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RIEMANNIAN MANIFOLDS SATISFYING [RIC Ag, W] =0

STEVE P. BEAN

Abstract. We study the condition [Ric Ng, W] = 0 on 2n-dimensional Riemannian manifolds
which also have non-negative curvature on totally isotropic two-planes. We show that if,
in addition, certain holomorphic bisectional curvatures are positive, then the manifold is
biholomorphically isometric to CP".

1. INTRODUCTION

[Let M be a 2n-dimensional Riemannian manifold, n > 2, with curvature tensor . We
denote the corresponding curvature operator by R. Recall (cf. [1], Chap. 1, Sec. G), that we
may decompose R uniquely into its O(2n)-1rreducible components: R = U + Z + W, where
U= 35,8 N8 2= 3”1_” {(RE(.' — 5-2) A fﬂ (the Ricci-traceless part of R), and W is the
Weyl tensor.

Given a real vector space V with inner product {,), let V& = V ®g C denote the comple-
xification of V. Extend (,) to a complex bilinear form on V. Finally, let ({ , )) denote
the extension of (,) to V* which is linear in the first component and conjugate linear in the
second. That is, {(z,w)) = (g, w) for z,w € V*.

We now recall the definition of totally isotropic curvature, which we denote by K",
introduced 1n |5].

Definition. A complex vector z € V€ is isotropic if {z,z) = 0. A complex subspace W of V*

1S totally isotropic if z 1s 1sotropic for all z € W.
{{R(zAW).z2AW))
feAw[]?

For a complex subspace o of V spanned by z and w, let K(o) = . We note

that this number does not depend on the choice of z and w.

Definition. A curvature tensor R has non-negative (positive) curvature on totally isotropic
2-planes 1f K(o) > 0 (> 0) for all totally i1sotropic complex two-dimensional subspaces of
Ve,

We note that two well-studied conditions on curvature imply conditions on 1sotropic cur-
vatures (cf. [5]:

(1) If the curvature tensor R 1s positive (non-negative), that is if (f?ﬂr;, x) >0 (> 0) for all
NON-zero & € /\2, then K is positive (non-negative).

(2) If sectional curvature K 1s quarter-pinched, that 1s 1f :j— < K < A for some A > 0, then
K™ > 0. If K is strictly quarter-pinched, that is if at least one of the inequalities is strict, then
K" > 0.

[n this paper, we examine a condition, [Ric Ag, W] = 0, which applies to two important
classes of Riemannian manifolds: Einstein and conformally flat. Combined with the concept
of curvature on totally isotropic two-planes, this condition invites various diagonalizations
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of R which can be exploited to a certain extent. In particular, [7] introduces an orthonormal
basis for two-forms which allows the expression of eigenvalues of the Weitzenbéck operator
on 2-forms (denoted R,) as sums of (non-negative multiples of) totally 1sotropic curvatures.
A derivation of this formula begins with the choice of an orthonormal basis {f; }'”1 of
a vectDr space V with respect to which an eigenvector &« of X, may be written as o =

Zui(fzf_l Afi), where 1 = u; 2 up > ... 2 u, > 0. Let Roax = gx. Using the

Weuzenbock formula for R, (see for example [9], Chapter 2) one computes as in [8] (Eq.
1.4, page 849):

g = (Rax, fi ANf2) = Z{Kl,zk + Ky k1 + Kook + Ko op—1 + 214Ry 2.0.4—1,2¢
k=2

One of the insights of [7] via Lie algebra theory, 1s that, using the basis X;; = # [(f2i—1+if2i)

N(f2j—1 + if2;)] and X’r «f [(f2i—1 + if2i) A (f2j—1 — if2p)], the right hand side of this equation
1s equal to the expression:

Y A+ m)((RX e, X)) + (1 — ) ((RX 4, X14)) }

k=2

which one can confirm by expanding the expression above. Thus we have:
g = (Rax,fi Nf2) = 5 Z {(1+ m)((RX 1k, X)) + (1 — wo)((RX 1, Xu)) b (1)
k=2

where ((RXj, X1x)) and ((RX!,,X!,)) represent sectional curvatures on totally isotropic two-
planes.

Using the formula R = %(Ric A g — Ry), we note that [Ric A g, W] =0 = [Ric A g, R] =
0 = [Ric A g, R,] = 0. This in turn implies the existence of an orthonormal basis of 2-forms
simultaneously diagonalizing Ric A g and R,. We will use this basis to establish the following
consequence of the "sphere theorem" proved in [5]:

Theorem 1. Let M be a compact, orientable 2n-dimensional Riemannian manifold without
boundary, n > 2, with curvature tensor R satisfying [W,Ric A g] = 0. Then if q,(x) 4+ ga2(x) is
positive, where q,(x) and g;(x) are the two smallest eigenvectors of Ric, : T\M — T .M, and
if 3 functions b,d : M — R such that 5(x) >0 and 5(x)b(x) < K*(T.M) < b(x), Vx € M,
(M) = 0 for 2 < i < n. In particular if M is also simply connected, M is homeomorphic to
a sphere.

