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A CLASS OF TOPOLOGICAL SPACE GEOMETRIES

JANG-HWAN IM

Abstract. The purpose of this paper is to introduce R*-divisible R*-spaces. This is a branch
of topological space geometries in the sense of Betten. We define a few more topologies on the
line set in R*-divisible R*-spaces and investigate under the consequences of these topologies
basic properties of these space geometries.
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1. INTRODUCTION

In this paper we investigate a new class of topological space geometries, so-called R*-
divisible R’-spaces. A topological projective plane P is a projective plane with point set P
and line set £, where both P and L carry topologies such that the operations of joining and
intersecting are continuous in their domains of definition. A topological projective plane 1s
called n-dimensional it P and L are n-dimensional, locally compact, connected topological
spaces. As in the case of projective planes, we will call a locally compact, connected affine
plane n-dimensional if its point set and line set are n-dimensional, locally compact, connected
topological spaces. The lines in 2-(4-)dimensional affine planes are homeomorphic to R
(R%). For general information about topological planes the reader is referred to [Sal95].
Since the fundamental papers of Salzmann [Sal70, Sal 71], Betten has tried to classity all
4-dimensional compact flexible projective planes. A toplogical projective plane is called
flexible if the collineation group has an open orbit in the space of flags(flag=incident point-
ine pair). In a series of papers of Betten and Knarr many different types of 4-dimensional
projective planes were found. These planes can be represented by 4-dimensional atfine
blanes, and R--divisible R’-spaces are derived from 4-dimensional affine planes. We can
regard an R>-divisible R*-space as an intersection of a 4-dimensional affine plane and R’. In
order to explain of this geometrical structure, we consider the classical 4-dimensional affine
plane A>C over the complex field C and the induced R*-divisible R’-spaces. The affine
plane .A-C consists of point set C x C and the following subsets of C x C are called lines:
Lis,1) = {(x,sx +1) : x € C} for s,1t € C, {c} x C for ¢ € C. If we identify C? with
R} = {(x,v,u,v) : x,y,u,v € R}, then we can identify the lines with the following forms:
L(a,b,&,n) = {(x,v,ax—by+&, av+bx+n) : x,y € R} for(a,b,E,n) € R {(x,y)} % R* for
(x,v) € R*. Let R_f:” = {(0,y,u,v): y,u,v € R}andletl(a, b, &,n) := L(a, b, &,n)ﬁRi:“ =
{0, v, —bv+£&,av+m) : v € R}. L denote the set of all lines /(a, b, £, ) with (a, b, &,n) € R*.
If we identity R_':f:“ with RY = f(v,u,v) : y,u,v € R}, then we get a geometrical structure
(R, £, A) on R, that is, for two points (v, uy, vy), (y2, U2, 12) € R? with v, # v, there exists
a unique joining line /(a,b, &, 1), and A = {{v} x R? : y € R} is a partition of R>. In the
same way we get also a geometrical structure on R_, := {(x,0,u,v) : x,u,v € R}. Hence
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we have an abstraction, so-called R*-divisible R3-5paces. The two geometrical structures are
equal to the classical R*-space without vertical lines. We call the classical R*-space without
vertical lines as the classical R*-divisible R>-space. In the classical R*>-divisible R*-space on
R = {(x,y,2) : x,y,z € R} we can consider two projections on < x, y >-coordinate plane and
< x, z >-coordinate plane, respectively. We get also two affine planes on < x, y >-coordinate
plane and < x, z >-coordinate plane, respectively, where the line set 1s the set of all projections
of lines in R° on < x,y >-coordinate plane and < x,z>-coordinate plane, respectively. In
a series of papers of Betten and Knarr we have lots of examples of R*-divisible R>-spaces
which are induced from 4-dimensional affine planes.

After inspection of all flexible 4-dimensional translation planes we see: the induced R*-
divisible R>-spaces by translation planes are the classical R*>-divisible R>-spaces. The affine
planes in [Bet84] give rise to R*-divisible R’-spaces which are non-classical, that is, if
we consider two projections on < x,y>-coordinate plane and < x,z>-coordinate plane,
respectively, one of the projection is the classical affine plane and the other is a Moulton
plane. Knarr studied 4-dimensional shift planes. The shift planes give also rise to non-
classical R*-divisible R’-spaces. In this case one of the projection is the classical affine plane
and the other is a 2-dimensional shift plane. Conversely, we can reconstruct R*-divisible
R3-spaces in the following manner. An R2-plane (R?, £) is called standard if all vertical lines
{x} x R are in L and the other lines / € £ can be written as the graph(f) of a continuous
mapping f : R — R. Let E; = (R*, £) and E; = (R?, ) be two standard R?-planes. If
we 1dentify E; with the horizontal plane z = 0 and E; with the vertical plane y = 0 in
R = {(x,y,2) : x,y,2 € R}, respectively. We define on R> the following curves as lines:
fxg:={(xfx),gx) : x € R}, where f and g are lines in E| and E>, respectively. Let
LXS={xg:feLl,geS}tand A = {{x} x R* : x € R}. The incidence structure
(R, L x S, A) is called the product space of two planes E; and E,. Denote by in particular
(R3, LXx, A) E, xE,, and it is an R*-divisible R>-space. In this viewpoint one of the induced R?-
divisible R>-spaces in [Bet84] are the product spaces of the classical R%-plane and a Moulton
plane. The R%-divisible R>-spaces which are induced from 4-dimensional shift planes are the
classical R*-plane and a 2-dimensional shift plane. These obsertions give the motive of the
study of R?-divisible R>-spaces.

For the purpose of a systematic study of R*-divisible R>-spaces we are at first interested in
topological structure of these geometries. In [Bet81] Betten studied R>-spaces. An R*-space
in the sense of Betten [Bet81] is an incidence structure (R*, £) which satisfies the following
three axioms; (1) each pair p, g of distinct points is contained in a unique line p V g € L,
(2) each line [ € L is closed in R® and homeomorphic to the real line R and (3) the mapping
V : R’ x R®> = A — L is continuous, where A := {(p,p) : p € R*} is the diagonal and
L carries the topology of Hausdorff-convergence. A plane in a R*-space (R*, £) is a closed
subset E C R’ which is homeomorphic to R? such that p V ¢ C E for each pair of distinct
points p,gq € E. Obviously, (E, L) is an R*-plane, where Lg := {l € L : 1 C E}. Itis a
generalization of the classical R°-space. In the viewpoint of Betten, the geometrical structure
of R?-divisible R3-spaces is closely related to the case of R3-spaces, that is, it can be regarded
as a variation of R>-spaces.

