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ANALYTIC TORSION FORMS AND TORSION-SIGNATURE

DONGGENG GONG

Abstract. We define a rorsion-signature invariant on the total space of a compact fiber
bundle. The analytic torsion form of the fiber bundle is used to find an adiabatic limit formula
of the torion-signature. Mathematics Subject Classification (1991): 58G10, 53C07, and
57R20
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1. INTRODUCTION

The analytic torsion form of Bismut-Lott[ BL] arises naturally from a transgression formula
of the smooth version of the Riemann-Roch-Grothendieck theorem. This torsion form 1is
further extended to certain non-compact fiber bundles in [GR]. It is natural to study the
contribution of the analytic torsion form of degree > 2 to adiabatic limits of some invariants
on the total space of the fiber bundle. Such a nontrivial contribution does not exist for the
analytic torsion ivariant stmply because of the top dimensionality of the Euler form on the
base space of the fiber bundle. Hence, we need to consider the adiabatic limits of other
Invariants.

The purpose of this paper i1s to introduce a new invariant, the torsion-signature on the
total space, and to prove an adiabatic limit formula of this invariant, which involves both
the analytic torsion form and a modified torsion form. This torsion-signature invariant 1s
motivated by the following question: for a compact fiber bundle 2 — M = B and 1ts
analytic torsion form 7(T"M, g*, g¥) associated with a flat complex vector bundle E over
M, what homotopy invariances does the pairing < LBYT(THM, g7, ¢*), [B] > have, provided
T(TM, g%, g*) is closed? We refer to Section 2 for the detail of this question. We are led to
consider an operator on the total space M which combines the signature operator on the base
space B and the Euler-de Rham operator on the fiber. Instead of explicitly producing such an
operator, we apply a new mixed super trace to the Euler-de Rham operator on M and get our
invariant. The i1dea is based on the fact that applying two super traces, which correspond to
the two gradings given by the degree of forms and by the Hodge star operator on a closed
Riemannian manifold, to the Euler-de Rham operator, we obtain the Euler characteristic
number and the signature of the manifold (ct. [BGV], Chapter 4), respectively. The mixed
super trace 1s just the tensor product of these two super traces on the exterior cotangent bundle
ANT*M) ~ 7" (AN(T*B))R A(T*Z). The advantage of this trace approach is that we can directly
use many existing formulas. For instance, we can quickly get a local mixed index formula.
Because of these new features, we have rised more questions than what we have solved in
this paper.

This paper 1s arranged as follows. In Section 2 we recall the analytic torsion form of
Bismut-Lott. Section 3 is devoted to a modified torsion form that we need in the adiabatic
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limit formula. We introduce in Section 4 the mixed super trace and prove a local mixed index
formula. We define the torsion-signature invariant in Section 5. This invariant reduces to
the analytic torsion invariant when B = {pt}. Finally, we use in Section 6 the analytic and
modified torsion forms to prove an adiabatic limit formula of the torsion-signature invariant.
I am gratetul to Mel Rothenberg for helpful comments.

2. ANALYTIC TORSION FORMS

Let B and Z be closed Riemannian manifolds and Z — M & B a smooth compact fiber
bundle over B with the fiber Z. Suppose £ 1s a flat complex vector bundle over M with a flat
connection V# and a Hermitian metric g&. Denote by TZ the vertical tangent bundle of M
consisting of tangent vectors of M to the fibers. We choose a connection on the fiber bundle
M. Then TM = TZ & T"M, where T M is the bundle of horizontal vectors, 7" M ~ 7 (TB).
From this we can write the exterior cotangent bundle as A*(T*M) ~ 7 (A*(T*B))& N* (T* Z).

Let & be the infinite dimensional Z-graded vector bundle over B whose fiber over x € B 1s
isomorphic to the space of E|y -valued forms Q(M,, E|y ) on M., where M, = nl(x) ~ Z.
There is a connection V¢ on £ given by

E
U(IJ — LL;H(_I),

where & = C¥(B,E), U" € C><M,TH"M) is the horizontal lift of a vector field U on B,
. (U") = U, and Lyx is the Lie differentiation on C>(B, £). We have Q(M, E) ~ Q(B, ).
Let T be the curvature of the fiber bundle M given by

T(Ul ) U’_’) — _'PZ[UH'r U’_f?f] & C}: (M, TZ)!

where P : TM = TZ & TH"M — TZ is the projection. T is a TZ-valued horizontal 2-form
on M. Denote by iy the interior multiplication by 7. Then the exterior differential dy; on M
defines a flat super connection on & of total degree 1,

dM =dz—|—v5—f—f;r. (1)

The terms of (1) are degree-0, 1, and 2 parts of dy;, respectively. Let N be the number operator
of £ given by multiplication by j on C>(M, N(TZ) © E). Let g% and g# be the Riemannian
metrics on B and Z, respectively. Using these two metrics, we can define an L>-inner product
g% on &, and hence an adjoint d}s of dy as a super connection on &. For 7> 0, let

I I 1 ! - h 7
E(rf‘* Prai N — N2y N2

V't 1 - 1

—(d;, — d —w(&,¢%) — —=(T A +iy
2({/: {£)+ 2”’( 13; ) 2\ﬁ( +h’)1
where w(€, g%) = (V&)* — V¢ = (%)~ (V¥ ¢%). Take an odd function f(z) = zexp(z*),z €
C, and define @(¢) = (2?{:’)"‘%([) for ¢ € QF(B). We can use the usual super trace 7r* on &£
to define real odd and even differential forms on B, respectively,

