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ISOPTICS OF ROSETTES AND ROSETTES OF CONSTANT WIDTH

A. MIERNOWSKI, W. MOZGAWA

Abstract. This paper presents many geometric properties of isoptics of rosettes which
complete and deepen the results obtained in [CM] and [ Weg].

1. INTRODUCTION

This article 1s concerned with some geometric properties of 1soptics of rosettes which
complete and deepen the results obtained 1n [CM] and [Weg]. We begin by recalling the
basic notions and results necessary in this paper.

Definition 1.1. A plane, closed positively oriented curve of positive curvature is said to be a
roselie.

We introduce now a special parametrization using an oriented support function which 1s
a natural generalization of the ordinary one (cf. [S]). Let us consider a rosette C : z = z(s)
|;j::;| and suppose that the index of C is equal to
J. Choose a point O as the origin of our coordinate system and suppose that the curve C 1s
considered 1n this system.

parametrized by arc length. Let n(s) =

Fig. 1

We define an oriented support function of C in the following way. Let us fix a point
Zo = Z(s¢) and consider the tangent line at zy. We can suppose that zg 1s chosen in such a
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way that the tangent line is perpendicular to the x-axis. For an arbitrary point z(s) we define
a vector ¢’ = cost + isinr as on fig. 1 where ¢ is an oriented angle between the positive
direction of the x-axis and vector ¢”. Since the curve C has the index j, we have 1 € [0, 27/].
Now we define an oriented distance p(¢) from the origin O of the coordinate system to the
tangent line to C. Fix a point z(s). Then we take ¢” as a normal vector to C at this point (cf.
fig. 1). If the vector e points to this half-plane which contains O then we put p(f) equal the
negative of the ordinary distance between O and the tangent line at z(s). If not we define p(r)
as the ordinary distance between O and the tangent line at z(s). Since the rosette 1s locally
convex then the p(1), t € [0, 271j], is at least at the class C' (cf. [San]). Using p(t) we obtain
a new parametrization of C given by

2(1) = p(He" + p'()ie".

-

However, in the later part of this paper we always assume that p(r) 1s at least ot the class C~.
Definition 1.2. A function p constructed above is called an oriented support function.

Remark 1.1. The length L of C is given by the formula

27
L = / pdt.
Jo

Remark 1.2. Since the turning tangent line makes j turns, p(t) can have at most 2j zeros.

Let us fix a point z(f) € C and consider the tangent line to C at z(r). Let z(¢'), t' <t, be the
closest point ( 1n the sense of parametrization) such that the angle between the tangent lines
at z(r) and z(¢') is equal to 7T — .

Definition 1.3. The cut locus C, of the intersection points of the above defined pairs of
tangent lines is said to be an x-isoptic of C.
Note that from the above considerations it follows that ' = r + «

In the same way as in [CMM1] and [CMMZ2] we obtain the following parametrization of
Ca

. ] _
Zo(t) = p(D)e'" + (;J(f)cot o+ ——p(t + cx)) fe'.
sin

2. INDEX OF AN ISOPTIC

Since the computation of the curvature of a curve is a local matter then reasoning as in
[CMM1] we get the following formula for the curvature &, of isoptic C,,

SIN &

1 / Hean L 2 /
ko) = o {20,200 = 5 (2408 = {40, 0}),

where g(1) = z(t) — z(t + «) and {, } denote the determinant of coordinates of vectors.
Now we prove the following theorem



Isoptics of rosettes and rosettes of constant width 2035
Theorem 2.1. If C,, is an «-isoptic of a rosette C then

Index C,, = Index C.

Proof. Suppose that Index C = j. Geometrically this means that the tangent indicatrice
makes j turns. Let &, denote the curvature of C, parametrized by arc length and L the length

of C,,. lt'_}: 1s the index of C,, then

L
21 = / k.(s)ds.
J0

Using the theorem of change of variables we have

g 27T] 27) t
/ k”(a‘}dﬁ:/ ﬁ:n{r)\:"{!)ldi':/ kn(f)‘{.}( )Idr:
) .

0 Jo SN X

2T 271
/ == (290 - {90,4'0}) g0l _ / (2 -
JA) J )

g3 sin &
d ( q()
dt \_|g(1)|

2T
471j — /
JO

But ﬁﬁ IS a parametrization of a circle. Since the angle between vectors

iy [
then T then the vector ﬁi:fh

Jj times. Theretore

I

d [ q(1) B
di ( |q(r>1) D“” B

dt.

—r'r' ®
7 and I_:ﬁ is less

. i
runs around the circle the same number of times that EdL namely

/‘3“’ d ( 10, )
Jo |dt\ |g(1)]

27 Index C, = 41y — 21y = 27.

dt = 21y

and

Remark 2.3. Number of self-intersections of the starting rosette and its isoptic need not to
be equal, however their Whitney numbers are always equal (cf. [Whi}).

3. SINE THEOREM FOR ROSETTES

[n the paper [CMMI1] we have proved the sine theorem for ovals. Let’s note that the proof
of this formula is of purely local nature, so the proof of the following theorem 1s similar.