In topological space geometries there can be besides the joining operation of distinct pair
of points the following join and intersection operations:

(G)V:DCR*XRXR — &,
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(G2))V:DCR x L — &,

(GIHAN:DCLxL\{(gh:|lgNnhl#1} — R,

(GHADCEXL\NUE g :|ENg|# 1} — R,

(GS)YN:DCEXEN{EF):E=ForEANF =0} — L,
where £ is the set of all planes and D 1s a suitable domain.

We investigate a suitable topology on the line set such that the above geometrical operations
are continuous. We claim some additional condition, so-called bounded condition, 1n order
to guarantee of continuity of these geometrical operations. In this paper we define a few
topologies on the line set L(see 1.7 and 1.9). In a topological R*-divisible R*-space if the
two topologies H and COT are equal, then the above operations are also continuous, and
two topologies H and COT on the line set are coincide if and only 1if the space satisfies the
bounded condition in most cases. In this paper we will study basic properties of these space
seometries which need to develope of topological R>-divisible R*-spaces.

Let X be atopological space and (A,)),en be a sequence of subsets of X. Denote by liminf A,
the set of all limit points of sequences (a,),eny With a, € A, and denote by limsup A, the set
of all accumulation points of such sequences. The sequence (A,),cn 18 Hausdorff-convergent
toA C Xifandonly if liminf A,, = imsupA, = A (wnitten by imA, = AorA,, — A).

P denote a topological space which is homeomorphic to R". A partition A := {§; : i € A}
in P" (n > 2)is divisible if each S; is closed in P and homeomorphic to P" ',

Definition 1.1. Let £ be a system of subsets of P*, and let A = {S; : i € A} be a divisible
partition in P*. The elements of P are called points, and the elements of £ are called lines.
We say that (P*, £, A) is an R>-divisible R*-space if the following axioms hold:

(1) Each line is closed in the topological space * and is homeomorphic to R.

(2) Forall.x € §;,v € §; withi # j there is a unique line / € £ with x, y € [. Fori = j there
are no lines / € L withx, v € /.

The joining line in (2) isdenoted by / = xV y. If A = {8, : i € A} is adivisible partition in
P2, then we can similarly define an R-divisible R>-plane (P>, £, A). If we think the partition
as the added line set, we can regard an R-divisible R*-plane as an R*-plane (Salzmann-plane).

Definition 1.2. Let (P3, £, A) be an R>-divisible R*-space. A subset E C P? is called a plane
of (P, £, A) if the following conditions hold:

(1) E is closed in P and homeomorphic to R-,

(D (E, Ly, Ap)is an R-divisible Rz-plune. where Lp:={le€ L:IC E}and A = {ENS; :
i € A} is a divisible partition in E.

In an R-divisible R*-space (P, L, A) let £ denote the set of all planes of (P?, L, A).
Furthermore. let £, := {ENS;: E€ Eand S; € A} and £ := L U L,. If the join operation
from two points to a unique line 1s written by Vv, then V is the following mapping:

VPt x Pl \ Uiea(S; x §;) — L.
Let 27 x P3¢ denote the set P x PP\ Uiea(Si X S)).

Lemma 1.3, Ler (P, £, N) be an R--divisible R’ -space, and let (1,,) be a sequence in L with
limsup/, = 0. Then | Iimsup /! = x.
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Proof. Let (P°,L,A) be an R*-divisible R*-space, and let y : P° — R’ be a home-
omorphism. Then (R?, £7, A7) is also an R*-divisible R*-space, where L7 := {y(l): | € L}
and A7 := {v(S;) : S; € A}. Let x € limsup/,, then y(x) € limsupy(/,). For m € N let
S(y(x),1/m) = {p € R* : ||y(x) — p|| = 1/m}. Since each line y(I) is connected, unbo-
- unded and homeomorphic to R, hence S(y(x), 1 / m) Nvy(l,) # 0 for infinitely many n € N.
Since S(y(x), 1 / m) is compact, it follows that S(y(x), 1 /m) N limsupy(l,) # 0. Therefore,

Y~ (S(y(x), 1 /m)) N limsup i, # 0.

Hausdorff metric: Let { be the set of the non-empty closed subsets of P*. We define on
U the tollowing metric:

5:U xU — R: (A, B) — sup{|d(x,A) — d(x, B)|e " : x ¢ P*},
where d is the metric on P> and p € P°.

Theorem 1.4. d is a metric on U. Let (A,)ncn be a sequence in U and A € U. Then (A,)uen
converges to A in (U, d) if and only if imA, — A.

Proof. [Bu65, Section 3].
Since the line set £ 1s a subset of {/, we can take on L the induced topology of I/, and 1t 1s

s

called the natural topology and written by H. From now on we always assume that L, L;, L
and £ have the induced topology of U.

Definition 1.5. An R>-divisible R*-space is called ropological if the join map V is continuous
with the natural topology H on the line set L.

This definition has quite intuitive interpretation: roughly speaking, it means that the points
on the lines [, approximate precisely the points on /, and that no parts of /, can stay away from
[. In the case R*-planes(also R-divisible R*>-planes) with this notion of convergence, the join
map of every R*-plane (also R-divisible R*-plane) is sequentially continuous [Sal95, chapter
3], but not in the case R2-divisible R3-5paces (also R’-plane). We have a counterexample
which is a modification of the counterexample in [Bet87].

Example 1.6. The classical R*-space is the real affine space: the point setis R> = {(y,u,v) :
y,u,v € R}, and the lines are all 1-dimensional affine subspaces of R’. We replace <y, v >-
coordinate plane by an affine Moulton plane M, k> 1 (see [Sal95, chapter 3]). Then we
get an R*-space which is not sequentially continuous. We choose A = {{y} x R* : y € R}
and take £ as the set of all lines in the above defined R>-space which are not contained in
{y} x R%. Then (R3, L, A) is an R?-divisible R*-space, which is obviously not sequentially
continuous.

Definition 1.7. (1) The final topology F on L is the largest topology on £ for which the
mapping V : P> x P’ \ Uiea(S;i x §;) — L is continuous.

(2) The open join topology OJ is generated by the subbasic elements O; VO, = {pVqg € L :
p € 01,9 € 0,}, where 0y, O, are disjoint open sets in P°.

(3) The open meet topology OM is defined by the subbasic sets Mp = {l € L : IN O # B},
where O is an open set in P-.

Theorem 1.8. Let (P, L, A) be a topological R*-divisible R*-space. Then:
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(1) The topologies H, F, OJ, OM for L coincide.
(2) The join map V : P> x P>\ Uje 4(Si X S;) — L is open.

