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A CHARACTERIZATION OF CURVES OF MINIMAL ORDER AS REGARDS SINGULAR
POINTS AND THEIR MULTIPLICITIES

G. SPOAR

1. INTRODUCTION

In [6] the following theorem was proved: "Let U be a set of order-characteristics in the
plane with fundamental number £. Then a normal arc or curve of K-order k + 1 contains at
most k + 1 K-singular points".

Moreover, K-multiplicities were assigned to K-singular points and a stronger result was
obtained:

"The sum of the X.-multuplicities of the KX-singular points 1s at most k + 1".

Here 1t 1s shown:

Theorem. Ler K be a set of order-characteristics in the plane with fundamental number k.
Then the sum of the K-multiplicities of the K-singular points of a curve Cy1| of K-order k + 1
is at least k + 1.

2. ORDER CHARACTERISTICS

2.1. Let K be a family of order characteristic arcs or curves in G = G, a closed disk in the
euclidean plane with fundamental number k satistying the following axions ([1]; 1.1 and 2.4).

() If Ke K is an arc then K has exactly its two end-points €', ¢" in common with the boundary
G;;, of G.

[f KeK 1s a curve, then K has at most one point in common with Gj,. Hence for each KeX,
G — G N K (G 1s the interior of () is the union of two disjoint open connected sets K(x, &)
in which @ = + or @ = —; these two global sides of K in G are denoted by K(£, G).

(I1) There exists a natural number & > 1, the so-called fundamental number with the
following properties:

. Letxy, A =1,2,...,kbe k distinct points of G. Then there is a unique KeX_ with x) eX.

2. Let x| be close to xy, A = 1,2,... k. Then there exists K'eC, K" = K (x],x5,...,x;)
and K(x},x5,...,x;) varies continuously with the x,. Note: The class of all compact sets in
G is a metric space where d(A,,A;) = inf(e >0; A} C Uy, A» C U;) where U; = U(A;, €) 1s
the ¢ — G-neighbourhood of A; (i.e., the union of ¢ — G-neighbourhoods of all points of A;).
We use this metric for K.

(I Let K,,eXC.n=1,2,..., with x,,,eK, where x, = limx,,, u = 1,2,...,k, x, distinct.
Then there exists KeKX withx,eK, u=1,2,...,k(by Axiom Il 2), K = lim K,,).

(IV) For any K¢K and any point acK, let y;, v, ..., y; be i arbitrary, distinct points of G,
| <1<k —1, v # a. Further, let x|, x>, ..., x;—; be distinct points of K converging to a on
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K. Thenlim K(vy,v2, ..., Vi» X1, X2, ..., i) = K (31, v2, ..., v a* ') exists uniquely in K.
This condition saying that the order characteristics themselves are strongly differentiable arcs
or cuves was previously denoted EP, by Haupt and Kiinneth ([1], 4.1.4).

Remark. These Axioms I - IV are more restrictive than those in 1.1 and 2.4 of [1]. Also one
can see 1.1 of [5] for the conformal definition of strong differentiability.

2.2. Let A be an arc 1n G (we use the same letter for a point on the parameter interval and its
image).

Definition. An order characteristic K has j-point contact (is j-osculating) with an arc A at
ac A if for any two-sided neighbourhood (subarc) N of a there exists a K close to K that
intersects N at j distinct points.

In particular one can consider the subsystem K(¢) of K having j-point concact with each
other studied 1n ([6]; 2.3). It was shown that;

1) j-point contact is a "transitive” relation on K.

2) The subsystem (/) also satisfies Axioms (I) - (IV) with fundamental number k — j.

3. MULTIPLICITIES OF K-SINGULAR POINTS

3.1. Let a be an end-point of a normal arc A;,; of K-order k + 1. Assume that a < r for
all re Ay4;. It is also assumed that K is a family of order characteristics with fundamental
number k satisfying Ax. I - IV.

3.2. Nextleti =k, k—1,...,2,1. There are subfamilies X (¢*%) of K for each i with
fundamental number i having £ — i point contact at a. Moreover, at each interior point
t € Ay there are unique one-sided osculating characteristics K~ = K(a* ™', f)and K = K
(@~ F) of A1 ([17; 4.2.6.3 and 4.2.6.4).