D,

(2)

f(D,, ¢5) = 2mi): T (D)), (3)
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and N
f'(D, 8) = @T (51 (D). (4)

Let H(Z, E|;) be the Z-graded complex vector bundle over B whose fiber over x € B is
isomorphic to the cohomology H*(M,, E|y.). By Hodge theory, the metric g¢“ on Z induces a
metric g% £12) on H(Z, E|,). Furthermore, dy induces a canonical flat connection V#Z-£l2)
on H(Z, E|z). Let o(TZ) be the orientation line bundle of 7Z, and ¢(7Z) be the Euler class of
Z represented by an o(7Z)-valued closed form ¢(7Z, V) on M,

v rd
; Pf(E) = T(exp =2-), dim(Z) even
) TZ‘ v/’ — ' EH 2“ .
el ) { 0, dim(Z) odd,

where V4 = PA/YM with V¥ the Levi-Civita connection on TM associated with metric

of V4. Define I
f(VE,¢5) = @i T (f(5 (V)" = VE))),

where w(E, ¢") = (VE)* — VE = (¢F)71(VEgF). Similarly, we can define f(VHZElD),

gH{/f.f;|g} ) Set
dim(”)

X'(Z,E)= Y (=1Yjdim(H(Z, E|z)).

j=0

Let x(Z) and rk(E) be the Euler characteristic number of Z and the rank of £, respectively.
The properties of the two forms in (2) — (3) are summarized in the following lemma [BL].

Lemma 1. /) Zf(D;, g%) = 1df'(D;, g%), 1>0.

2)Ast — O,
#(D,. of) = [,e(TZ,NHVE ¢+ O), if dim(Z) even,
REns )= O/, i dim(Z) odd.
(D E;)_ :’i—dim(Z)rk(E)x(Z)+O(!), if dim(Z) even,
JAEnE )= O/1), i dim(Z) odd.
3)Ast — o,

o o (7 FL M7 EL ]
](‘(Dhl{;,u.) — f(?’H[ﬂ.Ll,ﬂ‘g”{fj.l,-f]) 1 O(_!),

\/,
of o .I ! I
fDng%) = SX(ZE)+0(—),

7

This lemma enables us to define an analytic torsion form 7 (77 M, ¢#, ¢%) of the fiber bundle
M as

L o 1 .
T(T"'M, g%, ¢") = / [f'(D,, &%) — 5:{'(2, E) — (7 dim(Z)rk(E)X(Z) -
J()

Vit dt
2)];"

(5)

- N
- EX(Z,EW(



290 Donggeng Gong

Note that this torsion form differs from that of [BZ] by a negative sign. Since the closed form
f(Dy, gE) 1s independent of £, we get from Lemma 1 the following transgression formula [BL].

Lemma 2.

—dT(T"M, g%, g") = / e(TZ, VAF(VE, gF) — f(VHEER | GHZEl2)y (6)
gL

The Riemann-Roch-Grothendieck theorem asserts that the two closed forms on the right
hand side of (6) represent the same cohomology class. Lemma 2 gives explicitly the difference
of these two forms. Formula (6} 1s also important in determining when the analytic torsion
form is a closed even form. Indeed, we get by (6) the first part of the following lemma [BL].

Lemma 3. 1) Ifdim(Z) is odd and H(Z, E|z) = 0, then the analytic torsion form is closed.
2) If g is covariantly constant with respect to V' and dim(Z) is even, then T(T?M, g, g%)
= (.

The property that 7(T7M, g%, ¢%) is closed in certain cases is important in the application.
So we want to discuss another case where the analytic torsion form is closed. To this
aim, let {¢;} and {f,} be local orthonormal bases of the vertical tangent bundle 7Z and
TB, respectively, with the corresponding dual bases {¢'} and {f*}. We also use the same
symbols {f,} and {f*} to denote the liftings of {f,} and {f“} to n*(TB) and 7*(T*B),
respectively. Denote by m' (resp. m®) the exterior multiplication by ¢’ (resp. f<). Let
c(X) = (XN) — iy and ¢, (X) = (XA) + iy for X a tangent vector or I-form. In particular, let
¢ = c(ep), c® = c(fn), l:i = ¢,(¢;), ¢ = ¢, (fo). Then

Vi i or 1 1 |
Dy = (=l VEEE + 5ig ) + 5w(E. %) = S—=euT) (7)

where 1; = (gE)"'(VE e = (€)7H(V7 g5, and w(€, g5) = m¥(wapdct + 1) with
Wajk glven by
Wabe = X“(VX;.X!J)

for X, = ¢; or f.