Next, we turn our attention to Kéhler manifolds, and again using [Ric Ag, R;] =0 as a key
step, prove (¢f. [8], Theorem B):

Theorem 2. Let n > 2 and suppose (M, g) is a compact, connected 2n-dimensional Kdahler
manifold satisfying:
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(i) [Rich g, W] =0
(i) K* >0
(iii1) H(X, Y) > 0 whenever X, Y, JX are orthonormal vectors in T*M
Then M is biholomorphically isometric to CIP", with a multiple of the canonical metric.

Here H denotes holomorphic bisectional and is given by H(X, Y) = (R(X,JX)Y,JY) (ado-
pting the opposite sign convention of that in [2]).

Finally, we once again exploit the orthonormal basis used to prove Theorem 1 to obtain
explicit formulas for eigenvalues of the Weyl tensor 1n both the Kihler and non-Kihler case.

We note that the condition [Ric Ag, W] = 0 also arises in notions generalizing the Einstein
condition. [ 1] (Chapter 16) gives the following equivalent conditions, all of which (by a result
of J.P. Bourguignon-Corollary 16.17, p. 439) imply [Ric Ag, W] =0 on a manitfold M:

(1)dY Ric =0 (i.e., Ric is a Codazzi tensor)

(2) OR = (O (harmonic curvature)

(3)yn > 4 : dW = 0 and scalar curvature constant

(4) n = 3 : M conformally flat and scalar curvature constant

Here dV Ric denotes the exterior differential (cf. [1], 1.12) of Ricci tensor considered as an
element ()f/\' M & TM (a one-form with values in the tangent bundle). i.e. (dV Ric)(X,Y) =
Vx(RicY) — Vy(RicX)— Ric([X, Y]). dW € /‘\2 M & T*M is given by (OW)(X,X5) = — Tr
(Y, Z) — (VyW) (£, X, X5)] (ct. [1], 16.3).

[n the same chapter (p. 439), [ 1] discusses the concept of a pure curvature operator (one for
which R is diagonalizable by simple two-forms-see [4]). In particular, if R is conformally flat,
R may be diagonalized by the 2-forms e; A¢;, where {¢;} is an orthonormal basis diagonalizing
the Ricci operator. It 1s this basis which 1s used 1n [3] and 1n [6].

2. RESULTS

Proof of Theorem 1. We begin by finding bounds on R based on bounds on isotropic
curvatures and on eigenvalues of the Ricci operator.

Proposition 1. Let V be a 2n-dimensional vector space with curvature tensor R satisfying:
(i) [W, Ric ANg] =0
(ii))a < K™ <b
(111) ¢ < Ric < d
Then any eigenvalue k f@fﬁ' : /\2 V — /\2 V satisfies c — 2b(n — 1) < k < d — 2a(n — 1).
Proof. Let « be an element of an orthonormal basis which simultaneously diagonalizes Ric
Ag and R». Then Ric Agax = (A; + Aj)ax (where the A, A < Ay < ... < A, are eigenvalues

of the Ricci operator, and Rrx = ga, where ¢ 1s given in (1). Then Rx = Ax, where

1 a v/ !
A= SO+ A) = 7 ) (L p){(RXik, Xik)) + (1 = wo((RX 4, X)) (2)

k>2

D |

Now apply the bounds on Ric and on K*° to obtain the desired result.

We note that for CP", equipped with the metric giving constant holomorphic sectional
curvature 1, 0 < K < 2. Hence the above inequality is sharp for CP* (the right hanc
inequality remains sharp for CP”", for any n).
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Corollary. Under the same hypotheses as in Proposition 1:

(i) If the smallest two eigenvalues of Ric sum to a positive (non-negative) number, then b
must be positive (non-negative).

(ii) If the largest two eigenvalues of Ric sum to a negative (non-positive) number, then a
must be negative (non-positive).

Proof.
(1) If the smallest two eigenvalues of Ric sum to a positive number and b < 0, then £ >0

by Proposition 2.5. But then X > 0, which implies b > 0, a contradiction.
(i1) If the largest two eigenvalues of Ric sum to a negative number and a > 0, then £ <0

by Proposition 2.5. But then K*? < 0, which implies a < 0, a contradiction.
The cases for non-negative and non-positive are similar.