3.3. Aninterior point te Ay is said to be K (a*~')-singular if for any two-sided neighbourhood
N = LU{t} UM (L below t on the parameter interval, M above) of r on A, | there is a member
of K (a*~') that intersects N at i + 1 distinct points. Note that this member of X (¢*~') cannot
then meet A, again; otherwise the order of Az i1s >k + 1.

One can now classify all the K (a*~%)-singular points ¢ of A, as follows by specifying the
kinds of pairs of one-sided osculating characteristic curves of A, at t:
(a) (¢, 1)(1,1) point
(b) (i, 1)(0, ) point
(c) (i,0)(1, i) point
(d) (i,0)(0, i) point
where ¢ is assigned the symbol (i, r) (s, i) if for any neighbourhood N = L U {r} UM of 1 on
A1 there are members Ky, Ky of K (¢*~) one, Ky, that intersects L at i points, M at r
points and one, K;,"-, that intersects M at i points and L at s points; r, s = 0, 1.

Remarks. /) limKy, = K, im Ky, = K" ([1]; 4.2.6.3 and 4.2.6.4).
2) In words
(a) tis a K (a*")-singular point with respect to both K f_(ff'!"_"} 'y and K y (a*=1 1),
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(b) t is K (a*=)-singular with respect to K i (@', 1) only,
(¢) tis K (d*~")-singular with respect to K f(a‘f‘ ' t') only,
(d)7is K (u“")-xingtdm' with respect to neither K; (ﬂ‘f‘_’, ') nor KPL (ﬂk_‘,, ).

3.4. Again let z be an interior K-singular pointand leti = k, k— 1, ..., 2. Ateach stage each
of the types (a), (b), (c), (d) may be subclassified as

o: zisof type o if zis IC, K (a), ..., K (a*=")-singular but not K (a*~"*!)-singular,
Bt: zis B4 if zis K, K(a), ..., K@), K (a*~"*1)-singular and both K., K;* do not meet
the arc (a, z) again.
Bh: zis BYif zis K, K(a), ..., K@), K (a*~"")-singular and both K, K meet (q,z
again.
v zisy)ifzis K, K (a), ..., K (@), K (a*~"!)-singular, K, meets (a, z) again but K
does not.
vh: zisyhif zis K, K(a), ..., K (@), K (a*~""1)-singular, K;~, does not meet (a, z) again
but K.© does.

Definition. Each K-singular point z is given an initial multiplicity equal to 1. At each stage
(1) changes to the multiplicities may be assigned as indicated by the following chart. The total
1s then called the K — multiplicity of z.

(a) (b) (c) (d)

L (GD) | (GDL0.) | (G0),(1) | ((G,0),(0,0))
o 0 0 0
B; +1 0 +1 0
gl - - - 0
0% - : 0 -1
Y5 : +1 ' “

The entry - indicates that this situation cannot occur. The motivation for this definition
comes from [5] for the conformal case with & = 3. Note that the X-multiplicity 1s always
non-negative even though there is a possibility to decrease 1t 1n the case where 7 1s v.

Remarks.

(A) In the case k = 2 ([1]; 3.2.1) the points of inflection and the cusps of the second kind
each have multiplicity 1 (using the definition of multiplicity in 3.4) while a cusp of the first
kind has multiplicity 2.

(B) In the case k = 3 in [2] the differentiable singular points with the characteristic (1,1, 2),
(1,1,2)0. (1,2, D)o, (2,1, 1)y have multiplicities 1, 1,2, 3, respectively.

.
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4. K(a)-SINGULAR POINTS

Since induction will be the method of proof for the main result, it 1s necessary to see
how K(a)-singular points with certain K(a)-multiplicities give rise to K-singular points with
their K-multiplicities using the monotony, contraction and expansion theorems of Haupt and
Kiinneth ([1]; 2.4).

