (k,0)(0,k) \end{cases}$

If z_2 is $\begin{cases} \gamma_1^k & (k,0)(1,k) \\ \beta_2^k & (k,0)(0,k) \end{cases}$ then there is a \mathcal{K} -singular point in (z_1,z_2) , by 4.3 and the desired result is obtained. If z_2 is not $\begin{cases} \gamma_1^k & (k,0)(1,k) \\ \beta_2^k & (k,0)(0,k) \end{cases}$ then z_2 is $\begin{cases} \beta_1^k & (k,1)(0,k) \\ \beta_2^k & (k,0)(0,k) \end{cases}$ the same as z_1 .

Continue this process with z_3, z_4, \ldots Either one obtains a \mathcal{K} -singular point in one of the (z_j, z_{j+1}) or all of $z_1, z_2, \ldots, z_{r-1}$ are $\begin{cases} \beta_1^k & (k,1)(0,k) \\ \beta_1^k & (k,0)(0,k) \end{cases}$. But then z_r is $\begin{cases} \gamma_1^k & (k,0)(1,k) \\ \beta_2^k & (k,0)(0,k) \end{cases}$ and there is a \mathcal{K} -singular point in (z_{r-1}, z_r) by 4.3.

Hence the sum of the K-multiplicities of the K-singular points is at least $\left(\sum_{j=1}^{r} m_j\right) + 1$. (B) Each z_i is K-singular and at least one of the z_i is γ_1^k (k, 0) (0, k).

If z_1 is $\gamma_1^k(k,0)(0,k)$ then z_1 is of \mathcal{K} -multiplicity m_1-1 . Also $P_k^-(z_1)$ meets (a,z_1) and one obtains a \mathcal{K} -singular point in (a,z_1) .

If z_r is $\gamma_1^k(k,0)(0,k)$ then again z_r is of \mathcal{K} -multiplicity m_r-1 and there is a \mathcal{K} -singular point in (z_r,a) .

Let J be the first index other than J=1 or J=r for which z_j is γ_1^k (k,0) (0,k). Hence the \mathcal{K} -multiplicity of z_J is m_J-1 . If z_{J-1} is $\begin{cases} \beta_1^k & (k,1)(0,k) \\ \beta_1^k & (k,0)(0,k) \end{cases}$ then there is a \mathcal{K} -singular point in (z_{J-1},z_J) by 4.3.

If z_{J-1} is $\begin{cases} \beta_1^k & (k,1)(1,k) \\ \beta_1^k & (k,0)(1,k) \\ \gamma_2^k & (k,1)(0,k) \end{cases}$ then z_{J-1} has \mathcal{K} -multiplicity $m_{J-1} + 1$ by 4.1. Hence one

is left with z_{J-1} being $\begin{cases} \gamma_1^k & (k,0)(1,k) \\ \beta_2^k & (k,0)(0,k) \end{cases}$. Considering z_{J-2} , one either obtains one more

multiplicity in (z_{J-2}, z_{J-1}) or one more multiplicity for z_{J-2} , or z_{J-2} is $\begin{cases} \gamma_1^k & (k,0)(1,k) \\ \beta_2^k & (k,0)(0,k) \end{cases}$.

Proceeding one obtains one more multiplicity or all of $z_{J-1}, z_{J-2}, \ldots z_1$ are $\begin{cases} \gamma_1^k & (k,0)(1,k) \\ \beta_2^k & (k,0)(0,k) \end{cases}$

in which case there is a \mathcal{K} (a)-singular point in (a, z_1) since $\mathcal{K}_k^ (z_1)$ meets (a, z_1) . Hence the total sum of the \mathcal{K} -multiplicities of the \mathcal{K} -singular points on $(a, z_J]$ is at least $\sum_{j=1}^J m_j$. But

now if z_{J+1} is $\begin{cases} \gamma_1^k & (k,0)(1,k) \\ \beta_2^k & (k,0)(0,k) \end{cases}$, there is a \mathcal{K} -singular point in (z_J, z_{J+1}) , by 4.3 and the total

sum of the K-multiplicities of the K-singular points on $(a, z_{J+1}]$ is at least $\left(\sum_{j=1}^{J+1} m_j\right) + 1$.