Let I' = 71y (B) be the fundamental group of B, p, : ' — Diff(Z) be a homomorphism, and
B be the universal classifying space of B, where Diff(Z) is the group of diffeomorphisms on
Z. Let M = B x i Z 5B be a fiber bundle over B with the fiber Z. Suppose p> : I' — GL(C*)
is a representation of " on C*. Then E = B x  (Z x C*) is a flat vector bundle over M and its
restriction to each fiber is a trivial bundle £ = Z x C* over Z. Let g* be a Hermitian metric
on E such that g* is locally independent of Z. One can construct such a metric as follows.
Choose a finite open covering {U;}_, of B together with smooth cross-sections f3; : U; — B
for the projection B = B. For x € 3,(U;) we define a Hermitian metric g; on C* = Ck. The
g's may be different for i # j. Then forvx € vp,(U;),v € ', we define a metric po(v~')g; on
C* .. We thus have a -invariant Hermitian metric 3; on I'B(U;) x C*. Let {o;} be a partition
of unity subordinate to {U;} and {&;} be the pull back of {o;} to B. Then g = > 0.8
is a I'-invariant metric on the trivial vector bundle B x C*. We consider g as a '-invariant
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metric on the vector bundle B x Z x C* which induces a required metric g on E. Let the
flat connection V£ on E be locally given by the usual exterior differentiation. Since the fiber
bundle M 1s locally a product, the curvature tensor T of M 1s zero. The operator D, 1n (7) 1s
now given by

V'

. 1
D = (= V) + Sw(E,8%). (8)

Since 1); = (gE)"l(ijgE) = 0, w(E, gF) = m* P, and w(€, g°%) = w(E, g°) + m wo, &e

Lemma 4. [f woy = 0 and g" is independent of Z, then the analytic torsion form
T(THM, g%, g%) is closed on B.

Proof. By (6), it suffices to prove that

/ e(TZ, V) (VE, g¥) = f(VHIEHD g2 E2) = .

4

Recall that f(VE, g%) = (Zm')% (pTr"(f(%w(E, £%))) and

7 El. | N
fIVHEERD, gHEEL (2mi)y: T (F(5w(H, ")

N o o .
@mi)? T (f(5 P2w(E, g")P2)),
where P, is the orthogonal projection of £ onto the kernel of (d — dz)*. Since gF is

independent of Z, w(E, g") = m®(g")~ (V] g*) is a form on B which is independent of Z.
Note that E|7 is trivial. We get

: 1 , 1 1 :
(2mi)? @Tr (f(5 P2 w(E, g5)P2)) = x(Z)(2mi)? ir(f(5w(E, g")),

and
, . 1 :
/ e(TZ, VAF(VE, g5) = x(Z)(27i)> Pir(f(5w(E, g))).
z

These two identities prove the result.

The condition that w,j = 0 can be satisfied 1n the following case. let g : BxZ—- M=
B x r Z be the natural projection. We have that g«(TB ® T(Z)) = TM. Here T(Z) denotes
the tangent bundle of Z in order to distinguish the vertical bundle 7Z. In particular, the
vertical bundle 7Z is equal to ¢.(7(Z)). Assume that there is a I'-equivariant Riemannian
metric on 7(Z). Let the Riemannian metric g2 on 7Z be the image under g, of the I'-
invariant metric on 7(Z). Thus g% is locally independent of B. Let T"M = ¢.(TB). It
follows that a horizontal vector U € THM is locally independent of fibers. This implies
that L;g“ = 0. Hence Wajk = <S(€))ér,fa > = %(Lg,gz)(ej,ek) = 0 (cf. [BC]). Thus
w(&, g%) = m*P, = w(E, g°).

We now return to the general case. Let Z — M I B be a fiber bundle over B with a flat
vector bundle £. When the analytic torsion form is closed, we define

Ts(B,M,E) = < L(BYT(T"M, g*, g"), (B] >, 9)
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with the Hirzebruch L-class L(B) of B and the fundamental class [B] of B.

7Ts(B,M,E) is a secondary invariant in the sense that the analytic torsion form appears in
the Riemann-Roch-Grothendieck theorem as a secondary class form. Since 7(T"M, g%, g*)
1s an even form, 7 s(B, M, E) is zero for the odd dimensional B. Obviously, it M = B x Z,
E=Bx(Zx,CwithE|z =Z x,C" and p : ;(Z) — GL(C¥). Then

Ts(B,M,E) = sig(BYT(Z, E|»),

where sig(B) is the signature of B, and 7 (Z, E|7) is the analytic torsion of Z associated with
the bundle E|7. For convention, for Z = {pt}, M = B, we understand 7 s(B, M, E) = sig(B).
But for B = {pt}, M is equal to Z. We interpret 7 s(B,M,E) = T(Z, E|).

One open question is whether 7 s(B, M, E) has certain homotopy property. Namely, 1t
h . By — B 1s certain homotopy equivalence, does the following equality hold

< LBDR(T(TM, o7, 2", [B|]1> = < L(BYT(T"M, g%, ¢*), [B] >?

If M is the trivial fiber bundle B x Z over B, and E|; is independent of B, then 7 s(B, M, Z)
1s clearly a homotopy invariant. In view of the Kahn theorem [Ka], 7 s(B, M, Z) 1s unlikely

a homotopy invariant in general. Now we list some elementary properties of the invariant
Ts(B,M,E).

Proposition 1. (i) 7s(B, M, E) is a diffeomorphism invariant.

(it) Let Zy — M; —T B; be a fiber bundle and E; a flat bundle over M; such that the analytic
torsion form T(TPM;, g%, g¥is closed, i = 1,2. Let Z, X Z» — M| X M> — B| X B> be the
product of the fiber bundles My and M», and P; : M|y X M, — M; be the projection. Then

Ts(By X Ba,M| x M2, P{(E}) % P5(E2)) = rk(E))x(Z))sig(B)T s(B2, M>, E>)
+  rk(E2)X(Z£2)sig(B2)T s(By, M, E)).