We now apply that vector space result to a compact manitold to obtain:

Proposition 2. Suppose M is a compact, orientable 2n-dimensional Riemannian manifold
without boundary and curvature tensor R satisfying (pointwise):
(i) [W,RichNg]l=0
(ii) 3 functions b, & : M — R such that 5(x) > 0 and 5(x)b(x) < K*(T M) < b(x),Vx € M.
(iii) Vx, q1(x) + g»(x) is positive (non-negative), where q,(x) and g->(x) are the two smallest
eigenvectors of Ric, : T\M — T M.
Then K'° is pointwise positive (non-negative).

By Proposition 2, the suppositions of Theorem 1 imply K*° > 0, precisely the hypothesis
needed in the Micallet-Moore sphere theorem. B

Proof of Theorem 2.

Lemma 1. Let V be a 2n-dimensional vector space with orthogonal complex structure J and
Kdhler curvature R satisfying:

(f) Kr’:m 2 0
(it) H(X, Y) > 0 whenever X, Y, JX are orthonormal vectors in V
Then w = ) ey N ey € ker Ry (where Jesi_\ = —ey;) implies ker Ry = Rw.

Proof. Since the Kihler form may be written as w = ) ey A e3; with respect to any
J-adapted orthonormal basis of V, we may as well assume that {e;, Je;}"_, is an orthonormal
basis diagonalizing the Ricci operator. Say A; = Ric(e;, e;). Then:

n
?\i — RfC(E'f, Ef') — E :RI’I*{J‘H* — E Ru*m’f’*‘ -+ K:':'*
a=1 as=i

(where e;, = Je;). But R =,iix = K,+; + K,; by the Kihlerity of R. Therefore we have:

N+ A=) (Kavi + Kai) + ) (K + Ky) + (Kig= + Kj»)
aFi aj

By assumption (11), the first two summands above are strictly positive. One then shows
(ct. [8], page 849) that under the assumption K*° > 0, the last summand is non-negative
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tor i # J. and hence that for i # j, Ay + A; > 0. It i1s this observation which is needed to
conclude (through a computation) that an arbitrary element of ker /R, has no component in
the -1 eigenspace of J : A~V — A~ (cf. [8], Equation 1.12).

Next, using a method found in [2] (Lemma 1, page 229), one shows that any element of the
+1 eigenspace of J /\: V — /'\1 may be written >~ 3;Jf; Afi, where , > 3, > ... > 3, and
5 > 0. Writing an arbitrary element of ker R» in this way we conclude through computation
(once again using (i1)), that 3; = 3, Vi.

[f we assume [Ric Ag, R»] = 0, 1n addition to the hypotheses of Lemma 1, the Ric Ag
preserves ker ‘R-» = [Rw. Thus w 1s an eigenvector of Ric Ag. A simple computation now
o1vVes:

LLemma 2. Let V be a 2n-dimensional vector space with complex structure J and Kdéihler
curvature R. If w = Z esi| N\ ey is an eigenvector of Ric Ag, R is Einstein,

Proof. Using the same J-adapted basis {¢;, Je;}"_, diagonalizing the Ricci operator one

computes:

Z ke; AN Je; = kw = Ric AN gw = 2 z Ae; N\ Je;

=1 =1

Therefore Ay = Ay = ... = A, =

Finally, to complete the proof of Theorem 2, we note that M 1s a compact Kédhler-Einstein
manifold satistying (111). In [2], Theorem 5, we observe that in their proof of that theorem the
hypothesis of positive holomorphic bisectional curvature 1s only used to assert that Ry =;;= > 0,
where i > 2 (p. 232). But Ry ,+;» = K,; + K,;=, which 1s positive by our assumption (ii1). W

3. EIGENVALUES OF THE WEYL TENSOR

Suppose « 1s any two-form 1n an orthonormal basis simultaneously diagonalizing Ric Ag
and W. Since eigenvalues of Ric Ag have the form A; + A; (sums of eigenvalues of the Ricci
operator), we assume that Ric Agx = (A; + Aj)x, and that Woa = wa. Then on writing
X =S Mo Afuswhere | =y > o > .00 >, > 0and {f;}7" is an orthonormal

s (=1

basis of V., we note that « 1s an eigenvector of R with eigenvalues given by (2), and also by
the formula:

R =14 —— |Ric— ———— gl Ag+ Wha
w2 [N T 2an - )

b
f T—

+ W r X (

A+ A

n-—72 ' (2n—1)
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Equating (2) and (3) gives:

n—2

T 2n—1)
\

:@n—D@n—m

1 A = !
-7 Z {1+ w){((RX 1k, X)) + (1 — ) ((RX 1, X1
k>2

W (?\, -+ )\J,)

(4)

Exploiting this equation, we obtain (ct. [7], Proposition 2.5):

Proposition 3. Let V be a 2n-dimensional vector space with curvature tensor R satisfying:

(i) [RicANg, W] =0
(ii)a < K" < b
(iii) ¢ < Ric < d

Thenifd < 2n—1)a, orif 2n—1)b < ¢, R is conformally flat. In particular, ifa = d = 0,
orifb=c=0,R is flat.