Proof. (1) We show that OJ C OM C H C F C OJ. Since O, V O, = Mgy, N Mp,,
the first inclusion holds. If O is open in P, then L\ Mp = {{ € L : INO = §}
1s H-closed. Assume that £ \ My 1s not H-closed. Then there exists a sequence (/)
in £ \ My which converges to / € Mg. Choose a point a € [N O. Then there exists a
sequence (a,) with a,, € [,, which converges to a. For sufficiently large n € N a, lie in O,
a contradiction to /, € L \ My. Consequently, OM C H. The definition 1.5 implies that
H C F. For the inclusion F C OJ, let U C L be F-open, and let/ = p; V p» € U. Then
VHU) = {(x,y) € PP X PP\ Ujca(Si xS : xVy € Ulisopenin P? x P>\ Uic a(Si X Si).
Using the normality of P*, we can show that U;c 4(S; x S;) is closed in P? x P, Consequently,
v~ HU) is open in P? x P? hence we can find two disjoint open sets O; containing p; such
that/ € O, v O, C U.

(2) 1s immediate from (1).

If S; € A, then P \ S; has precisely two components (denoted by S, S;), of which §;
1s the common (topological) boundary (see [Mas80, III. §6]). If we choose more §; € A
with i # j, then one of the components of P* \ S; (for example S;") is also separated by ;.
We can choose one of the components of S;" \ S; which contains S; and S; as the topological

boundaries. Let S;j* denote the union of the components which has §; and §; as topological

boundaries, S; and S;. We identify S~ with simply S;

Definition 1.9. The open partition meet topology OPM on L is generated by the subbasis
elements SY = {l € L : 1N O # (0}, where O is an open set in S; and §; € A.

The compact open topology COT on L is defined by the subbasis elements S? ={le L:
INS; = {x})INS = {y}, [x,y] C S;."" N O}, where §;, §; € A, S;_ is the union of the
component which has §; and §; as topological boundaries, §; and §;, and O 1s open 1n P,

Lemma 1.10. Let (P?, L, A) be atopological R*-divisible R’-space. Then H C OPM C COT.

Proof. By theorem 1.8, we show that OJ C OPM. Letp, Vp> € OV O, € OJ. Then there

exist 5,5 € Awithp, € §1,pp € $»,andp, Vpr € S?] ﬂS?J C OV 0O».
This implies that OJ = H C OPM.

By definition of COT, it is clear that OPM C COT.

2. BASIC PROPERTIES

Let (P, £, A) be a topological R*-divisible R*-space. Since lines are homeomorphic to
R, there 1s a natural notion of intervals in lines. If / € £ 1s a line and p, g € [ are two (not
necessarily distinct) points on /, then we denote the interval which consists of all points on
[ between p and g by the symbol [p, g]. The open interval between p and g 1s defined as

—

(p,q) == [p,g] \ {p.q}. pV ¢ is an emanating ray from p to g. A subset K C P3 is called
convex if it contains with each pair p, g € K also the interval [p, g]. £ 1s the set of planes of
(P* L, A),and L, = {ENS;:Ec€and S; € A}, L = LUL,. Ifa,b,c € P’ are three
non-collinear but coplanar points, then we denote the plane which contains all three points by
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the symbolaVv b Ve If E€ Eisaplaneand ! € L is aline with |[EN /| = 1, then we denote
the point of intersection of Eand /by EAL If Ey, E, € £ are two planes with EN F # (), then
their intersection 1s a line (see lemma 2.2), which will be denoted by £ A F,

If E is a plane of (P>, £, A) or an element of partition A, then P \ E has precisely two
components, of which E is the common (topological) boundary (see [Mas80, III. §6]). The
two components are called halfspaces.

Definition 2.1. Let (P°, £, A) be an R*-divisible R’-space. Given two subsets A,B C P?,
we define

[A,B]:= | ] lab)

acA.bEB

1.e., [A, B] 1s the set of all points between A and B.
Let (P°, £, A) be an R*-divisible R*-space. Then we will consider the following additional
axioms:

(B) (Bounded-axiom) If A, B C P? are compact, then [A, B] 1s also compact.

(Exc) (Continuously existence condition for planes) Given three points a,b,c € P? with
(a,b) € 77;_ X Pg}, c € S, and ¢ € a V b, then there exists a continuous mapping @ : J — &
such that c V z C @(z) forall z € J, where J = [a,b] if S, N [a,b] = 0, J = [a,b] \ {w} if
Se N[a,b] = {w}.

Lemma 2.2. Let (P?, L, A) be a topological R*>-divisible R>-space. Then:

(1) IfE C P?isaplane andl € L is a line with | A E = {y}, then the two components of
I\ {y} are contained in different halpspaces of E.

(2) IfE C P3 is a plane and I, € L, is a line with I; N E = {y}, then the two components
of I; \ {y} are contained in different halpspaces of E.

(3) IfE; and E, are two planes with Ey # E> and E\ N E, # 0, then E,NE> € L.

Proof. (1) Let / be a line and E be a plane with / A E = {y}, and let E™ and E~ be the two
connected components of P> \ E, EY Nl # (. Letx € E* with / = x V y and a sequence
(vp) € E~ with y, — y. Then it is clear that for sufficiently large n € N y, € S;, where

x € S; € A. Therefore, limsup(xV y,) = I. Leta, := (xVy,) AE, thena, Vy, C E- UE. Let
S:={peP:|ly—p|| =1} N(EUE"™), then for infinitely many n € N (a, V y,) N S # 0.
Since S is compact, the set of intersection points of a,, V yf, and S has an accumulation point,

1.e., there is a @ € SN limsup(a, V y,:) CSNI.L Sincey ¢ Sand | I A E |= 1, therefore,
a€E-,sothat E- N[+ (.

(2). Letl; € L; be a line and E be a plane with [, A E = {y}. Since [; € L,, there exists a
plane F with [; C F. Let ET and E~ be the two connected components of P3 \E,EY NI # 1.
Choose x € ET withl; =xVy. Let LI :={l€ L:y el C F}. Then by (1) each line | € L]
and E are transversal, we can choose a sequence (y,) € E~ N F with y, — y. Since F with
lines S; N F,i € Ais an R*-plane, it is lim sup(x V y,) = ;. Then the rest part of proof is the
same 1n proof (1).

(3). By definition 1.2, we can regard E| and E3 as R*>-planes. The assertion can be proved in
proofs [S185, 1.2.4. Korollar 10 und 11]. [




A class of topological space geometries 181

Lemma 2.3. Let (P, L, A) be a topological R*-divisible R*-space, and let E be a plane of
(P, L, N). IfEY is one of the components of E, then ET and Et are convex.