Also if z_{J+1} is $\begin{cases} \beta_1^k & (k,1)(1,k) \\ \beta_1^k & (k,0)(1,k) \text{ then } z_{J+1} \text{ is of } \mathcal{K}\text{-multiplicity } m_{J+1} + 1 \text{ and again the total} \\ \gamma_2^k & (k,1)(0,k) \end{cases}$

sum of the K-multiplicities of the K-singular points on $(a, z_{J+1}]$ is at least $\left(\sum_{j=1}^{J+1} m_j\right) + 1$. If

 z_{J+1} is $\begin{cases} \beta_1^k & (k,1)(0,k) \\ \beta_1^k & (k,0)(0,k) \end{cases}$ we move to the next index where a γ_1^k (k,0) (0,k) occurs and treat

as we did for z_{J-1} being $\begin{cases} \beta_1^k & (k,1)(0,k) \\ \beta_1^k & (k,0)(0,k) \end{cases}$ as above. If z_{J+1} is $\gamma_1^k(k,0)(0,k)$ then treat z_{J+1} as we did z_J above.

The only possibility for which we do not get the total sum of the K-multiplicities of the K-singular points as being at least $\left(\sum_{j=1}^r m_j\right) + 1$ occurs if $z_J, x_{J+1}, \ldots, z_r$ are all γ_1^k (k, 0) (0, k). But then there are K-singular points in all of $(z_J, z_{J+1}), (z_{J+1}, z_{J+2}), \ldots, (z_{r-1}, z_r)$ and one in (z_r, a) ; altogether $\left(\sum_{j=1}^r m_j\right) + 1$.

(C) At least one of the z_j is not K-singular.

If z_1 is not K-singular then there is a K-singular point in (a, z_1) since z_1 is K(a)-singular. If z_r is not \mathcal{K} -singular then there is a \mathcal{K} -singular point in (z_r, a) .

Let J be the first index other than J = 1 or J = r for which z_J is not K-singular. If z_{J-1} is $\begin{cases} \beta_1^k & (k,1)(0,k) \\ \beta_1^k & (k,0)(0,k) \text{, then there is a } \mathcal{K}\text{-singular point in } (z_{J-1}, z_J), \text{ by 4.5, and if } z_{J-1} \text{ is } \\ \gamma_1^k & (k,0)(0,k) \\ \beta_1^k & (k,1)(1,k) \\ \beta_1^k & (k,0)(1,k) \text{ then the } \mathcal{K}\text{-multiplicity of } z_{J-1} \text{ is } m_{J-1} + 1. \text{ Hence one is left with } z_{J-1} \\ \gamma_2^k & (k,1)(0,k) \\ \gamma_2^k & (k,1)(0,k) \end{cases}$

being $\begin{cases} \gamma_1^k & (k,0)(1,k) \\ \beta_2^k & (k,0)(0,k) \end{cases}$. As in (B) the total sum of the \mathcal{K} -multiplicaties of the \mathcal{K} -singular

points on $(a, z_J]$ is at least $\sum_{j=1}^{J} m_j$. But if z_{J+1} is $\begin{cases} \gamma_1^k & (k, 0)(1, k) \\ \beta_2^k & (k, 0)(0, k) \end{cases}$, there is a \mathcal{K} -singular point in $(z_J, z_{J+1}, by 4.4$. If z_{J+1} is $\begin{cases} \beta_1^k & (k, 1)(1, k) \\ \beta_1^k & (k, 0)(1, k) \end{cases}$ then z_{J+1} has \mathcal{K} -multiplicity m_{J+1} and $\gamma_2^k = (k, 1)(0, k)$

+1. Hence the total sum of the K-multiplicities of the K-singular points on $(a, z_{J+1}]$ is at least $\left(\sum_{j=1}^{J+1} m_j\right) + 1$. If z_{J+1} is $\begin{cases} \beta_1^k & (k,1)(0,k) \\ \beta_1^k & (k,0)(0,k) \end{cases}$ we move to the next index where a non K-singular, K (a)-singular point occurs and treat as we did above for z_{J-1} being $\begin{cases} \beta_1^k & (k,1)(0,k) \\ \beta_1^k & (k,0)(0,k) \end{cases}$. Finally, if z_{J+1} is not \mathcal{K} -singular, then treat z_{J+1} as we did z_J above.