Proof. Since L(B) and [B] are diffeomorphism invariants, it suffices to prove that the analytic
torsion form 7 (T"M, g, ¢*) is independent of the metric g”. But this is obvious from the
definition of the analytic torsion form.

Part (ii) follows from the product formula of the analytic torsion form (see Theorem 3. 28
|IBL] for the case B| = B»).

3. MODIFIED ANALYTIC TORSION FORMS

In this section we introduce a modified analytic torsion form of the compact fiber bundle
M. This torsion form will be used in the adiabatic limit in Section 6.
We use the notation of Section 2. Let for ¢t >0

1 _w N N N
—(r I(dy) 17 +12dyt )

C, >

(10)
f , e I < ]
= %(d}'} +d;)+ V" + 51-1-‘(5, g") — —f'i-'(T)-

2V/1
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Let &, be the automorphism of Q(B, £) given by 8,(8) = ~%&,& € Q¥(B,£). Then C, =
128,((dy)* +dp)d  and D, = 128,((dy)* — dyy)8, . Hence, C? = —D?. Asshown in [BGV],
T (e~ %) is a closed form on B.

Lemmas. |)Ast — o¢,

E,—C‘f P IWH(Z.E]7), g/ Elznyy? O(L

\/}),

in the sense of all C'-norms.
2) As t — 0, the heat kernel e~ (x, x) satisfies

=G (x,x) ~ (@m0 N K (), (1)

j=0

where K;(x) € Lq,{ﬂ,f QM Endeirp(MT*Z) @ E|)).

Proof. See Theorems 9. 19 and 10.21 in [BGV].
By Lemma 5, we can define the modified analytic torsion form of M as follows.

Z

Definition 1. The modified analytic torsion form T(T"'M, g”, {;'-E} of M associated with the

flat complex vector bundle E 1s

- e N 2 TTIE N O LA A DTN, dt
‘TI(THM,L‘Q’Z,EE) — / (.PT:'J(""‘({?#(““ . Efj“”ﬂ/“f*“]n’* ) ) r
T - —C AHZE] 1402
_+_ ]_.( ) / J' ]q)ﬂ _(f:' {4: f[ ,H[Hl’./‘ L|;}‘,L )} )dlr)rzi}g
(12)

where T 1s any small positive number.
TU(THM, g%, ¢*) is an even form on B. It shares some properties of the analytic torsion
form T(T7M, g%, g*). We list two properties in the following.

Proposition 2. Let B and Z; be closed Riemannian manifolds. Suppose Z; — M; *= B is a
compact fiber bundle, and E; is a flat complex vector bundle over M; with Hermitian metric
gfi i =1,2. Let Z = Z| x Z> with the product metric g* = g”' x g2, mm' L — M — B be the
product fiber bundle of M| and M>. Form E = P7(E|) @ P5(E») and gf = = P ( gk i P”(g 253
where P; - M — M, is the natural projection. Then

52) + rk(E2)X(Z)TI(T My, g7, g). (13)

?L i - [

THTEM, g%, g5y = rk(ENx(Z)T\ (T M-, g*

Proof. Note that

QM E) ~ QB)RC*WM,E)
N = N&I+I&N-,
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and
D; = D; &I+ I&D3,.

Hence,

N N
S(=ePy = (=

TF(ZE ) (2€

Ny 2 Ny 2 2
— Tr‘(?leﬂhf)?"r‘(ﬁgﬁ) + Tr‘(feﬂlf)Tr?(eﬂl-*).

ﬂ?,reﬂ?_?,r)

By local index theory techniques, one can check (see [BL]) that

TF €2y = rk(Ex(Z)).

Now (13) follows clearly from (12).
Recall that the analytic torsion invariant 7 (M., E,) of each fiber M, associated with vector

bundle E, = E|y,, x € B, is defined to be

I 3 rsenrr__pd 2pdoy—u
T(M,, E,) = e23s T (N(= Py (VoY Pyo)) ™ =0 (14)

3

where V, = (d} — d2)|u,, P, = 1 — Py,, and Py, is the orthogonal projection onto the

kernel of V.. The following lemma asserts that the zero-form component 7;(T"M, g4, g%)o;
of (T M, g%, gf) at x € Bisequal to log 7 (M,, E,).

Proposition 3. 7,(T"M, g*, g%)i01(x) = log T(M,, E,).
Proof. This is obvious, since w(H(Z, E|7), g7%*12) is a one-form on B, by (12) and (14),

N

e 2 dt
T(T'M, g% g"o(x) = / @Tr‘(a(e""—"—PuT))?

d ]. T —1 . N 1;2
’ Tr(—(e’s — Py ))dt),—
+ dr(r(r)/ﬂ '@ r(z(e v )AL =0

log7(M,,E,).

I

The modified torsion form 7;(T"M, g%, g¥) is still quite mystery. For instance, we do not
know how this form depends on its arguments and when it 1s a closed form on B. The difficulty
1s that we do not have at moment (2) and (3) of Lemma 1 for the complementary error function
erfc(x). From this point of view, the analytic torsion form of Bismut-Lott has advantage over
the modified torsion form. However, 1t 1s much more convenient to use the modified torsion
form 1n the adiabatic limit. This 1s the main reason that we discuss the modified torsion form
here.