Proof. Let x,y € ET with (x,v) € Pr.} X ’P%. Assume that [x,v] N E # (), then there
exists 2 € |x,v] with x,y # z € E. Now the points x and y lie on different sides of
(x Vy)\ {z}, and by lemma 2.2, the points x and y lie on different sides of E, a contradiction
to x,v € E*. Therefore, [x,y] C P*\ E, and since [x,y] is connected, it follows that
[x,v] € ET. Therefore, £* is convex. Since d EY = E, hence ET = ET UE. Letx,y € E+
with (x,y) € P¢ x P¢. If x,y € Eorx,y € E*, then [x,y] CET UE = E*. Hence we may
assume that x € Eand y € E*. Then (x,y] C P \ E is connected, therefore, (x,y] C ET,
and also [x,v] = {x} U (x,y] CEUET = E*.

Lemma 2.4. Let (P, L, A) be a topological R*-divisible R*-space, and let | € L, S; € A.
hen:

(1) IfINS; = {v}, then the two components of I\ {y} are contained in different halpspaces
of S;.

(2) If S is one of the components of S;, then S;™ and S;" are convex.
Proof. Since [/NS;| < | forl € L,S; € A, the assertation can be proved as in proof of
lemmas 2.2 and 2.3.

., , . e TR 2 :
Theorem 2.5. (Order-condition) Let (P?, L, A) be a topological R*-divisible R”-space. If the
points sequences () hen, (bnnen, (Cnen have mutually distincet limits a, b, c. If b, € |a,, ¢;]
forall n € N, then it is also that b € |a, c|.

Proof. Since (P, L, A) is topological, it 1s clear that a, b, ¢ are collinear. Since the intervals
la,, ¢, ) and [a, ¢] are defined, let [, = a, V b, and I = a V b. Suppose that b & [a, ¢]. Without
loss of generality, we may assume that ¢ € [a, b). Choose a point p € (¢, b), and letp € §;. Let
ST and S be two halfspaces of 28 \Siandb e §7 . Iftaec S, thenp € (¢,b) C la,b] C S .
Since S; is convex and p € S;, a contradiction. Hence @ € S;. Similiarly, ¢ € S7. Since S
and S, are open in P for sufficiently large n € N, a,,c, € S+ and b, € S; . Since S} is
convex, it follows that b, € |a,,c,] C S;", a contradiction. Therefore, b € [a, ¢].

Lemma 2.6. Let (P?, L, A) be a topological R*-divisible R*-space satisfying the axiom (B).
Then:

(1) Let (a,) and (b,) be two sequences in P3 which converge both to a point p € P2 Let
(p,) be a sequence in P with p, € |a,, b,] foralln € N. Then p,, — p.

(2) Let U be a neighborhood of a point p € P?. Then there exists a neighborhood V of p
with [V, V] C U.

Proof. The assertations can be proved in similar manner of the proofs of [10, lemma 2] [

Lemma 2.7. Let (P2, L, \) be a topological R*-divisible R*-space satisfying the axiom (B).
Then H= OPM = COT.

Proof. We show that OPM C OJ = H. Letl € §Y € OPM, {p} = [N U and V be an open
set in P such that S; NV = U. Let (V,)),en be decreasing sequence of neighborhoods of p
such that {V,, : n € N} is a neighborhood basis at p. Let S and S;~ be the two connected
components of P\ S;, and let V, N (P\ S;)) = VI UV, suchthat V7 C ST andV, C ;.
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We will show that there exists a numbern € N suchthat/ € VFv V- C SV, Suppose that it is
not true; for each n € N we can choose p, € V.7, g, € V.~ such that (p, V g,) N U = (). Since
(p») and (g,) converge to p, and by the axiom (B) and lemma 2.6, (p, V ¢g,) N S; converges to
p. Hence tor sutficiently large n € N (p, V g,) N S; C VN S; = U, a contradiction.

We show that COT C OPM. Let | € S € COT, and let {x} = §;N 1L {y} = S NLIf

i = j, then it 1s clear that Sff € OPM. Hence let i # j. Let (V,,(x),env and (W, (¥)),en be two
decreasing sequences of neighborhoods of x and y such that (V,(x)),eny and (W,(y)),en are
neighborhood basis at x and y, respectively. Then we will show that there exists a number
n € N such that [ € §»®™ N Sf"{'r] C §7. If we assume that it is not true; for each n € N
there exist x,, € V,(x) and y,, € W,(y) such that [x,, y,] € 5,? For each n € N choose a point
Pn € [Xxa,¥yr] such that p, ¢ S? Then by the axiom (B) and theorem 2.4, the sequence (p,)
has an accmulation point on [x, v], a contradiction. L

Theorem 2.8. Ler (P°, L, A) be a topological R*-divisible R’-space. Let H = COT and
INS; # 0 foreachl € Land S; € A. IfA,B C P’ are compact withA x B C P:; X 77‘%, then

A, B] is also compact.

Proof. We assume that [A, B] is not compact. Then there exists a sequence ((a,, b,)) In
A x B and a sequence (p,), p, € lan, b,] \ {a,, b,} such that (p,) is unbounded. Since A x B
1S compact, there exists a convergent subsequence ((a,,, b, )) which converges to a point
(a,b) € A x B.Since A x BC Pg x P¢,aV bis defined. Leta € S, and b € S,,. Since for

eachl/ € L,S; € AitisINS; # 0, and H = OPM. Without loss of generality, let a, € S,
and b, <€ §,. Choose a relative compact open set U which contains [a, b]. Since H = COT
and a,, V by, — aV b, there exists N such that for all k > N U({a,,, b, 1) U [a,b] C U.
Therefore, (Ulay,, , b, 1) U [a, b] is bounded, a contradiction.

Lemma 2.9. Let (P, L, A) be a topological R*-divisible R*-space. Let S; € A and (l,) be a
sequence in L such thatl, — | € L. Let H= OPM and |S; NIl| = 1. Then |S;N1,| = 1 for
sufficiently largen € N, and S; N1, — S:N 1.

Proof. Let p € §; N/ and U be an open neighborhood of p which is relative compact in S;. By
the assumption H = OPM, SY is an open neighborhood of /. Since /, converges to /, it follows
that [, € S7 for sufficiently large n € N, so that [, N U £ (). Since U is relative compact, the
sequence (/, N U) has an accumulation point. If x is a limes of convergent subsequence of
this sequence, then x € §; N limsup/, = S; N[ = p. Therefore, S;N 1, — S; N [. B

Theorem 2.10. Let (P>, L, A) be a topological R*-divisible R3-space. Let H = OPM and for
eachl € Land S; € AINS; # (. Then:
(1) The line space L is homeomorphic to R*.

(2) For p € P- the line pencil L, = {l € L : p € I} is homeomorphic to R?.

