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WHEN MAY TWO SYSTEMS OF ORTHONORMAL FUNCTIONS BE INTERCHANGED IN
VECTOR-VALUED ORTHOGONAL SUMS?

JOSEF A. SEIGNER!

Abstract. Given a finite orthonormal sequence ®,, = (@, ..., ©,) in some L>(W) and vectors
X|,y ..., X, in some Banach space X we are interested in the norm of the sums Zle @;(x;
in LY(). A constuction in [1] suggests that the system $, may be replaced by the set 11, =
(11, ...,7,) of coordinate functions T (0y,...,0,) = 0; on 3" ~viewed as an orthonormal
system with respect to a suitable measure \ on §"~'. We show by a convolutional argument
that after symmetrization the measure A\ is uniquely determined. We also discuss related
questions.

1. INTRODUCTION

Many features in Banach space theory such as type and cotype may be stated in terms of
suitable orthogonal vector-valued sums and inequalities between their L>-norms (cf. [2]. [1]).
[n our setting we focus on sums

i
E 9,

J=1

where the xy,...,x, are vectors in some Banach space X and the n-tupel of functions ¢, =
(@y,..., @, 1s an orthonormal system in some Hilbert space L»(p). We think of n and ®,, as
fixed for a moment. If ¥, = (1, ...,,) 1s another orthonormal system in some L,(A) there
seems to exist no general criterion whether we have for instance
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regardless of the Banach spaces X and the vectors xy,...,x, mm X with some given constant
C > 1. Not so, if in (1) we insist on equality and C = I. We shall see that in the affirmative
case the two systems in question will share the same projective distribution.

Before engaging in the definition, let us first fix the notation.

The scalar field will be €. With obvious modifications the results will apply to the real
case simultaneously.

We shall write ||x||> for the euclidean norm of a vector x = (&,,...,¢,) 1n (5. Moreover,
x* {5 — C will be the corresponding functional and x™ & x the n X n matrix with entries
E;&k. The unit vectors are denoted by ey, ..., e,.
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S"~ 1 is the set of all vectors in C" of euclidean norm 1. The natural mappings
—1 .
T‘[J':S’” _"[{::1 5___(511'**1[:}-}}}|_}G-j (;‘r:]1--'1”]

will play a special part in our theory. We use the symbol 1, = (7, ..., 7,) for this system
of functions.

C(S" ') is the Banach space of all continuous complex functions on §"~'. By the Riesz
representation theorem its dual is M(S"~"), the space of all complex measures on §"~'. The
duality 1s given by

(f, B) — / 2(5)B(ds).

9 = 1
J_,_.’l' i

On the torus T, the group of complex numbers of modulus 1, we denote the Haar measure
by my. Similarly, on the group U, of unitary n x n matrices we denote the Haar measure by
my,. The unit matrix 1s /,,.

For our purposes it will be convenient not to distinguish between an n-tupel of functions
D, = (@1,...,9,) insome Ly(u) and the X-measurable map given by

Dy Q—C' 1= () =Y @ilDey.

[t 1s important to mention that ®, = (@y,..., ¢,) is an orthonormal system if and only if

/ (I}u(f) * ;{';{I}H(r)}'l'({{r) — Iu* (2)

Note that (2) 1s merely shorthand for

/ (P;(f)qjﬂ(f)]—l(f”) — ‘5fﬁ. U!k — I!' ey ).

Note that any measure w that fulfills these n* conditions will turn a give map Q,, : ¥ — C”
into an orthonormal system. When it is advisable to be more careful about the underlying
measure we rather use the symbol [®,,, 1] in order to indicate the dependence.

If there are given vectors xy, ..., x, in some Banach space X we define

Ul —=Xe—x (=1,...,n).

Let us denote the Banach space of square Bochner-yi-integrable X-valued functions by
L3 (). Then Ud, : 1 — U (®,(1)) is a member of LY and we have

1 /2

(I emnlPuan | = [0,
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2. THE PROJECTIVE DISTRIBUTION

Let us fix n and an orthonormal system @, C L,(n) for the time being. Given U : {5 — X
we may certainly write

| 1/ 2
(U, lr9 = / |UB, 0P udr)
2 {:]:“?é-[}}
Ud : /2
- / | 1,0 3t ©)
[ D, 40} H {I}u |

1

|| HU)H w(dt)mr(do)

"/ | G, (1
Lol Gt
ST S {0,400 | |P..(D)]

This observation forces our way.

Definition 1. Ler &, C Lo(1) be an orthonormal system. The measure A = A (P, ) on 8"
given by

/f{a (ds) = / / ( Dnl0) ) | D, (1)||5u(dymr(do) f e C§" ") 4
B, £0 D, (D]

is called the projective distribution of @, (with respect to |1).