Theorem 3.1. Under the notations from fig. 2 we have

q| f 5

sinx  sino;  SInos
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Fic. 2

4. THEOREM ON TANGENTS TO ISOPTICS OF ROSETTES
Now we prove

Theorem 4.1. Let C,, be an «-isoptic of rosette C of index j. Consider a sequence of numbers
T1, T2, ..., Ty, Ti>0suchthat i+t +.. . +1, <2mjandputty =, = t+7T|,... l4| =
t+71T+1T+ ...+ Ty Then

Zi(sz.iui.ﬂrl) +Zé{-(q:‘;ffﬁ+l) =21+ T2+ ...+ Ty,

Wh(:’f’{? f:;_,, — E-:;._,(rr')r i = q(rf)

Proof. Let us fix an index i Then reasoning analogously as in proof of theorem 4.1 from
[CMM] we obtain

4(3:}..f33;‘f+|) -+ A{(q,',iﬁ_H) — 2'T,‘.

Summing up the obtained formulas, we get our theorem.

Ad. Ifwe put v\ = 1y = ... = Tyj_| = T then for any rosette of index j we have
Corollary 4.1. | putTy =T T 7Tt} _ tte of index j we |

2j— |

Z K(Z;__;,E;JH) + i(@f:ﬁ£+i> = 2(2j — ).

=1

-y - ! .
Sop, by S, 20t oy Sy 25— are

Corollary 4.2. Let 1) = T) = ... = Tyj—; = 7. Then vectors
parallel if and only if vectors qy,q2, ... ,q2i—1 are parallel.

S. ROSETTES OF CONSTANT WIDTH

Let C : z(r) = p(n)e" + p'(pie" be a rosette of index j, where p is an oriented support
function of period 2.
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Definition 5.1. A rosette C is a rosette of constant width with respect to the origin O if
p(t + 11j) + p(t) = const holds for each t € R.

We are going to find a necessary and sutficient condition for a support function to give a
rosette of constant width. We consider the Fourier expansion of p. Thus

L’I[] . nt
p(t) = - (a coa + b, SIn —_),
Z I i1 J"

n=|

where
| [ !
a, = — / p(t) cos idr, n==0,12...
) Jo J
| [ f
b, = — / p(t) sin 1{31’, n=172,...
iy Jo J
Then
u” 2;« . 2kt - (2k + 1)t o Rk + Dt
plt+ 1) = — —I— (n” cos — + b, sIn —) -+ (—a,, COS . — b, SIn : )
S =) T2 J, J,

n=| n=|

Since p(t+ 1) + p(t) = const then ay. = by = 0 tor each positive integer k. On the contrary,
a»i+q and bay 4 are arbitrary - provided that p + p” > 0.

Corollary 5.1. Each rosette of constant width of index j is given by the following support
function

2k + 1)t 2k + 1t
ﬁ(!] H“ “t+ E (Hu+| COS ( + ) | b':r,q_;_] S1n ( + ),
J J
k=0

where ay, arp+1, b1,k =0,1,2,... are suchp + p" >0 for eacht € R.

This 1s a generalization of the Tennison theorem for ovals (cf. [Ten]).
Note that the condition p(f + 7)) 4 p(t) = const depends on a choice of the origin O.

Theorem 3.1. The following conditions are equivalent:
(1) The roserte is of constant width with respect to any point of the plane.
(2) The rosette is of constant width in sense of definition 7 from [CM].
(3) The support function p satisfies the following conditions:

a 2k + 1)t . (2k+ Dt
(a) p(t) = j + Z( (o1 COS ( ; ) - Daga) SIN ( ; ) )
k=()

(b) P+ ;:r” > (),
(¢) jis odd.

Proof.
(1) = (3)
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Let us suppose that C is a rosette of constant width with respect to any point. Then (a) and
(b) of (3) are obviously satisfied. A support function p of C with respect to an arbitrary point
(a, b) 1s of the form

p(t) = p(t) — acost — bsint

Since p(t + 7)) + p(t) = p(t + 71j) + p(t) = const, thus j must be odd.
(3) = (1)
This step 1s obvious.

(1) = (2)

In both cases we know that j is odd. This means that the normal vectors at r and r 4 717 are
oppositely directed and p(r + 717) 4+ p(7) 1s an ordinary distance between the tangent lines.

Corollary 5.2. The following conditions are equivalent:
(1) Rosette is of constant width with respect fo the origin Q.
(2) Conditions (a) and (b) from the above theorem hold.

We shall study now the case of rosettes of even index. In this direction we have the
following

Theorem 5.2. Let C be a rosette of even index j and of constant width with respect to the
origin O. Then O is the Steiner centroid of C ( this means that this point is geometrically
determined).