The only possibility for which we do not get the total sum of the K-multiplicities of the \mathcal{K} -singular points as being at least $\left(\sum_{j=1}^r m_j\right) + 1$ occurs if $z_J, z_{J+1}, \ldots, z_r$ are all not \mathcal{K} singular. But then there are K-singular points in all of $(z_J, z_{J+1}), (z_{J+1}, z_{J+2}), \ldots, (z_{r-1}, z_r)$ and one in (z_r, a) ; altogethere $\left(\sum_{j=1}^r m_j\right) + 1$.

5. THE MAIN RESULT

Theorem 1. Let $C = C_{k+1}$ be a curve of K-order k+1 with respect to a system K of order-characteristics with fundamental number k. Then the sum of the K-multiplicities of the K-singular points of C is at least k+1.

Proof. The proof is by induction. The result is valid for k = 2 ([1]; 3.2.6).

Now assume that the result is true for n = k - 1 and show that it is true for n = k. Take any strongly differentiable (\mathcal{C} satisfies EP_k at a) non-singular point a on \mathcal{C} . Now \mathcal{C} is of \mathcal{K} (a)-order k with respect to the system \mathcal{K} (a) whose fundamental number is k-1.

By induction the sum of the K (a)-multiplicaties of the K (a)-singular points is at least k. Denote the $\mathcal{K}(a)$ -singular points z_i with $\mathcal{K}(a)$ -multiplicity m_i and $a < z_1 < z_2 < \ldots < z_r < a$. Then $\sum_{j=1}^{r} m_j \ge k$. By 4.6, the sum of the \mathcal{K} -multiplicities of the \mathcal{K} -singular points is at least $\left(\sum_{j=1}^{r} m_{j}\right) + 1$; i.e. $\geq k + 1$.

Hence the theorem is true by induction.

Theorem 2. Let $C = C_{k+1}$ be a curve of K-order k+1 with respect to a system K of

order-characteristics with fundamental number k. Then the sum of the K-multiplicities of the K-singular points is exactly k+1.

Proof. Combine Theorem 1 and section 5 of [6].

Corollary. A curve C_{k+1} of K-order k+1 satisfying EP_k at each point contains exactly k+1 singular points.

Proof. Use Theorem 2 and the fact that K-singular points satisfying EP_k are of K-multiplicity 1.

REFERENCES

- [1] O. HAUPT, H. KÜNNETH, Geometrische Ordungen, Springer-Verlag, Berlin (1967).
- [2] N.D. LANE, P. SCHERK, Characteristic and Order of Differentiable Points in the Conformal Plane, Trans, Amer, Math, Soc. 81 (1956), 358-378.
- [3] G. SPOAR, A Least Upper Bound for the Number of Singular Points on Normal Arcs and Curves of Cyclic Order Four, Geometriae Dedicata 7 (1978), 37-43.
- [4] _____, Differentiable Curves of Cyclic Order Four, Pac. J. Math. Vol. 102, No. 1 (1982), 209-220.
- [5] _____, Multiplicities of Singular Points on Arcs and Curves of Cyclic Order Four, J. of Geometry 24 (1985), 89-100.
- [6] _____, Normal Arcs and Curves of K-Order k + 1, Geometry Dedicata 59 (1996), 43-50.

Received February 24, 1997 G. SPOAR University of Guelph Dep. of Math. and Statistics Guelph, Ontario N1G2W1 CANADÀ