Proof. (1) Let S;,S; € Asuchthat $;NS; = 0. Let L5 = {l € £ :|S;nNI = 1} and
Ls,={leL:|SNn]|=1}.SetL;; = L5 N Ls, By the assumption, it is clear that £; ; = L.
By lemma 2.9, the following maps are well defined and continuous:

@'Z[.:;_J'HS,:XSJIEH(S;HJ,SJHI),

Y:85ixS§ —L;:(x,y) —xVy.
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[tisclearthat Yo @ = id and ® o V¥ = id, 1.e.,  1s a homeomorphism.

(2) Choose S; € A such that p € S;. By the assumption and lemma 2.9, the following maps
are well defined and continuous:

: L, — Sl —1INS;,

V:8 —L,:x—pVx.

[tisclearthat W o & = idand ® o ¥ = id, 1.e., ® 1s a homeomorphism.

J. CONTINUITY OF THE GEOMETRIC OPERATIONS

[n this section, let (P°, £, A) be a topological R*-divisible R’-space. Let E denote the
space of all planes of (P?, £, A). Furthermore, let £, = {ENS;: E € £ and S; € A} and
L=LUL,.

Lemma 3.1. Let (P>, L, A) hold the axiom (Exc). Then for each line | € L there is a plane
Ewithl C E.

Proof. Let/ € £ and [c,p] C I withec # p,c € S. € A. Choose a line g € L with p € g and
an interval {a, b] C g with [a,b] NS, = (). Then by the axiom (Exc), there is a continuous
mapping @ : [a,b] — & withcV z C @(z) forall z € [a, b]. Itisclearthat/ = cVp C @(p).

Lemma 3.2. Let H = COT. Let E C P° be a plane and (l,) be a sequence in L with
l, — | € L. Let |ENI| = 1. Then for sufficiently large n € N |[EAl,| = 1, and
ENL, — ENL

Proof. Let ET and E~ be the components of P* \ E. By lemma 2.2, the plane E and the
line [ are transversal, hence there exist a € [INET and b € IANE~, and let ¢ € S, and
b €S, Since [, — [ and H = OPM = COT, we can choose sequences (a,), (b,) € I,
with a, € 1, NS, and b, € [, NS, which converge to a and b, respectively. Since E™
and £7 are open In P3 . for sufficiently large n € N a,, € E* and b, € E~. Therefore, for
sufficiently large n € N . |[EA L, = 1 and EA I, € [a,, b,]. By the assumption H = COT,
the sequence (E A [,;) 1s bounded. If x i1s a limes of convergent subsequence of this sequence,
thenx € ENlimsup/, = E A l. Theretore, EA L, — E N L

Lemma 3.3. Let H = COT. Let E,F C P° be planes with EANF € L. If (E)sen IS a
sequence of planes with E,, — E € &, then for sufficiently large n € N E, AN F € L, and
E.NF— EANF.

Proof. Let/ =xVy=EAFwithx € §;,y € §;,i # j. Choose apointa € E\ (ENF)
witha € §; U S;, and let g :== aV x and h := a V y. Since E, converges to E, there are
sequences (.x,,), (yn), (a,) with x,,, v,, a, € E,, which converge to x, y and a, respectively. It1s
clear that for sutficiently large n € N a, 1s not contained §; US; , wherex, € §; , v, € §j,. Let
gn=a, VX, h, :=a,Vy,theng, — g h, — h.Sincea & F,g € Fand FA g = x. by
lemma 3.2, for suthciently largen € N FA g, 1snotemptyset, and b,, := FAg, — FAg = x.
Similiary, ¢, := FAh, — FAh=y.Sincex € §;, y € §; with i # j, b, and ¢, are not
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contained in the same partition set. Therefore, we setl, = b, V¢, C F, and [, — [. Since
b, c, € E,, it followsthat E, AN F=1[,, and wehave !, = E, NF — [ =ENF.

Lemma 3.4. Let (P>, L, A) hold the axiom (Exc) and let H = COT. Let I € L, and E,
E,(n € N) be planes, and it be x = E N\ l. Furthermore let E, — E. Then there exist for
sufficiently large n € N also E,, A\ [, and it holds E, N | — E N[ = x.

Proof. Choose a plane F which contains /. Then it is clear that £ # F,F A E € L and
x=(EANF)ANIL Case 1; let FAE € L. By lemma 3.3, it holds that for sufficiently large
nce NE,NFe L, andl, :=E,N\F — EAF € L. Since F is an R-divisible R*>-plane, and
x = (ENF)AI, there exist for sutficiently large n € Nalso(E, AF)ANl,and (E,NF)N] — Xx.
Consequently, for sufficiently largen € N E,Al = (E,AF)Al, and it holds that E,Al — EAL

Case 2; let F A E € L. Then we will show that there exists a plane F’ such that / C F’ and
F' A E € L. If it will be done, we return to the case 1. Let / = x V p, x € S;. Choose a line
g € L such that F A g = p. By lemma 3.1, there exists a plane F' with g C F'. It is clear that
FAF =1 Suppose that F NE = [y € L. Since x € [;,x € Iy and [, [y C S, therefore,
Iy = Iy, we have F A F' = {l,1;}, a contradiction.

Lemma 3.5. Let (P2, L, A) hold the axiom (Exc) and let H = COT. Let a, b be two points
on different sides of a plane E with aV b € L. If (E,)uen is a sequence of planes with
E, — E € &, then there exist neighborhoods U and V of a and b, respectively, such that for
sufficiently large n € N U and V are on different sides of E,,.

Proof. Let U(a) and U(b) be two connected open neighborhoods of a and b, respectively
with U(@) N E = U(b) N E = (. Then evidently U(a) N E, = U(b) N E, = O for sufficiently
large n € N. By lemma 3.4, it follows that E, A (a vV b) # () for sufficiently large n € N, and
E,N(aVb)y— EAN(aVb)c (a,b). Since U and V are connected, consequently U(a) and
U(b) are on ditterent sides of E,, for sutficiently large n € N.