/

Proof. We have to prove that A = ﬁﬂj(p(t)e“ + p'(Die")dt = 0. Since (p(r)fe”) =
= p’'()ie" — p(r)e" then

2] | 0y, _ 27 |
A= 2/ p(He'dt = 2/ p(He'dt + 2/ p(he'dt =

0 0 oy

" . " . .
2 / p(t)e''dt + 2 / p(t + mj)e'" T dt =
0 0
m . ™ L
2/ p(t)e'dr + 2/ (c — p(r)) eIt gt =
0 0

T
= 2/ ce''dt = 0.
0

We will show now that some results from [CM] extend to the class of rosettes of constant
width of even index. Let us consider a rosette C : z(f) = p(t)e" + p’(t)ie" of constant width
c = p(t + 1) + p(¢) of even index j where a support function p is taken with respect to the
Steiner centriod of C. Let C denote the rosette symmetric to C with respect to O.

|
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Fic. 3

We have (see fig. 3):
2t + 7)) — (—2(0) = ot)ie" + ce".

Hence | | |
7t + 1) — (7)) = & (Die" — (e + cie".

On the other hand,
J+m)+ 70 = (p(r) + p”(f)) ie' + (p(f' + 7)) + p'(t + ﬂj))f'e”.

Therefore
o(t) =0

and
x' + ¢ = p(t) + p”(.’) + p(t + 1)) + p”(f + 77)).

[ntegrating the last formula over the integral [0, 277/] we get
L = cmy.

Taking into considerations the results from [CM] concerning only the rosettes of odd index
we can state the following

Theorem 5.3.
(1) The length of a rosette of constant width c is equal to cTy.
(2) The normal lines at z(t) and z(t + 7)) of any rosette of constant width coincide.

Let us note that from the above considerations and [CM] 1t follows

1 !

T k() kG + )

=
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Consider now the reciprocal situation for even index.

Theorem 5.4. Assume that z(t) = p(t)e + p’(t)ie" is a rosette of even index j such that

(1) ¢ = 55 + w = const.
27j
(2) fﬂ z(Hdt = 0.
Proof. We have
= p(t) + p" (1) : — p(t + 7)) + p”' (t + 7))
k(1) k(t + 717) ‘

Consider an equation (cf. fig. 2.)
2(t + 1) + z(t) = a(t)ie" + d(t)e".

Then differentiating the above formula we get

Iﬂn+ﬁ%yum+nﬂ+ﬁw+qnmﬁzwmyhﬂmmﬂ+wmﬁ+dmyi

Hence

c = o/ (t) + d(t)

0= —a(r) +d'(1)
Therefore

(1) + o'(r) = 0.
Consequently

x(t) =acost+ bsint, d(t) =asint— bcost+ c.

Thus we have

2(t + 1)) + 2(t) = (acost + bsinr)ie” + (asint — bcost + c)e'’ =
= (—b + ccost,a+ csint).

Since

27 27
] Z(Ddt = / 72(t +mj)dr =0
U 0

then a = b = 0. Finally we get «(f) = 0 and d(¢) = c.

6. AXES OF SYMMETRY OF ROSETTES OF CONSTANT WIDTH

S. G6zdzZ in [GOZ] studied axes of symmetry of plane curves using the Fourier expansion
of their radius of curvature. In this section we examine the same problem for rosettes of
constant width using our oriented support function.
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We are looking for the conditions for rosette to have one axis of symmetry. We can assume
that the x-axis 1s the axis of symmetry. This means that p(27tj — ) = p(t). Then from the
equality

> 2k + it . (2k+ T

Z (ug;\.“ COS , L bagyy SIN , )
o J J
ffn

2k + DQ2mj — ¢ o 2k+ DRy — ¢
— +Z(hi+[{,{]‘a( )( J ) b1A+| ( )( / ))

k=() j J

we get by = 0fork=0,1,2,....
We shall consider now a rosette with n axes of symmetry. These axes must have a
common point, since otherwise the boundedness of C leads to a contradiction. In this case

p(= T f) = p(t) tor t € R. We suppose that x-axis 1s one of the axes of symmetry. We have
Ihen
ay . (2k + 1)t
) = — + a2k 41 COS ,
p(1) ) E 2k+1 i

k=0
: 27
Then from p(=+ — 1) = p(r) we have

(2k + 1)m 2k + 1

(rp 41 SIN CcOS =0
n n
o, (2k+ D
a2k41 SN = ().
n
) .
Hence either a4 = 0 or sin H“T = 0. If sin {“’Lﬁ = ( then 2k + 1 = np where p 1s an

arbitrary odd positive integer.

FiG. 4 A rosette of index two with three axes of symmetry

Theorem 6.1. Any rosette of constant width with n symmetry axes where n is odd is given by
an oriented support function p of the form

2k + 1)t
H[] —+— E k4 CG‘;( : )
J
k=0
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161 — | . . - . .
where ax..1 = 0 for k # =5—, where q is an arbitrary odd positive integer, provided that

p+p’'>0.

Corollary 6.1. There exists no rosette of constant width with an even number of symmetry
axes.

Corollary 6.2. A rosette of constant width with a center of symmetry reduces to a circle.
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