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FOUR-DIMENSIONAL CONFORMALLY FLAT RIEMANNIAN MANIFOLDS

G. CALVARUSO!

Abstract. In this paper we study some aspects of the classification of the four-dimensional,
compact, conformally fiat Riemannian manifolds which have constant scalar curvature T, in
particular for T = 0.

0. INTRODUCTION

Compact, conformally flat Riemannian manifolds have been studied intensively by several
people. In view of the positive solution of the Yamabe problem [10] 1t 1s fundamental
to consider those which have constant scalar curvature. Such manifolds have harmonic
curvature.,

A. Derdzinski 4] produced several examples which are not Ricci-parallel and hence not
locally symmetric. M.H. Noranha [8] treated compact, conformally flat Riemannian manifolds
which have non-negative scalar curvature T. For vanishing T, the manifolds covered by R*
or by the product S*(¢) x H*(—c) provide the locally symmetric examples but there also exist
examples which are not locally symmetric. Infact, P. Braam [3] constructed a compactification
of (H? /T) x S', where I" is a Kleinian group, which is conformally flat and, if the Hausdorff
dimension of the limit set of I' is equal to 1, has scalar curvature T = 0. In particular, the
connected sum (S' x §*)y*, for n > 2, admits a conformally flat metric with scalar curvature
T = 0, as a consequence of Remark 1 in [3].

Notwithstanding the existence of examples which are not locally symmetric inside the class
of four-dimensional compact conformally flat manifolds with zero scalar curvature, 1t 1s still
interesting to find sutficient conditions to ensure local symmetry for manifolds in this class. In
Section 2 of this paper, we shall correct and extend Proposition 6.9 of [8], using the following

Theorem. Ler (M, g) be a four-dimensional, compact, orientable, conformally flat Rieman-
nian manifold with T constant. Then we have:

(28 /3yt X (M) < (T°/9) Vol (M, g) ~ / pdM, (1)

o M

where X (M) and p denote, respectively, the Euler-Poincaré characteristic of M and the Ricci
tensor of (M, ) and p = tr(p?). Moreover, the equality in (1) holds if and only if (M, g) has
constant sectional curvature or is locally isometric to R x S*(¢), R x H?(—¢), §*(¢) x H?*(—c¢).

Moreover, we shall also apply the above Theorem to the case of four-dimensional, compact,
conformally flat manifolds with X'(M) = 0.
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Section 1 1s devoted to the proof of this Theorem and to an application about the sign of
the Euler-Poincaré characteristic. In Section 3 we develop some considerations about four-
dimensional, conformally flat Riemannian manifolds which have T > 0 and vanishing Betti
number b,(M) (for b,(M) > 0, these manifolds have been completely classified by Noronha,
see [8], Theorem 2, p. 256).

The author wishes to thank Lieven Vanhecke for several helpful discussions.

1. PROOF OF THE THEOREM

The following formula holds for any compact, orientable Riemannian manifold (M, g) (see
[9], formula 2.14, p. 592):

f[\VR\2—4IVp|2+IVTF]dM=/[«ﬁwﬁ—4{p®pﬁﬁ>—2{p,R}+ﬁJdM,(L1)
M M

“fhere <p ® P, E > = Z pabpchacbda <P, R > = Z puuRtmbchabcr ﬁ — Z Rnh{‘dRubuchr:!mu
R =" RupcaRaucyRbuay, With respect to any orthonormal basis. Then, since dim(M) = 4 and
(M, g) 1s conformally flat, the components of R are given by

Rijin = (1 / 2)(8ikPjn + 8jnPik — &inPik — &k Pin) — (T / 6)(gik&in — 8in&jk)- (1.2)

This yelds:
VR[> = 2|Vp|* - (1/3)|VT],

<p®p,R>=(1/6)tlp|* =1 /6 =P, (1.3)

<p,R>=(5/6)t|p|* =T /6,
R :T|p|2 ~—2T3/9,

R=3/dp* -7 /9-p.

Consequently, (1.1) becomes
[ 1@/ 3IVrP ~2VePIM = [ 145~ /3yrloP + % /31aM
and, since T 1s constant, we have
/M Vol*dM = fM [—2p + (7 /6)tlp|* — T / 6]dM. (1.4)

Further, the Euler-Poincaré characteristic of a four-dimensional, compact, orientable ma-
nifold (M, g) is given by (see [2], p. 82)

X(M) = (1 /32712)] [IR|* — 4|p|* + T*1dM.
M
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Since (M, g) is conformally flat, it follows from (2.2) that |R|* = 2|p|* — T /3, and so

XM) = (1/16m%) | [T°/3 — |p|*)dM. (1.5)
JM

This and (1.4) then yield

(56 /3yt X (M) — | [2T° /9 —2p)dM = — | |Vp|*dM < 0, (1.6)
J M J M

and hence, (1) holds.