4. LOCAL MIXED INDEX THEOREM

The main purpose of this section 1s to introduce a mixed super trace on A(T"M) ~
™ (AN(T*B)) & A (T*Z), which combines the super trace on 7*(A(T*B)) corresponding to
the grading given by the Hodge star operator and the super trace on A(T™Z) associated with
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the grading given by the degree of forms. We apply this mixed super trace to the Euler-de
Rham operator on the total space M and get a local mixed index theorem.

Let Z — M & B be the compact fiber bundle as in Section 2. Recall that the Hodge operator
x4 on M is given by the chirality operator on A*(T* M), namely, (&) = Pc(x!) . . . c(xdm3)E
where {x'} is a local orthonormal basis of T*M, c(x) = (xA) — iy, p = di"gM ) for dim(M)
even, and p = ‘"”"’gf 41 for dim(M) odd. The definition of #, is slightly different from the
usual one since *1{,}. = 1. Let C(T7M) be the bundle of Clitfford algebras over M whose fiber
over x € M 1s the Clifford algebra C(7; M) of the Euclidean space T;M. Then A*(T"M) 1s a
Zh-graded Clifford-bundle over M with a C(T™M)-action given by v = c(v)é, v € TP M and
& € N*(T:M), and with a grading given by the degree of forms. We have a natural Z,-grading
on End(AN*(T*M)) and a super trace tr° on C°°(M, End(A*(T*M))) given by

i (a) = tr(ay,) — tr{ar)

for a = (a;)i;,—; on A*(T*M) = A(T*M) & AN°“(T*M). There is a super trace 7r* on

.TJ=

L*(M, A*(T*M)) which is given for an operator A with a smooth kernel K4(x, y) by

T (A) = / | tr (Ka(x, x)).

M

We assume for the moment that M is even dimensional. Then End(A*(T*M)) = C(T*M)
EHC.}IC{T*M}(/\*(T*M)), and for H(J{') - C(T*M), b € E}’I{IIC{T*M}(ﬂ*(T*M)),

”J(H(I) & b(x)) = (_“Zi")m ﬂ'di['l'll:M:l(H(I))fr::(b(x))u

where Ggman @ C(T*M) — ASD(T*A1) is the top dimensional piece of the symbol map,
dimi M . . . . .
(—2i) an Odim(yy 18 the super trace on C(7*M) and tr) 1s the relative trace given by

Lﬁl'l'l-[ ﬂ-’i”

tri(b) = 2777 tr' (xpb).

tr extends to a linear map from (M, Endcir=pn (A" (T™M))) to QQ(M). Thus,

dimi M

1 (Ka(x, x)) = (—20) "% 1 (Oaimuny(Ka (x, X)), (15)

On the other hand, we can also use the Hodge star operator x; to grade A™(7T*M) and
din{ M .
define a usual trace tr, = 2~ "3 }rrm(—,rw] on Endcir=yn(AT(T7M)), which can be extended

to a linear map from Q(M, Endcirsan(A*(T*M))) to QQ(M). We have thus another pointwise

SUpPCr frace
dimi M)

tr (Ka(x, X)) = (=20) 727 1r.(Odiman (Ka (x, X))) (16)

and then another super trace

T (A) = f 7 (Ka(x, ). (17)
M
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The difference between the two traces 7' and 77, 1s that we use a relative super trace in (15)
and a usual trace in (16). Let Dy = dys + dy, where d,y is the adjoint of dy; with respect to the
Hermitian structure on M. Applying these two traces to the operator A = ¢~ and letting
t — 0, we obtain the index formulas for the Euler characteristic number and the signature of
M, respectively. See ([BGV]| Chapter 4) for details.

Now for the total space of the fiber bundle M, we have T*M = (T"M)* & T*Z and
AS(T*M) = N*(THMY)Q A* (T*Z). We may use a tensor product of the above two traces
tr’ and 7, to get a new trace. More specifically, we assume throughout this section that the
dimension of B is even. Let try, be the tensor product of the trace 7, on A™(( THM)Y*) and the
super trace " on A*(T7Z). For an even dimensional fiber Z, 11}, acts on the smooth kernel

i My

K(x,y) of an operator A as 1r(K (v, x)) = (=20)7 7 tr} (Ogimorn(Ka(x,x))), where #r, , 1s
the tensor product of the pointwise traces #) and ¢r.. The trace 1}, together with an integral
on M produces a super trace 7r), on LM, N (T*M)). If we tensor A*(T*M) with the flat
vector bundle E over M and use the usual trace on E, we get a trace as above which is still
denoted by 7r),. Thus if A 1s of Tr},-trace class operator on L>(M, N (T*M) @ E) with a
smooth kernel K, (x, v), then

Try(A) = / 1y (Ka(x, x)).
JM

We first apply the trace 7r, to the operator Dy = dy + dyy and consider the following
invariant for an even dimensional Z,

ind,.(Dy) = lm ﬂ*_}rf(e_”}if). (18)

{—={)

ind,.(Dyr) 1s well defined by Theorem 4. | [BGV]. The geometric meaning of ind,,.(Dy;) 1s that
it represents a mixture of the Euler characteristic number and the signature of M.