4.1. Let z be a K(a)-singular point of A;; with KX(a)-multiplicity s. If z is K-singular, then

Possible type | K-multiplicity
By (k,1) (1,k) s+ 1
Bt (k,0) (1,k) s+ 1
v (k,1) (0, k) s+ 1
vr (k,0) (0, k) s —1
By (k,1) (0, k) s
1 (k,0) (1, k) s
T (k,0) (0,k) S
5 (k,0) (0, k) S

Notice that an «* K-singular point is not possible since z is already K (a)-singular.

4.2. Let z be a K (a)-singular point of .4;,, which is not K-singular. Then z has K (a)-
multiplicity 1.

Proof. Since zis of K-order k, A satisfies EP;_; at z (1.e. the (k—2) strong differentiability
condition). Hence there is only one K (a)-osculating characteristic at a and z is not K (a*)-
singular. Thus z has K (a)-multiplicity 1.

4.3. Let z; < 2o be two K (a)-singular points on A .

(BY (k, 1D(0, k) vk (k,0)(1,k)
If z; isone of ¢ BT (k,0)(0,k) andif z; is one of { vy (k,0)0, k) , then there is at least
| LYE (k,0)(0, k) B (k,0)(0, k)
one K-singular point in (z;, 22).
Proof. Consider the case where z; 1s B‘fl‘(k, 1)(0, k) and 72> 1S “y"‘r," (k,0) (1, k). The proot for the
other cases 1s similar.

Since z; 1S B“]‘(k, 1) (0, k) there 1s an order-characteristic close to Ki:" (z;) that meets A; .
at k points z; < y; <ys < ... <y near z; and does not meet (a, z;). Since 2> 1s }f‘}' (k,0) (1, k)
there 1s a member of K close to K~ (z2) that meets A4 at k points x; <x3 <...< X4 <22
near z; and meets (a, z;) at one point x;.

Now let a point f, move from x; toward y,, keeping x3, . . ., xr+1 fixed. Then there 1s a point

.

u which moves from x; toward z,. If u reaches z; first, then there is a k + I-tuple of points
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In |21, 22) and an order-characteristic containing these points. By contraction, one obtains a
JC-singular point in (71, 22). If 1, reaches y, first, then let 13 move from x3 toward y», t4 move
from x4 toward ys, ..., ty4| move from x; | toward yi, if necessary. The point # must reach
) first. Otherwise there is a member K (12, 13, ..., Lke1) = K (v1, y2, ..., yr) meeting (a, z;);
contradiction. Then one obtains a X-singular point in (z;, z2) as above.

Similarly one obtains

4.4. Let z; be K(a)-singular but not X-singular.
r K(a)-singular but not K-singular

L.
v Y| (klo)(lik) _ - o o
If 20 18 ¢ Y;i' (k. 0)(0. k) , where z) < 77, then there is a K-singular

point i (2, 22).

4.5. Let z> be K(a)-singular but not X-singular.

 K(a)-singular but not K-singular
o X (k, 1)(0, k) . ,
If z; 1s _ , where z; < z», then there is a K-singular
By g (k, 0)(0, k)
\ % (k, 0)(0, k)

point 1n (2, 22).

4.6. Let a<z; <zp<...<z <a where z; is a K(a)-singular point of X(a)-multiphicity m;,
j=1,2,...,r,onacurve C of K-order k + 1.

Then the sum of the K-multiplicities of the K-singular points is at least (Zj._:l mj) + 1.

Proof. (A) Each z; 1s K-singular and not ‘}/I (k, 0)(0, k).