A note on the terminology is in order: Averaging over T will force A to be T-invariant.
Thus, A may be looked upon as a measure on the projective plane C* /C, = "' /T. Indeed,
whithout symmetrization and with a different normalization this is exactly the construction in

| 1], Lemma 3.7 (1), p. 428.

Theorem 2. Let , C Ly(1) be an orthonormal svstem. Then its projective distribution A 1s
uniquely determined by the following properties:
(i) The system of projections 11, = (my,...,7,) is orthonormal with respect to A. In
particular N has total mass n.
(it) Ais T-invariant
(iit) For all Banach space X und for all U : {5 — X we have

HUHHHLQ‘{M — HU‘I‘-‘”‘ LA (1)

Proof. Clearly, A 1s a positive measure on 8" . Let us start by verifying (1) to (1i1).

(i): For fixed j, I € {1,... n} define a continuous function g on "' by g(s) = () T5(s)
(s € " 1), Then,

| 3 o@i(f) oQL1)
T(S)m(sIMds) = / / O, (1) *w(dnymr(do
'/E”_l j (N H“:IJ“”(I ” H(I).Fi'{ )‘ H ( }“ H(dD) )

/ @ (1) @;(Huldr)

= .
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Moreover, if we put g(s) = ||I'IH(£}||§ == Z;}:i |1;:r_;-|j =1(se S ") we get
ASH) = / 111, ()] 3A(ds) = / / |G (D3 1(dDymr(dC) =y / (1) u(dt) = n.
' 7 j=1"

(ii): For continuous functions g on "~ ! and complex numbers T of modulus 1 we have

/.f'(*‘rﬁ')?&(n’.&') = / / (Tml ! ”) ‘|([}”(f)”%H(df)i'f'!':‘(dﬁ)
. 0 A0 [P (0)]]

_ / / ( 3. 0P, () > 1D, ()|[5(dhmr(do) = /j'(.a')h(d.?).
), 40 n :

(iif): This is the very definition of A. Given U : {5 — X, define g € C (§"") by g(s) =
|UTT, (s)]|* (s € S"71). We get

1 /2
HUHHHL'}ELM — (/’|Uﬂn(ﬂ)|!2)“(dﬂ))

9

. | /2
(/ P|Uq}n(”i‘2?—’-(dﬂ) - “U(I}Hi|L§{;;}'

As for the reverse, we shall apply a density argument.
We will construct a sequence {1 - ||} 2, of norms on C" such that any continuous and
T-1nvariant function g may be uniformly approximated by linear combinations of the form

N
S Z a; V,fﬂ”(*‘f)[|:zm*
j=1

where ¢; € Cand V; € U,,.
[ndeed, if we are given two measures A and A on "~ ! with the property that

[lumoiinas = [ [ve,mludn = [ 1o

however we choose X and U : {5 — X then we may conclude by approximation that
/ g($)A(ds) = / g($)N(ds)
for every T-invariant g € C (S""). Furthermore, if f € C(S"~') then

2(s) = / f(Ts)mr(dT) (s € §" 1)
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=

is T-invariant and by virtue of (ii)

/_f(.s))x(dﬁ;) — / /f(Tﬁ;)Px(dﬂ).v?fT(f:!T} — /g(.y))\(dx) — /g(.f)i(dﬁ).

The same holds 1f we interchange A and A, hence

/f(ﬂ)?\(ffﬁ’) = /f(ts*)i(ds).

Appealing to Riesz representation theorem shows that A = A and thus our issue is settled.
We proceed in four steps.

Step I: Determine r, > O(k = 1,2, ...) such that
oy > it s —71e|h<2”' forsome T€T (s =(0q,...,0,)0 €8

Define norms
- CY — Ry

N R R m{lﬂ, IHE}-
Fi

Recall that || - ||5 is the euclidean norm. || - ||, is certainly a norm again and by construction
sy =1 if [[s —7Terl» >27% forall €T eSS L k=12...) (5

Step 2: For the following we denote the rotational invariant probability measure on "' by
m. We continue by defining a sequence (h;);< , of continuous non-negative functions on S" !
by

e tl2
511G — 1

| ||y!|fmm(d}‘} — 1

hi(s) = (s €S h

Note that the denominator does not vanish. Obviously, all A; are continuous. They have
the following usefull properties:

/ hy(s)m(ds) = 1 (6)
h(s) =0 if |ls—7ey|l, >2*% forall TeT, (7)
Every h; 1s alinear combination of || - ||fm and || - [|°. (8)

Step 3: Now, let g be a T-invariant function on §"~!. Define the "convolution”

gi(s) = /g(V'"1€|)I’1;c(V5')m[;”(dV) (s € " 1.