Theorem 1. Let Z — M 5= B be a fiber bundle with Z and B closed Riemannian manifolds.
Let B be even dimensional and E be a flat vector bundle over M with a flat connection VE.
(1) If Z is even dimensional, then

Jdimi AN

ind,(Dy) = Qmi)~ " rk(E) | A(B) / A2t (e ), (19)
4B .y

where A(B) is the A-class of B, RM %R}‘f(‘{{f‘ R;f = < ¢j, RMe, > with the curvature RM of

the Levi-Civita connection V™. Let N be the number operator of the total space M. Ast — 0,

. s o=ty _ | indi(Dy) + O@), dim(Z) even,
(1) 1rie )”{ OV, dim(Z) odd.

dim M ind (Dy) + O(),  dim(Z) even,

saa N AN ;_H‘}.:"I:I — = .
(iir)  Try(Ne ) {ﬁ;.k(g)ilﬂﬁrijg(vﬁ), dim(Z) odd,

where ay is an odd form on M.
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(iv) Let Vy = f_f..-w - dy.

- e o), dim(Z) even,
K ,—1D7, —
Try(V/1Vage ™) {0( VD, dim(Z) odd.

| s A2,y ] ind(Dy) + O, dim(Z) even,
W) A= 2tDy)e ) { O(V1), dim(Z) odd.

N ) dM) ind (Dy) + O, dim(Z) even
o T (—(] — EIDE ,—1D3, _ 3 " M ) )
o (5 e ) { OV, dim(Z) odd.

Proof. (i) Since (19) is local, we can assume B and Z are oriented and spin manifolds. By
Theorem 4, 1 [BGV], the heat kernel K,(x, v} of Dy, has the following expansion,

Ki(x,x) ~ (7)™ 750 3K (), (20)

1=

with K;(x) € C*WM, Coi(T"M) & Endecran(AN(T*M))). Here C(T™M) 1s the subset of
elements in the Clifford bundle C(77M) with degree < 2i. The symbol of sum of the K s is

dinu Al

o(K) = > oa(Ky) = AM) exp(—RY“5") € QM. Endcresn(N*(T*M))).
i==()

Here RM@E = RM & [ + [ 2 R, and RF is the curvature of VE# = YV + Lw(VE ¢),

REM — _Eli.“.-(‘{?*"-'“q":)z. Fora € Co(T*M),i< ""”gm, we know that its super trace is zero.
Thus,
] LAY . _
ind,(Dy) = lim@nn~"> > ¢ / 1y (Ki(x))
[—0) JM

. Jdimd A
j> il

|

(4m)~ T / 113 (K g (X))
o M -

dimi A

(4m)~ 2 / A(M)nj,(e
M

P M OO
R FOOE

)

dimi M

(2ri)~ 3 / AP (e e R,
o4 M

We obtain from ([BL], (3.77)) that (¢~ ®"") = rk(E). This implies (19).

(i1) If Z 1s even dimensional, the result follows from Part (/) and (20). For odd dimensional
Z, we still have Formula (20). However, the heat kernel in this case contains only the half-
integer powers of 1. Also tr,(a) = 0 fora # ¢' ... c"™Me! M) gince both ¥ and 1
have such a property. Thus, by local index theory techniques, we get that as ¢t — 0,

. ' — D . . dimiM} | .
lim T e~y = lim /775 [ 0y (Ki(x) = 0,

r—0 r—0 dimi MO JM

[ > —
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since fr},(K;(x)) is an even form and dim(M) 1s odd.
(iii) Let {e,} and {e“} be local orthonormal bases of TM and T*M, respectively. The
operator N can be written as

clli‘n{M}I

Z ﬂ(en,)ﬁ (Eﬁ,) l dlm;M)

=1

where c(e,.) and c,(e,,) are the Clifford variables associated with ¢, [BZ]. Using the Getzler
rescaling G/, we get thatas 1 — 0,

\/— dim(M) dim({M)

I
Gl D cleg)eea)) = 5 ) ¢ Aoea)

=] =

and 1
GJ“DM) " (9a 4 Ryxp) + RMEE

Therefore, for the even dimensional Z,

dimi{M)
i S ey
Fag ) cley )eveq e M)

=3
dimi M) . dimi M)

R Y R 5 (e~ RE
| I)Z / AM)tr, ( Z f.’f*”*c‘r(em)f_ﬁ!ff“'(f-*_HL ).
J M i=1

As shown 1n ([BZ], XI) with the usual trace replaced by the mixed one, we obtain that the
above limit 1s zero. Hence by Part (ii), we have

dim(M 2 dim(M
IIIHTJM(NE' ED”)—IIITITJH( tm( )E“"‘D-”) im(M) .

{,v(D,
m Lim 5 ndy (D).

The approximate rate 1s clear. Similarly, one can prove the odd dimensional case.