Proof. By (4) and the hypotheses above:
n—?2

w = 2 — 1)(f’f+f})
| A)
" 2n-1D(2n - 2)
1 . )
= 20 (@ ) (RXu, X)) + (1 = ) ((RX, X)) )
1>2
n—2 2nd
S 18T G DEn—2 "D
~ 2(n—-1) B B
i v— d—2an—-1)<0

Thus since W has trace zero, we must have W = 0. In the second case we obtain w > 0,
and so similarly, W = 0.

If a = 0, then s > 0 by [7], Proposition 2.5. But d = 0 implies eigenvalues of Ric are
non-positive. Hence Ric =0ands =0,andsoR =0

Note that in the four-dimensional case (4) gives:

1 a A
W= _ 7 10+ ) ((RX 12, Xi2)) + (1 = m)((RX1p, X1)) }

6
We use this formula to show that the signature integrand of a compact, oriented 4-manifold
without boundary is determined by curvatures on totally isotropic two-planes. Recall that the
signature of a compact, oriented 4-manifold is given by T(M) = -5 >, (|WH |2 = |W™ |2,
Here W™ and W~ are the parts of W acting on the +1 and —1 eigenspaces of the Hodge
*-operator, respectively (cf. [1]). We will list the eigenvalues of W as follows:



Riemannian manifolds satisfving [Ric ANg, W] = 0 167

. Alues of i Al _
Eigenvalues of W Eigenvalues of W

! A

6 4 ¢ — 44

y A

6 42 6 — 45

A 5

6 43 6 — 4o

Note that § — (g1 + g2 +¢3) = TrW™ =0and § — (g4 + g5 + g¢) = Tr'W™ = 0.

Proposition 4. Let (M, g) be a compact oriented Riemannian 4-manifold without boundary.
Then:

(i) The 4-form representing the signature class of M is completely determined by curvature
on isotropic two-planes.

(ii) If a < K" < b,Vx € M, then |t(M)| < -fg(b — a)max(|al, |b|) Vol (M).

(iii) The upper bounds in (ii) are invariant under dilations of the metric.

Proof. (1) For each point x € M:

(W) — W™ ()]
3 pi 6 2
s(x) ) s(x) B
= — - Ch‘(i'f)) - (— - qf(x))
> (% 2.
3 6

3 (x) 0 R ()
- Z(f]f(ﬂf))z - T Z gi(x) — th(l')) — Z(q,—(.ﬂf))‘
=4

=1 i=] i=4

3
= (%) = gi+3())Gi(X) + giy3(x)

=1

Since each ¢;(x) 1s made up of sums of multiples of 1sotropic curvatures, (1) follows from
the formula ©(M) = |21—.r.—1 > (W 2 — W™ \Z)I,LR.

(11) Note that as in the proof of Proposition 1, we have 2a < g;(x) < 2b, Vx € M. Thus
[gi(x) — gi(x)| < 2(b — a) and |gi(x) + gj(x)] < 4max(|a|,|b|), and the final line in (5) is

bounded above in absolute value by 24 (b — a) max(|a|, |b|). Then on integrating we obtain:

| . 5 2
(M) = / (W W)|" — W™ ()| ), < E(b — a)max(|a|, |b|)Vol(M)

-
12?-[" JM

(111) Given 1 >0, and an m-dimensional mamfold (M, g), replacement of g by fg has the
following effects on the volume and curvatures on totally 1sotropic two-planes of M.

(i) Vol,o (M) = 1"/ 2 Vol (M),

(i) Ky = (K |

Since M, is acompact manifold, we may assume that the bounds a and b on K"*? are actually
achieved, and so for (M, rg), the right hand side of the inequalities in (11) change to (a constant
multiple of) +(b — a) + max(|al, |b]) > Vol (M) = (b — a) max(|a/, |b|) Vol (M).

We note that as a consequence of this theorem, any compact, oriented, Riemannian 4-
manifold without boundary having constant curvature on totally isotropic two-planes must
have signature zero.
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