Claim:
g=limg in CES". (9)

k— o
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By virtue of T-1invariance and uniform continuity, given ¢ > 0 we find k € N, such that for
any two points s and y in §"

[s — yll<27" implies |g(s) — g(y)| <e.

It tor this particular & the term /;(Vs) 1s greater than O then (7) guaranties the existence of
some T € T such that ||s =TV~ ey, = ||Vs — te,||» < 27*. The function g being T-invariant
we conclude g((V~'ey) = g(V7le)) and |g(s) —g(V~'e;)| < e. Consequently, we have the
following inequalities

18(s) — & ()] < /fé%'(fi') — g(V™ e )| (Vs)my (dV)
< E/hk(v'-'?l)mli”(dv)

— E/f'!k(ﬂ)f'?i(dj‘) = €.

This proves claim (9) since everything applies uniformly to all s € §" /.

Step 4: The g, are now going to be approximated by suitable linear combinations of squares
of norms. Towards this end we take some sequence F,, (m € N) of measurable partitions of

U,, say of cardinality m and enumerated as follows F,, = (Fi,, ..., F). We may require
F ., to fulfill

finess(F,)) € max  sup ||V — Wz — 0 (m— o) (10)

J=1,....m V.We -F,r'ur

Choose any V;,, € Fj,, and let

n

gﬁ:ﬁrr(-g) = Z HILT,,.(FIH:)S'(L?;,I& )I?A'(ij-?) (s € S”_I)*

J=1

Claim: For all kK we have:

Br = lim 8km n C(S”_I ) ([ l)
Hl— G
Fix £k € N and ¢ > 0. Due to the uniform continuity of g and 4, we may choose & >0 in
such a way that for any yy, y», 51, 55 € $" ! with [y, — s1]| <8 and [|[y2 — s2|| < we may
conclude

gy)h(sy) — gy)hi(sz)] < e.

Now, let mg be sufficiently large to guarantee that finess(F,,) will not exceed & for all
m > myg. Then we find uniformly in s € §"~

L

im(s) — gi(s)] < Z / (V™ ephi(Vey) — g(V,, e (Vier)my, (dV)
J A

j=1

i

3 E my, (A, = €.

j=1

VA
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This proves claim (11). Recall claim (9), and we are done. Q.E.D.

3. ROTATIONAL INVARIANCE

We are going to point out the special role of rotational invariant orthonormal systems. In
the real case we consider an n-dimensional Gaussian vector G, = (gj. ..., &), 1.e. the g; are
1.1.d. with distribution

1 * O
Plg, € F} = Vi / e odt (F Borel subset of R").
270 JF

[n the complex case the n-dimensional Gaussian vector G,, = (g4, ..., £,), can be obtained
by setting
l ]

e

g = 21+ —=& G=1,...,n)
V2 V27"
provided (g,,...,2>,) 1s a 2Zn-dimensional real Gaussian vector (cf. [4] S12).
It 1s important to note that if V € U, then the distributions of V§, and ¢, are the same.
I !
This 1s what we call rotational invariance.

Definition 3. An orthonormal system ®,, € L>(W) is called rotational invariant, provided
w{Ved, € F} = u{d, € F} (V€ U,; F Borel subset of C"). (12)

Recall that we agreed on not distinguishing between the system @,, and the induced C"-
valued measurable map.

Taking into account that if ®,, 1s rotational invariant then its projective distribution 1is
rotational invariant, too, and that there is only one rotational invariant measure on §"~' with
total mass n, the following remark is obvious.

Remark 4. Let @, be the (unique) rotational invariant measure on S"~ ' with total mass n.
Suppose ©,, € [>(W) is rotational invariant then its projective distribution equals @,,.

The study of the projective distribution A rather than that of the systems ®,, C L>(u) in
their own right was triggered oft by investigating the behaviour of a certain generalization of
the absolutely-2-summing ideal norm (cf. [3]).

If 7: X — Yis abounded linear map, we define 7(7|P,,) to be the smallest constant C
such that

|ITU(I)H“;_1'”” c:_: C U” for U : Ejﬂ: — X, (13)

We consider two special cases.

(1) If the orthonormal system X, = (Xi,...,X,) 1S given by the indicator functions x; =
L1 € Lo(R) and if Uis given by Ue; = x; (j = 1,...n) then the left hand side in (13)

computes as
1 /2

> Tl

j=1
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labelled strong {>-sum of the vector tupel (Tx,, ..., Tx,). The right hand side in (13)
computes as

sup Z [(x;, x') |7 X e XX <1y

known as the weak {>-sum of the vector tupel (x,...,x,). Accordingly, 7(T|x,) coin-
cides with the absolutely-2-summing norm computed with respect (o n vectors. (cf. |4]
SSI18, 23-26, [3]).