(iv) Letdim(Z) be even. We may apply the proof of Theorem 3. 16 [BL ] to the situation here.
Indeed, let z be an odd Grassmann variable which anticommutes with all other Grassmann
variables, 22 = 0. For & € Q(B) @ Clz], & = & + z&;, & € Q(B), we define & = &,. Then

f“::'”— V”})

lim 77, (/1 Ve Pv)y =
t—() f—{) \/:f

dimi M)

oo i) ' - . '_|".1ur . T S
(2mi)~ 72 / AMYtE (e R yir(e R " TiYy
J M

|

dumi A

(2?1‘;')"_1/ AM)HY: (e™ f)n'(ltl)e"‘%“:):{)
M 2

since rr(éllw“f]ﬁ‘-’”') 1$ an odd form. Similarly, by the argument of Part (if), we get the result
for the odd dimensional case.
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(v) By local index theory techniques, we have that for the even dimensional Z,

lim Tr,(—2tD3,e” ’n”) = |lim ﬂM(e_’“J““’D”)
t—0 1—()

|

I RM
:Ium \) : (l _]— 2'-')_ . . A DMEE _
)ﬁ% (1+220R ._u)}h

2mi(l + 22))° 2
{/( il + 22)) alnh(1+2 R” rle

ddunt M)

(27i)~ "2 2 / AM)tE (RMe X )fr(R*’"“ "y =0.
M

The last step follows from the fact that (R “e=R"") = 0 by Proposition 1.3 in [BL]. Hence
by Part (ii), we obtain the result for the even dimensional Z. If Z is odd dimensional, we use
the above argument together with the proof of Part (ii) to get the assertion.

(vi) This part essentially follows from Part (v) and the proof of Theorem 3.21 [BL].
Indeed, consider the following trivial fiber bundle Z" — M’ = M x R n'—R% over RZ,
where '(x,s) = s and Z' ~ M. Let m’ : M" — M be the natural projection. Then
TZ' = ('Y (TM) and (7t )*E 1s a flat vector bundle over M’. We define a metric ng on 77’

e A

such that gZI|MK (sy 1s equal to u 1 £ Let the horizontal distribution 77M’ of M’ be given
by T"M' = (7’)* TR . We have

dyr = dyy + ds 0y,

and the fiberwise adjoint d},, of dy 1s

dyr = TN @Mma 35—
- _ dim(M
= HfM+d.s-(a,.-+;(N— 2( ))).

Here d), is the adjoint of dj,. Using the notation of Section 2, we get

0D = iditt — rdyr e
N N Is — d M
_ yiop Y 4 By o dm)y
Y 2
By the Taylor expansion,
5 / _8 2ds _&N
Try(fF2D))(s) = Try(s f(QDu)ﬂ )+—T1M(é -—f (2Dy)s %)

q Iy | .
B ”;i )ff.s-TF;iff(S_if ;(29.‘”)5?)'

Using the proof of Part (w ) and the fact that R“’ ( ,-) = 0, we obtain that the limits of

Try,(f2D))(s) and Try,(s™ f(ZD”)SE W1)yast — 0 dn not contain a ds-term. Hence the ds
term of the above identity together with Part (v) proves the assertion. [

Zhang [Zh] has recently obtained a similar index formula for the general case where T M
could be any sub-bundle E| of TM. In fact, for the even rank E,, our method works in this
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general case as well, since A (T M) ~ A*(ET)@- A" ((EIJ')*) and a super trace could similarly
be defined. The point of our method is that we can directly use the usual formulas since we
only change the super trace. See also [Go] for the Euler-signature type operator.

For the use of the next section, we list the following proposition whose proof is obvious.

Proposition 4. With the assumption of Theorem 1, there is a constant Ay >0 such that for
[ — OG0,
) Trye™) = Try(Pier ) + Ole™™),

2) Try(Ne =Dy = Triy(NPier p,,) + Ole™M),
3) T, (N((1 — 2tD3)e™"P) = T (NPiey 1) + O(e ™).

5. TORSION-SIGNATURE INVARIANTS

In this section we use the mixed super trace to define a torsion type invariant for the
operator Dy;. Denote by Dj;f the restriction of Dy to the orthogonal complement of KerDy;.
As usual, we have that Trf'{ﬁ,(@e"“}-#lz) ~ O(e~™Y ast — oo and for t — O, Trb(@e‘“ﬂﬁ:)
has an asymptotic expansion in ¢ which is the integral powers of 7 for dim(M) even and the
half-integer powers of t for dim(M) odd. Thus

()= — [ Koy gy AMAD

r(r) 0 w2 ! 2 (21 )

extends to a meromorphic function of r € € such that {(r) is holomorphic near the zero.

Definition 2. The torsion-signature 7,.(M, E) of M associated with the flat vector bundle £ is
defined as
d{(r)

dr

7.(M, E) is very special forM = B x Zand E = n{(Ep) ® m5(Ez) , where o : BXZ — Z
1s the natural projection and Ep and E are two flat vector bundles over B and Z, respectively.
In this case, D3, = D3 ® 1 + 1 ® D% and

log 7,,(M, E) =

|I':U '

A /

N . . N > .
Tr:w(ge—’”*’”*) — T (Pierp, )T (=" PD ™) o T (Porny )T 5

oL

2

where N’ is the number operator of B. By the McKean-Singer index formula,

N L N L dim(B) L
TF;(?E "D’y = const. Tr(xg—e P27y = const. Tr(xge™ P57y = O,
) : N’ N dim(B)
where we used kg5 + FHp = —5—*p. We get

log 7, (M, E) = sig(B, Eg)log T(Z, E7).
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Hence 7,.(M, E) is not trivial in general. Because of this, we call 7,,(M, E) the torsion-
signature invariant of M associated with E. In particular, we consider it for the fiber bundle
M = B x p Z and the flat vector bundle E associated with two representations p; of I' = 71;(B)
as we discussed in Section 2. In this case, we denote 7,.(M, E) by 7,.(B, Z, py, P2).