Theorem 3.6. Let (P°, L, A) hold the axiom (Exc) and let H = COT. Let E € &£, and
let (Ep).en be a sequence of planes with E,, — E. Let (I,),cny be a sequence in L with
ln, — 1l € L. Let |[EAIl = 1. Then for sufficiently large n € N |E, AN l,| = 1, and
E, AN, — ENL

Proof. By lemma 2.2, let a, b € [ be two points on different sides of £, Leta € S,,b € §;,. By
lemma 3.5, there exist open neighborhoods U(a) and U(b) of a and b, respectively, such that
for all n > m U(a) and U(b) are on different sides of E,, for some m € N. Since [,, — [, there
exista, € 1, NS,, b, € l,NS,(n € N) with a, — a and b, — b. Thus there exists m’ € N
such that forall n > m’ a, € U(a) and b, € U(b). Let M := max{m,m’}. Then foralln > M
there exist E, A l, = E, AN (a, V by), and E, A I, € [a,, b,]. By the assumption H = COT,
the sequence (E, N [,)qen 18 bounded. If x 1s a limit of a subsequence of (E, A [,),en, then
x € limsup £, Alimsupl, = EAl 1e.,x = E Al Therefore, E, AN, — E AL

Corollary 3.7. Let D, :={(E,\) e EX L |[ENl| =1} CE X L.Then D) isopenin & x L,
and the mapping A\ : D, — P° : (E,l) — E Al is continuous.

Theorem 3.8. Let (P>, L, A) hold the axiom (Exc) and let H = COT. Let E,F € £, and
(Enen, (Funen be two sequences of planes. IfE,, — E,F,, — Fand ENF € L, then for
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sufficiently lareen e NE,NF, € C,and E, N\ F,, — ENF.

Proof. Let/ = xVy=FEAFwithx € S;,y € §;,i # J. Choose a pointa € E\ (EAF)
witha ¢ S$; US;, and let g :== aV xand h := a V y. Since E, converges to E, there are
sequences (x,), (vy), (a,) with x,,, v, a, € E,, which converge to x, y and a, respectively. It is
clear that for sufficiently large n € N a, 1s not contained §; U S§; , where x, € §; , vy, € §j,.
Hence let g, := a, V x,,, h,, := a, V y,, and then g, — g, h, — h.Sincea & F, g € F,
it 1s F A g = x. By theorem 3.6, for sufficiently large n € N F,, A g, 1s not empty set, and
b, = F,Ng, — FAg=x.Smihary, iti1sc, := F, Nh, — FAh = y.Sincex € §;,
y € §; withi # j, b, and ¢, are not contained in the same partition set. Therefore, there exists
[, € Lwithl,=b,Vc,=E,NF, — ENF =1 Consequently, E, NF,, — EAF.

Corollary 3.9. Let D, .= {(E,F) e EXEENFe L} CEXE. Then Dy isopenin € x £,
and the mapping N\ - Dy, — L : (E, F) — E N\ F is continuous.

4. SOME TOPOLOGICAL PROPERTIES OF (R’, L, A)

In this section, we study R*-divisible R*-spaces which have the following partition A. Let
P =R = {(vyu,v):y,u,v € R} and A := {8, : y € R}, where §, := {v} x R?.In this case
we write (R?, £, A) instead of (P2, £, A), and (R?, £, A) implies above given conditions. For
p € R p; denote the i-th coordinate of p.

Lemma 4.1. Ler (R3, L, A) be a topological R*-divisible R® -space. Then each linel € L
is written as the graph (f) of a continuous mapping I : R — R*, where I is an interval
homeomorphic to R.

Proof. Let/ € L with! = (y;,u;,v))V (32, u2,v2),y1 <y2. Forally € Rlet§, = {y} x R,
and let P, : R® — R be the projection on y-coordinate and P, : R® — R* the projection
on <u, v >-coordinate plane, respectively. Since [ 1s connected, / := P,(/) 1s an interval.
Since the mapping y — S, 1s continuous, hence f : / € R — R> : y — PN Sy) 1s
continuous and graph(f) = [. Since f : [ € R — R>:y — Pu (I N S;) 1s continuous,
| — graph (f) : x — (x, f(x)) i1s a homeomorphism, and so, I homeomorphic to R. ]

Corollary 4.2. Let (R°, L, A) be a topological R>-divisible R*-space, and let p = (y,u;,v;),
g = (vy, Us, V1) € R with vi<wva.Thenp,gl = PV q)N(y,y2] X R?).

Definition 4.3. Let (R*, £, A) be an R*>-divisible R*-space. Let a,b,c € R’ be three non-
collinear points. The generated triangle with vertices a, b, ¢ 1s the following set:

(c,[a,b]] :={x € R’ : dp € [a, b] suchthat x € [c,p]}.
Let E be a plane with a,b,¢c € E, and let d € R® \ E. The generated pyramid with vertices
a, b, c,dis the following set:

|d, ¢, [a,b]]] .= {x € R : dp € [c, |a, b]]suchthatx € [d,p]}.

Remark 4.4. In the definitions the following cases contain: forexample two points p € [a, b],
¢ € R*\ [a, b] lie on a same S,, i.e., the joining line of p and ¢ is not defined. In the following
lemmas and theorems we assume that such cases are not considered.
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Lemma 4.5. Let X be compact, Y be Hausdorff. and f : X — Y be a continuous bijection.
Then [ is a homeomorphisin.

Theorem 4.6. Let (R, L, A) be a topological R*-divisible R -space. Let each line be a
graph(f) of a continuous mapping f : R — R> 1 y — f(v). Let [c¢, [a, b)), be the classical
triangle with the vertices a, b, ¢ of the classical R>-divisible R*-space and let |c, [u, b]>]> be
the generated triangle with the vertices a, b, ¢ in (R, L, A). Then there is a homeomorphisim

® between [c, [a,b]| ], and [c, [a, b]>)>.

Proof. Letf: R — R*:y — f(y)and g : R — R* : y — g(») be given two continuous
mapping. For a,b € R with a<b let (a,f(a)) = (a,g(a)) and (b, f(b)) = (b, 2(b)). Let
la, b}y = {(r,f(¥) :a <y < b}and[a,b], := {(v,g(¥) :a <y < b}

Define « : [a,bly — [a,b], : (v,f(¥) = S Nla, by — (v, g(¥) = S N la,bl,.
Then « 1s evidently a homeomorphism. Let « : |a,b];, — [a, b]> be the above defined
homeomorphism.

Define the following mapping: @ : [c, [a,b]1]1 — (¢, [a, b]2]»:

(x € [¢,la,bh ) &= Tp € [a, b)) withx € [c,p]y &= x =5, N[c,p]))

x — ®(x) = S, N[, xp)]>.

Then we show that ¢ is a homeomorphism. At first ® is injective; let x, v € |c¢, |a, b]; ]
with x # v. Then there exist p,p’ € [a,b], with x € [¢,p], and v € [c,p’];. We have the
following two cases; case I; let p = p’. Since x # y <= x| # y;, we have S, N S, = 0.
Consequently, ®(x) = S,, N [c, x(p)]> # Sy, N [c, x(p")]> = P(y). Case 2; let p # p’. Then
[e,p]i N e, p')y = {c} and [c, a(p)]a N [c, o(p')]> = {c}. Itis also that $(c) = ¢. We have
one of the following:cases: c =x # y,x #y =corc # x # y # ¢. In any case ®(x) # d(y)
1s clear. Therefore, ® is injective.
® is surjective; let y € [c, |a, b]»]>. Then there is a p € [a, b], with v € [¢, p]>. Theretore,
y =38y, Ne,plh. Letx = §;, Nle, ' (p); € [c,la,bl];. It is also that d(x) = Sy, N
[, (™ (p))]> = S, Nlc, p] = v. Since the classical space and the given space are topologica
and « 1s a homeomorphism, @ is continuous. By lemma 4.5, ® is a homeomorphism.