By 4.1, the sum of the K-multiplicities 1s at least Zj_l m; and will be at least (Z}zl nrj)
By (k D(L k)
+1 1f any of the z; are < B‘Eg (k,0)(1,k) .
Y5 (k, 1)(0,k)
If - is {‘}q (k,0)(1,k)
ST BS (K, 0)(0, k)
meets (a,z;) and meets Cyy; at k points x| <x» <...< x; <Z;. By contraction there is a
BT (k, 1)(0,k)
BY  (k,0)0,k)

then K, (z1) meets (a, z1) and a characteristic close to K~ (z;)

K -singular point 1n (a, z;). Similarly, if z, 1s { there is a K-singular point in

*«-11“)

and z», ..., z,— are

BY (k,DOK . [Y) (kO0)1,k)
BY (K, 0)(0,k)" " 7 | BY  (k,0)(0,k)°

Hence assume that z; 18 {

3% (k, 1)(0,k)

vi o (k,0)(1,k)

BY (k,0)(0,k)

3K (k, 000, k)

Yy Kk 0)(1, k)

1 0 IS L _ ,
B5  (k,0)(0,k)

then there is a KC-singular point in (z;, 22), by 4.3 and the desired

Yk (k,0)(1, k) B (k10K
BE k00, k) " “’{B* (k, 0)(0, k)

result 1s obtained. If 2> 1S not { the same as 2.
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Continue this process with z3, z4, .. .. Either one obtains a K-singular point in one of the (z;,

BY  (k, 1)(0,k) (Y (k0)(, k)
. . But then z, 1 |

BX  (k,00(0,k) "~ BB (k,0)(0, k)

there 1s a K-singular point in (z,—;, 2,) by 4.3.

Zi+1) orall of zy, z2, ..., 2, are { and

Hence the sum of the KX-multiplicities of the K-singular points is at least (Z;:] Hi’_;) +1.

(B) Each z; is K-singular and at least one of the z; is Y% (k, 0) (0, k).

If z; 18 }f’;‘ (k,0)(0, k) then z; 1s of K-multiplicity m; — 1. Also P, (z;) meets (a,2;) and one
obtains a K-singular point in (a, z;).

Ifz, 1s 'y‘{]"(k, 0)(0, k) then again z, is of K-muitiplicity m, —1 and there 1s a KC-singular point
in (z,,a).

Let J be the first index other than J = 1 or J = r for which z; 1s ﬁ" (k,0) (0, k). Hence the
BY  (k, 1)(0, k)
BY  (k,0)0,k)

then there 1s a K-singular point

K-multiplicity of z; 1s my — 1. If z;_; is {

in (zy-1,2s) by 4.3.
(BY k1), k)
If z;_ 18 ¢ [3‘;“ (k,0)(1,k) then z;_, has K-multiplicity m;_; +1 by 4.1. Hence one

vy (k, 1)(0, k)

k
1s left with z;_, being { Ei Eimgigé‘i; . Considering z;_», one either obtains one more
2 ) )
vi (k,0)(1,k)

multiplicity in (z;_», zy—) or one more multiplicity for z;_», or z;_» is { Bﬁ (k. 00 k) °
Yi o (k,0)(1, k)
B (k,0)(0, k)
in which case there 1s a K (a)-singular point in (a, z;) since K, (z;) meets (a, z;). Hence the
total sum of the K-multiplicities of the X-singular points on (a, z;] is at least ijl my. But

k
. . vy (k0)(1,k) : . .
now if z;4 18 . , there 1s a K-singular point in (z;, zZ;+1), by 4.3 and the total

Proceeding one obtains one more multiplicity orall of z;_;, zy—», ... z; are {

sum of the K-multiplicities of the K-singular points on (a, z;4+] 1s at least (Zj:: }ﬂj) +1.

B (k, 1)(1,k)

Alsoif zy4 1s [3;1‘ (k,0)(1,k) then z;4, 1s of K-multiplicity m;,; +1 and again the total
Y5 (k, 1)(0, k)

sum of the XC-multiplicities of the K-singular points on (a, zy41] 1s at least (Zf:ll mj-) +1. If

i P BY (R DO0,K)
CEEEBRY (00, k)

as we did tor z;_| being {

we move to the next index where a ‘}f‘if (k, D) (0, k) occurs and treat

BK  (k, 1)(0,k) L ,
B%  (k,0)(0,k) as above. If 7,4 18y} (k,0) (0, k) then treat 7,4
as we did z; above.