[f the orthonormal system 1s G, = (g1,...,g,), consisting of n independent Gaussian
variables over some probability space (), >, IP), then 7(7|G,) coincides with the y-
summing norm computed with respect to n vectors. (cf. [4] SS12, 23-26, [3]).

[n turns out that among all 1deal norms butlt according to the above procedure, there 1s
one which has minimal value simultaneously for all T € L. We formulate a somewhat more
general lemma.

Lemma 5. Ler &, C Ly(w) and ®,, C L-(11) be two orthonormal systems with projective
distribution A and A, respectively. Assume, there is some probability measure ° on U,, such

that

/ 2(X)A(dx) = / / 2(VX)AMdx)P(dV) (g cCES"! )) . (14)
Jgi— Ju, Je—

Then

(T|d,) < (T|d,) (T <L)

Proof. Given operators {4 “ X ' ¥ we find

ITUVI |y = ITUV®, [ < clUV] = clU] (V€U

(pey —

where ¢ = (T|®,,). Square, integrate against P(dV), and take the square root, then

. | /2
|TUR, |3 = IITUT |5, = (/ |TUVTI, 11‘;’,{-(_}\&({31/)) < ¢||U].

As U : {5 — X was arbitrary we have 7(T|®,) < c. Q.E.D.
Note that the situation in (14) can be arranged 1n a simple manner: Given an orthonormal
system ¢, and some probability measure [P on U,, we may define

{I}” : Q >(: U” — E”\

{I-, V) — Vq}u{f]

It is immediate to see, that if A is the projective distribution of this particular ¢, indeed
(14) holds with the same [P. Moreover this construction always yields an orthonormal system,
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since

/ {FIH}H(,f)# & (FIH"-'H(I];TJ.({!I} = / V (/ d,(1)* fl};:(!’}}i(df)) V*P(dV)
J & JU, S —1

/ VI,V'IP(dV)
J L

S dl

= / [,P(dV) = 1,.
JU

l

The case in consideration 1s merely specialized to the situation where ¢,, = 11,,.
The author has the strong feeling that a converse of the above lemma holds true.

Conjecture: Given two orthonormal system $,, and ®,, such that
(T|P,) < (T|®,) (T € L)

then necessarily there 1s a probability P measure on U,, such that (14) holds.

However, we are able proof this conjecture only in the case where ®,, or rather its projective
distribution A are rotational invariant, 1.e. A = @,,. In this case any probability measure [P in
(14) will again produce a rotational invariant measure Aon S !, sothatin fact A = @,,.

Corollary 6. The following statements on an orthonormal system W, C L>(v) and its
projective distribution A are equivalent.
(i) A = @,,
(ii) A is rotational invariant.
(iii) 7(-|\Y,) is minimal in the sense, that

TV, < (T|P,),

however we choose the operator T and the Hilbert space L-(1L), and the orthonormal system
(pﬂ C Lf(i—i)

Proof. That (i) 1s equivalent to (i) 1s just the fact that @, 1s the only rotational invariant
measure on S" ! of total mass .

(i) == (iii): Let us consider an orthonormal system ®,, C L,(u) with projective distribution
A. Define 3
¢, QxU, — C",

(1, V) — V&,

regarded as an orthonormal system with respect to the product measure p & my, (see above).
As a matter of fact ®, is rotational invariant, hence its projective distribution coincides with
W, and we get

(T|P,) = (T\V,) (T € L),

provided (i) holds. By the preceeding lemma,

(T|®,) < (TP, (T e L)
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Altogether we have show (iii).
(iti) == (i): We know that TT, C I,(@,) is rotational invariant, thus 7w(U|[T1,, @,]) <
(U|[®,, 1]). Assuming (iii) we even have equality, i.e. (U|[®,, u]) = m(U|[T1,, @,]) for
all U : €5 — X and all banach spaces X. By rotational invariance the map
U, — R,V HUV]_I:’V‘!I;HE,,}
is constant equal to 7(U| [TT,, @,]). Recall that

i "}

. 1 /2
(/ |iUV”,;Hir:'{/hjﬁ'.’[_]”(di/)) — TT(U; [ﬂm W, ).

Hence, assuming that the map

U” —> E‘E._F, V I ||L’TVH”HL.;:U”

was not contant we had the contradiction

. ] f.‘-_’
(U[[®,, 1]) = sup [[UVIT,{[px > (/ HUVTI”ngmu,r(d\/)) = (U|[TT,, @,]).
veu, : . .
This proves in particular
|Uﬂn|lL§{M — H Uﬂn“t-}'{:,,}
and since U was arbitrary we are done by virtue of theorem 6. Q.E.D.
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