Corollary 4.7. Let (R?, L, A) be a topological R*-divisible R*-space. Leta,b,c € R* be non-
collinear points, and let ¢, [a, b]2]» be the generated triangle with the vertices a, b, c. Then
lc, la, b)>)> is homeomorphic to the classical triangle [c, [a, bl 1) of the classical R>-divisible
R*-space.

Proof. By lemma 4.1, the assertion can be proved as in proof in theorem 4.6.

Theorem 4.8. Let (R}, £, A) be a topological R*-divisible R*-space. Let each line be a
graph(f) of a continuous mapping f : R — R> : v — f(v). Let [d,[c,[a,b)i];]; be
the classical pyramid of the classical R*>-divisible R*-space and let [d,[c,[a, b]2]2]> be the
generated pyramid with the vertices a, b, c,d in (R*, L, A). Then there is a homeomorphism

YW between [d, [c,[a,b]1]i]1 and [d, [c, |a, b)2]2]>.
Proof. The following homeomorphisms are defined in theorem 4.6:

x:la,bly — la,b]r : x — a(x) = S, N [a, b,



A class of topological space geometries 187

b (e, la, b1y — ¢, la, b2}z i x — P(x) = S, N e, x(p)]>.

We define the tollowing mapping: WV : [d, |c, [a,b]i 1)1 — 4, [¢, [a,b]>])>]5 :
(x € |d,|c,|la,bli 1] & dg € [c,[a,b] ], withx € [d, q],
& xe S, Nld,gh)
x — ¥Y(x) =8, Nd, Pq)l,.

We show that ¥ i1s a homeomorphism. At first ¥ is injective; let x,v € [d,[c,[a,b]i]1]
with x # y. Then there exist ¢,¢ € [c,[a,b];]1 with x € [c,¢g], and ¥y € [c,¢'];. Let
(g g'. Since x # y <= x| # y;, we have §,, NS, = (. Therefore, it holds that
Y(x) =S, NId, P(p)r # S, Nld, PP = Y(y).

Let ¢ # ¢'. Then [d,p]; N [d,p'ly = {d} and [d,P(p)], N [d,P(Pp")], = {d}. Itis
also that Y(d) = d. We have one of the following cases: d = x # y, x # vy = d or
d # x # v # d. In any cases Y(x) # W(y) is clear. Consequently, ¥ is injective. Y is
surjective; let v € |d,|c,|a,b]>]>]>. Then there 1s a p € [c,|a,b)]> with v € [d, p]>, and
so, y = S, N [d,pl>. Thus we letx = §,, N [d, oY), € [d,[c,[a,b)i];];. It holds that
Y(x) =S, Nld, o(@'p)) = Sy, Nld,p]l =y.

Since the classical space and the given space are topological and ® 1s a homeomorphism,
Y 1s continuous. By lemma 4.5, ¥ 1s a homeomorphism.

Corollary 4.9. Let (R?, L, A) be a topological R*-divisible R’-space. Let |d,[c,[a,b], 1]
be the classical pyramid of the classical R?-divisible R’ -space and let [d,[c,|a, bl2)2]2 be
the generated pyvramid with the vertices a,b,c,d in (R*. L. A). Then [d,[c,[a,bly]»]> is
homeomorphic to |d,|c,a,b]i ] 1.

Definition 4.10. Let (P?, £, A) be a topological R*-divisible R*-space. A subset P C P? is
called a subgeometry of (P?, L, A). If x,y € P with (x,y) € ’P.j X Pi, thenxVyC P.

Lemma 4.11. Ler (R, L, A) be a topological R*-divisible R’-space, and let E be a plane of
(R?, L, A). Let P be a subgeometry which contains three non-collinear points a, b, ¢ of E and
PCE.Then P =FE.

Proof. Without loss of generality, let ¢; <a, <b,. Let D := [c,[a,b]] \ 0lc, la,b]] C P.
Since E is a plane, D is convex. Assume that g € E'\ P. Choose a pointp € D withp € S,
then there is a joiningline p V ¢. Since D i1s convex and open, itis [DN(pV g)| > 2. Therefore,
pV g C P, sothat g € P, a contradiction.

Corollary 4.12. Let E = (R*, L) be an R*-plane. Let P be a subgeometry of E (in the sense
of definition 4.10), which contains three non-collinear points a, b, ¢ of E.

Lemma 4.13. Ler (R, L, \) be a topological R*-divisible R*-space, and let P C R* be a
subgeometry which contains an open subset (# 0) of R®. Then P = R>.

Proof. For y € R ¢ >0 let B(y,¢) := {x € R’ : ||y — x|| <&} be an open subset with
B(v, &) C P. Assume that there exists ¢ € R? \ P. Choose a point p € B(y, ¢) withp & S,,,.
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Then there 1s a joining line of p and g. Evidently it1s B(y, e)N(pV¢g) > 2. therefore, pVg C P,
so that g € P, a contradiction. L

Lemma 4.14. Let (R’, L, A) be a topological R*-divisible R*-space, and E be a plane. Let
a,b,c € E be three non-collinear points, and let d € R* \ E. Let P C R’ be a subgeometry
which contains a,b,c and d. Then P = R*.

Proof. Without loss of generality, let¢; <a; < b,. Then [c, [a, b]] T P. We have the following
two cases:

Case 1: dy & [c),b1]. Then [d,[c,[a, b}]] C P. Therefore, |d, [c, [a, b]])]\dld, |c, [a, b]]] C
P, i.e., P contains an open subset. By lemma 4.13, it follows that P = R,

Case2: d| € [¢1,b,].Choose ¢’,a’ € avbwithb) <c¢| <aj,andb’ € cVbwithc¢| <b) <d.
Therefore, [/, [a’,b’']] C P. Then also [d, [¢’,[a’,b']]] C P. By case 1, itis P = R*. [ ]

Definition 4.15. Let (R*, £, A) be a topological R*-divisible R*-space. A subset £ C R? is
called an incidence plane of (R*, L, A) if it satisfies the following properties:
() If x,y € E with (x,y) € R5, X Ry, thenx VvV y C E.