The only possibility for which we do not get the total sum of the K-multiplicities of the

K-singular points as being at least (Z{_l mj) +1 occurs 1f z;, xy41, ..., 2, are all ﬂ' (k,0)
(0, k). But then there are X-singular points in all of (z;, zy+1), (Zy+1, Zy+2), ..., (2—1, Z,) and

one in (z,, a); altogether (Z;:I fﬂj) +1.

(C) At least one of the z; is not K-singular.
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[f z; is not KC-singular then there is a K-singular point in (a, z;) since z; 1s K (a)-singular.
If z, 1s not K-singular then there is a K-singular point in (z,., a).
Let J be the first index other than J = 1 or J = r for which z; 1s not K-singular. If z;_,
Y , .

BT (k, 1)0,k)
1S < [Sﬁ' (k, 0)(0, k) , then there 1s a K-singular point 1n (z;—,, zy), by 4.5, and if z;_; 18

Y (k,0)(0, k)

BNk, (LK)

B‘ﬁ' (k,0)(1, k) then the K-muluplicity of z;_; 1s my;_; +1. Hence one 1s left with z;_;
YAk, 10, k)

k(g .
Yy (K 0)(LL k) . o : _ NRTI , ing
being { Bk (K, 0)(0, k) As in (B) the total sum of the K-multiplicities of the K-singular
vy (k0)(1,k)

points on (a, zs] 18 at least Z';:j mj. Butif z;4 1S ¢ Bg (k,0)(0, k) , there 1s a K-singular
k (YA (k,0)(0, k)

(B k(LK)

point in (2, Zy+1, by 4.4. If 7,4, is < B‘{i (k,0)(1,k) then z;,, has K-multiplicity my
. Uy (K 1)(0,K) . * .
+1. Hence the total sum of the K-multiplicities of the K-singular points on (a,z;41] 18

k :
‘ » 3 O J+1 _ - . B] (}“‘11)(01'(\) _ h‘ . .
at least (ZJ.:I m_,) + 1. It Zy4 18 {'3;5 (k. 0)(0. k) we move to the next index where

L

a non K-singular, K (a)-singular point occurs and treat as we did above for z;_; being
BY  (k, 1)(0, k)
{ BY  (k,0)0,k)
The only possibility for which we do not get the total sum of the K-multiplicities of the

. Finally, if z;4, 1s not K-singular, then treat z;,| as we did z; above.

K -singular points as being at least (Z;.':l HI_;‘) +1 occurs if z;, Zy41, ..., 2, are all not K-
singular. But then there are K-singular points in all of (z;, Zy+1), (Zy+1, U+2)s -+ o5 (=15 )

: ,
and one 1n (Z,, a); altogethere (Z;:] mj) +1.

5. THE MAIN RESULT

Theorem 1. Let C = Cioy be a curve of K-order k + 1 with respect to a system K of
order-characteristics with fundamental number k. Then the sum of the K-multiplicities of the
Ko-singular points of C is at least k + 1.

Proof. The proof is by induction. The result1s valid for k = 2 ([1]; 3.2.6).

Now assume that the result 1s true for n = k£ — | and show that it 1s true for n = k. Take
any strongly differentiable (C satisfies EP; at a) non-singular point @ on C. Now C 1s of K
(a)-order k£ with respect to the system K (a) whose fundamental number 1s k — 1.

By induction the sum of the K (a)-multiplicities of the K (a)-singular points is at least k.
Denote the K (a)-singular points Z; with K (@)-multiplicity m; and a <z) <23 <...<z-<a.
Then )., m; > k. By 4.6, the sum of the K-multiplicities of the K-singular points is at least

(Z;-ﬂ H;;) +1:1.e. > k+ 1.
Hence the theorem 1s true by induction.

Theorem 2. Let C = Cioy be a curve of K-order k + 1 with respect to a system K of
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order-characteristics with fundamental number k. Then the sum of the KC-multiplicities of the
K-singular points is exactly k + 1.

Proof. Combine Theorem 1 and section 5 of [6].

Corollary. A curve Ci4.1 of K-order k + 1 satisfying EPy. at each point contains exactly k + |
singular points.

Proof. Use Theorem 2 and the fact that X -singular points satisfying EP;. are of K-multiplicity
l.
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