Moreover, from (1.6) 1t follows that we have the equality in (1) 1if and only 1if Vp = 0.
But a four-dimenstonal, compact, orientable, conformally flat Riemannian manitfold 1s Ricci-
»arallel (or equivalently, is locally symmetric) if and only if it is locally isometric to R*, S*(¢),
H*(—c), S*(¢) x H*(—¢), Rx S’ (¢) or R x H?(—¢) (see [7], Proposition 3.3, or [8], Proposition
4.2). Hence, this classification completes the proof of the theorem.

As an tmimediate consequence of the Theorem we have:

Corollary. Let (M, g) be a four-dimensional, compact, orientable, conformally flat Rieman-
nian manifold with constant scalar curvature . If p > v /9 and T > 0 (respectively <0),
then X(M) < O (respectively > 0). Moreover, X(M) = 0 if and only if (M, g) is locally
isometric to R x §*(¢) (resp. 1o R X H (—c)).

Proof. We can rewrite (1) 1n this way:
(28 / T X (M) < / (7% /9 — pldM.
J M

Since p > T /9, we obtain TX (M) < 0, that is, if T>0, XY(M) < 0, and if T <0, then
X (M) > 0.

Now suppose A (M) = 0. Then we have the equality in (1) and so (M, g) 1s locally 1sometric
R x S*e)if t>0.orto R x H}(—¢)if T<O.

2. APPLICATIONS OF THE THEOREM

Now we give some applications of our main theorem and we start with a result which
corrects and extends Proposition 6.9 of [8].

Proposition 2.1. Let (M, g) be a four-dimensional, compact, conformally flat Riemannian
manifold with T = Q and let py > p> > p3 > pa be the eigenvalues of the Ricci operator p of
M. 1f

a) p has less than three distinct eigenvalues in any point of M; or

b) p1 2> |p4]; or

C) P3 = Pg,

. ' . 2

then (M, ¢) is flat or locally isometric to S*(¢) % H? (—c).
Proof. a) Let (M, g) be a four-dimensional, compact, conformally flat Riemannian manifold
with T = 0 and which has less than three distinct eigenvalues for the Riccl operator at any
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point. Sicne (M, g) has harmonic curvature it 1s analytic in suitable coordinates. If (M, g) 1s
not Ricci-parallel it follows trom a classification theorem of Derdzinski (see [4], Theorem 3,
p. 280) that (M, g) is covered isometrically by some compact manifold that does not have
zero scalar curvature, which is an evident contradiction. So, (M, g) is locally symmetric, that
is, it is flat or locally isometric to S*(c) x H*(—c¢).

b) We first suppose that M is orientable. Since T = 0, (1.3) yields

f=—-<pRp,R>= _Zp:jpthiﬂjh- (2. 1)

Let {e;} be an orthonormal basis of eigenvectors of the Ricci operator. With respect to
such a basis, the only non-vanishing components of R are Ry; = K;; = (1 /2)(p; + p;) for
i # j and where Kj; denotes the sectional curvature for the plane spanned by e; and e;. Then,
with respect to this basis, (2.1) becomes

p=—) pipKy=-2) pip;Ky. (2.2)

On the other hand, a result of Kulkarni (see [6]) states that a n-dimensional Riemannian
manifold of dimension > 4 is conformally flat if and only if

Ko + K34 = K3 + Koy = K4 + Kas.
Theretfore, in our case we have
T = 6(K12 + K34) = 6(K13 + K24) = 6(K23 + K14).
Since T =0, K34 = — K5, Kys = — K3, K53 = —K4 and so (2.2) becomes

P = —2[K12(p1P2 — P304) + Ki3(P1P3 — P2P4) + K1a(p1ps — P203)]. (2.3)

But p; = »_, K, and hence p1p2 — p3ps = —4K13Ki4, 0103 — p2ps = —4K12K14,
P1P4 — P2p3 = —4K 2K 3. This gives

0 = 24K2K3K)4.

Consequently, by (1) it follows [, K2K3K4dM < 0.

Since T = 0 and p; > p2 = p3 = P4, 1t 1S easy to see that K12 > 0 and K3 > 0 (see also
[8], pp. 265-266). Finally, from the hypothesis p; > |p4| it follows | y PAM = 0, and hence
our theorem completes the proof for the orientable case.

If M 1s not orientable, one has only to consider the orientable double covering of (M, g) to
finish the proof.
¢) Since T = 0, K, > 0. Further, we have K;3K s = (K13)%. So, § = 24K »K3 - Kj4 > 0,
and hence, as in the case b), we may conclude that (M, g) is locally isometric to R* or to
S$?(c) x H(—c¢).

Next, let (M, g) be a four-dimensional, compact, orientable, conformally flat Riemannian
manifold with T = 0 and A'(M) = 0. Then, by (1.5) we have p = 0 and so, by (1.2), (M, g)
is flat. If T ## O, the following result holds:
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Proposition 2.2. Let (M, g) be a four-dimensional, conformally flat manifold with T # 0
constant and X (M) = 0. If the distinct eigenvalues of the Ricci operator are N # 0 and 0,
then (M, g) is locally isometric to R3(¢c) or R x H (=¢).