(2) E is non-trivial, i.e. E % R’ ,and E is not contained in a line.

Lemmad.16. Let (R®, L, A) be a topological R*-divisible R>-space satisfying the axiom(Exc),
and let E C R’ be an incidence plan. For a,b,c € E let [c, [a, b]] be the generated triangle
with the vertices a, b, c. Then |c, [a, b} is convex.

Proof. Without loss of generality, let ¢) <a; < by. If [¢, [a, b]] is contained in a plane, then it
1s obviously convex, hence we may assume that it is not contained in a plane. By lemma 3.1,
there exist planes £, Ey and Es witheVa C E,cVDb C Ey,andaVv b C Es.Fori=1,2,3,
let H; be the components of R? \ E; which contains the third point. Let P := H, N H>, N H.
Then P = H, N H, N H; is convex such that a, b, ¢ € P. It is also that [¢, [a,b]] C PN E. By
the axiom (Exc), there exists a continuous mapping ¢ : [a,b] — &£ with ¢ V 2 C @(z) for
all z € la, b]. Assume that [c, [a, D]] 1s not convex. Then there exists p,g € [c,|a, b]] with
[P, q] € [c,[a,b]]. Let x € [p,q] such that x & [c, [a, b]]. Evidently, itis [p,q] € PN E. Let
21,22 € la, bl with p € @(z;) and g € ©(z2). Since ¢ is continuouis, there exist a z € [a, b]
with x € @(z). Therefore, x, ¢,z € @(z)NE. Letc’, 7" € cvzwith | <x) <z.Since [c, [a, b]]
1s not contained in a plane, we may choose d # z € [a, b] such that d ¢€ (z). Therefore,
¢, x,7 and d € E. By lemma 4.14, E = R, a contradiction. ]

Theorem 4.17. Let (R’ , L, A) be topological R*-divisible R -space satisfying the axiom (Exc).
Then each incidence plane E C R® is a plane of (R*, L, ).

Proof. Let a,b,c € E be non-collinear and let D := [c, [a, b]] \ 0lc, [a, b]]. Since E is an
incidence plane, hence D C E. By corollary 4.7, D is homeomorphic to R*. As in proof of
lemma 4.16, 1t 1s also D open 1n E. Let x € E. Since E is non-trivial, there exists a line / € £
withx € [ C E. Letp,c € [ with x € (p, c). Since E is not contained in a line, there exists a
point a € E with a € [. Without loss of generality, let a; # py and a; # ¢;. Letb € aV p
with p € (a,b). Then b € E, and so, [c, [a,b]] C E. It holds also x € [c, [a, b]] \ dlc, [a, b]].
Therefore, the set {[c, [a, b]] | a, b, ¢ non-collinear } is a basis of the topology of E. Hence E
is a topological 2-manifold, i.e. a surface, and E is locally compact. Thus E is open in E. We
show that E is homeomorphic to R*, £ = E. We show that E = E; choose a point p € E. Let
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x € E\ {p}, and without loss of generality, let/ := pV x. There exists a sequence (x,),en in E
such that x,, — x. Hence it follows that/ = lim sup(pVx,,) C E. Therefore, IANE # () is open
in/ = [, and since / &~ R, itimplies | IAE |> 2, sothatx € [ C E. Hence E is closed in R>. We
also show that E is homeomorphicto R*. Let L := {l € L | I C E} U{ENS, | y € R}. Then
(E, Lr) is a linear space, and the operation V : E X E\ A — Lg is continuous. We have
to show that the intersecting of lines 1s continuous and stable; let [, g € Lg withp (= [ A g.
Let U C E be open with p € U. Let (I,)uen, (g:)nen € Lg be two sequences of lines with
[, — land g, — g. There exists D := [c, [a, b]] \ 0lc, [a,b]] such that p € D C U. Since
D =~ R’ and is convex, the linear space (E, Lg) induces a Salzmann-plane on D. Since the
topology of line space in D is the induced topology of Hausdortf-convergence, it holds also
that /, "D — [N D and g, N D — gND. Since the intersection of lines on D is continuous
and stable, there exists [, A g, for sufficiently large n € N with [, A g, € D C U. Since each
line / C L is homeomorphic to R, by [Sal69], E is homeomorphic to R?.

Theorem 4.18. Let (R?, L, A) hold the axiom (Exc) and let H = COT. Let (x;)nen, Mndnen
and (z,)nen be three sequences of coplanar non-collinear points, and let x,y,z € R3 be not
collinear such that x,, — x,y, — v and z, — z. Then the points x,y, 7 are coplanar, and
Xy Vy, VZ, — XVyVZ

Proof. Let foralln € NE, .= x,Vy,V 2, and let E := liminf E,. Then 1t 1s clear that
x, v,z € E. At first we show that £ # R3: assume that E = R3>. Choose a plane F, and
a,b,c € F which are not collinear. Then there exist sequences a,, b,,c, € E, such that
a, — a,b, — b and ¢, — c, respectively. Since (R, L, A) is topological, we may
assume that a,, b,, ¢, are not collinear for all n € N. Since a # c, there exists a € >0,
so that for sufficiently large n € N it holds that ||a, — ¢,|| > 4€. Therefore, choose points
g, € (a,,cy), so that for sufficiently large n it holds that ||g, — a,|| > € and ||g, — ¢,|| = €.
By the assumption H = COT, it holds that g, — ¢ € (a, ). Choose a point p € R’ \ F with
p1 # q, and let p,, € E,, mit p, — p. Therefore, we may assume that p, € a, V ¢, for all
n € N. Then for all n € N it holds (p,, V ¢,) N (la,, b,] U [by, c,]) # 0. Therefore, we may
assume that foralln € N (p,Vg,)Nla,, b,] # 0. Letr, := (p,Vg,)N[a,, b,]. By assumption
H = COT, it holds also r, — r. Since (R?, L, A) is topological, we have r € aV b C F,
and p € ¢ V r C F, a contradiction. Consequently, E # R’. We next will show that E is an
incidence plane. Let a,b € E with a; # b;. Then there exist sequences a,, b, € E, with
a, — a and b,, — b, and a;, # b, foralln € N. Since (R, L, A)is topological, it implies
a, Vb, — aV b, it holds also that a vV b C E, since a, V b, C E, forall n € N. By
theorem 4.17, E is a plane, 1.e., x, v, z are coplanar with x V y V z = E. We have to show that
E, — E, we show that imsup E, C E. Let n; be a subsequence, and let a,, € E,, with
a, — a. Then it follows that ¢ € liminf E,,, and as in above F := liminf E,, is a plane.
Since x,v,2 € EAF, and by lemma 2.2, E = F, therefore, a € E. We have imE, = E, as
required.
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