Proof. First, let M be orientable. Then, since A'(M) = 0, by (1) we obtain
/ PdM < (TH /9) . Vol(M, g). (2.4)
JMm

The scalar curvature and the norm of the Ricci tensor are expressed in function of the
eigenvalues of the Ricci operator by T = m(A)- A (constant) and |p|* = m()) - A°, respectively,
where m(A) denotes the multiplicity of the eigenvalue A. So, m(A) = T/ A 1s a continuous,
integer-valued function, that 1s, m(A) 1s constant. Next, since X'(M) = 0, from (1.5) we obtain
casily

/ mMA - [3 — m(\)]dM = 0. (2.5)
JM

We observe that 1 < m(A) < 3. In fact, if m(A) = 0, T = 0 and if m(A) = 4, (M, g2)
has constant sectional curvature k = A /3 # 0, and so A(M) # 0, which contradicts our
hypothesis. Since m(A) < 3 and m(A) # 0, from (2.5) it follows that m(A) = 3 and so, since
0 = m(A)-A', we have the equality in (2.4). Therefore, (M, g) 1s locally 1sometric to IR X S3(¢)
or R x HY(—¢).

[f M is non-orientable, it 1s enough to consider the orientable double covering of (M, g).

Remark 2.1. Relating to the results of Proposition 2.2, it 1s interesting to remark that A.
Derdzinski [4] gave some examples of four-dimensional, compact, conformally flat Rieman-
nian manifolds with A (M) = 0 and 7 constant, which have less than three distinct eigenvalues
for the Ricci operator, but are not locally symmetric. So, these manifolds do not enter in the
classification given in Proposition 2.2,

3. FOUR-DIMENSIONAL, CONFORMALLY FLAT MANIFOLDS WITH NON-NEGATIVE
SCALAR CURVATURE

We first recall the following result of M.H. Noronha:

Theorem (ct. [8], p. 256). Let M be a 2k-dimensional, k > 1, orientable, compact conformally
flat manifold with v > 0. Then either the kth Betti number is O or M is covered by R* or
S¥(¢) x HY (—0).

This result can also be obtained from two known theorems. Indeed, if (M, g) verifies the
hypotheses of the Theorem of Noronha, the possibilities are the following:
a) T > 0, but T does not vanish identically. Then, by a theorem of Avez and Heslot (see [1],
p. 771), by(M) = 0.
b) T = 0. By a theorem of Lafontaine (see [7], p. 316), either b (M) = 0, or (M, g) 1s locally
isometric to R-* or to S¥(¢) x HN(—c).

For dim (M) = 4, we now prove the following result:

Proposition 3.1. Let (M| ¢) be a four-dimensional, compact, conformally flat Riemannian
manifold with scalar curvature v > 0. For X(M) >0 and putting ¢ := ao/ 12 where
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ag = maxy(T?), we then have

Vol(M, g) > Vol(S*(¢)), (respectively > Vol(P*R(c))),

if M is orientable (resp. non-orientable). Moreover, the equality holds if and only if (M, g) is
isometric to S*(c) (resp. P*R(c)).

Proof. If M is orientable, (1) holds. Consequently, since |p|*> > % / 4, we obtain
X(M) < (1/ 192:%)] T*dM. (3. 1)
M

Hence, we have
X(M) < (ag / 1921%) - Vol(M, g). (3.2)

Since X (M) >0, (3.1) assures that T does not vanish identically, and the theorem of Avez
and Heslot [1] implies by(M) = 0. Next, since 2 — 2b, = X(M) >0, by = 0. Hence, from
(3.2) we have

Vol(M, g) > 3847 / aj = Vol(S*(¢)) (3.3)

where ¢ := ag / 12. Moreover, if in (3.3) the equality holds, the equality also holds in (3.1).
Thus |p|* = 1% / 4, that is, (M, g) is an Einstein manifold. Then, (M, g) is isometric to $*(c¢)
(see tor example Propositions E.I.3 and E.IIL.5 1n [2]).

If M is not orientable, we derive the same result for the double covering of (M, g) and so
(M, g) is isometric to P*R(c).

Remark 3.1. It 1s well-known that if M 1s a four-dimensional compact manifold with finite
fundamental group, and if there exist on M a conformally flat metric g, then M is diffeomorphic
to S* if M is orientable and to P*R if M is not orientable (see [5]).

By proceeding in the same way as in the proof of Proposition 3.1, we may prove that for
such manifold

Vol(M, g) > Vol(S*(c))  (resp. Vol(M, g) > vol(P*R(c))),

and the equality holds if and only if (M, g) is isometric to S*(¢) (resp. P*R(c)).
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