Proposition 5. (i) For B = {pt}, 7..({pt}, Z, id, id) is equal to the analytic torsion T(Z, E) of
Z associated with the trivial vector bundle E. (ii) For Z = {pt}, log 7..(B, {pt}, id, id) = 0.
(iii) log 7,.(B, Z, id, id) = sig(B, Eg)log T(Z, Ez), where id means the trivial representation
of I.

Proof. (i) For B = {pt}, Tr}, is the usual super trace on L*(Z, A\*(T*Z) ® E). The result is
obviously true.

(if) Since Tr, = Tr} on L*(B, A*(T*B)®E) and Trl(ge_””ﬁﬁ) = (0 by the above argument,
the assertion clearly holds. )

(ii1) This 1s the trivial case that we just discussed above. Q.E.D.

Part (iii) shows that 7., (M, E) might be independent of the metric in general only when the
cohomology H*(Z, E|;) = 0. An unsolved problem is to find a formula for the dependence
of 7..(M, E) on the metric.

The following version of 7,,,(M, E) will be used in the next section. Let u(x) = (I —2x)e™".

Proposition 6.

~ N N
lﬂg IL(M,E) — / [Tf::,.f(_“(fDEf)) — T"'M(“Pﬁc‘rﬂ,u)
Jo 2 2 (22)

—

dim(M) . N it
— ( 4 Fflf!'.t-(kaf) — ﬂ‘M(EPKE-"H.U)JH(T)IT-

Proof. By Theorem | and Proposition 4, the right hand side of (22) is well defined. For an
even dimensional Z, we have

>~ . N dim(M) . . N dt
RHS of (22) = / [TJ'M(EH(ID?H)J')—( ind,.(Dy) — TFM(EPHH{}”))H(I)JT
JO
d I R P-J T, LR dim(M)
— T_,‘n —e f“).”] . : dw D
dr{r(r) /,:, l}’w{Z{ ) = ( 4 el (Dy)
. N Ldt < d_ . N _;n
= TG Premm, D) ?},:{J + /{,-. 2= Try(Se Pirydt
- dim(M
= log (M, E) + TV (WPyern,) — 3 ind, (D)
d 1 o dim(M) | p N Ldr
_ dr{r(r) /” ( 1 ind,.(Dyy) — TFM(EPKW&,,,.,))“(f)]f T_}rzil
= log7,(M,E).

Here we used Theorem 1 (iii). The above proof is also valid for the odd dimensional case
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except that we have to consider

F( )/ T”'l:vf( (—2tDyy)e” Die)g" ""}a—u

dt {!f
— Tr;gf (NPKE'I‘IJ” )*

> d

We will link the 7, (M, E) to the analytic torsion form and the invariant 7 s(B, M, E) by an
adiabatic limit formula in the next section. We refer to [GP] for the corresponding invariant
in the operator situation.

6. ADIABATIC LIMITS OF TORSION-SIGNATURE INVARIANTS

Our purpose of this section 1s to find an adiabatic limit formula of the invariant 7,.(M, E)
which is related to the analytic torsion form and the invariant 7 s(B, M, E) defined in Section
2. Unless specifically stated, we assume throughout this section that B 1s an even dimensional
closed Riemannian manifold, M 1s a compact fiber bundle over B with a closed Riemannian
manifold Z as typical fiber, and that E 1s a flat vector bundle over M.

Recall the exterior differential dy; of M with coefficients in E i1s equal to

dy = dy + V¢ + ir.

Let dy, dz, V¢ and 7y be the adjoints of these operators with respect to the Hermitian
structure on the total space M. We know Q(M, E) ~ Q(B)RC>(B, A*(T*Z, E|z)). As before,
denote by N and N’ the number operators on Q(M, E) given by N = jE and N'& = k&, for
£ e ONBYQC™(B,\(T*Z,E|3)), k + 1 = j. Now the adiabatic limit amounts to blowing
up the metric of the base space B by considering the metric g¥ = %”H) @ g% on M and
then taking the limit as ¢ — 0. With respect to this new metric, the adjoint of the exterior
differential dys . of M 1s

_ . f = ! _— . — T -
dM:E:E NdMEN :dz—l—f. IVEE;%-F: “lTET.

Consider

| ’_ /
C. = E(s"f" dye™ + di)

and I
DE — E(E_N!ElMEN! — dM)

We have that with a local orthonormal frame {¢;, e, } of TM as in Section 2 where we used f,
for eq,

1 -
—[(m? ?M@L + m/e V’w@L) + ‘V”M@‘J‘ + m“ \/E‘Vﬁiﬂ)]

2
. L v (23)
SOV + Ve V) — zelb; - —e:"‘ll)m

Ce
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where VY*5 = VM ¢ | + | o VA, VIBEe = S8 4 2, and VY is the Levi-Civita
connection of M with respect to the metric g¥. Using the usual Lichnerowicz formula
([BGV], P.126), we get

| |

C: ~{fc“?""’“’ " Ve V) - -[w*” S VeV by + Ve

{.Ir--_ {1-\.,.

+ —[L‘{-wj + \/E'fi-t Vo )2}'

£l

e Ko 1 |
= —{=AYSP 4 —= + IR (e;, ) + Ve ¢ Ra (e, )

4 4 2
I
+ 5eccRelea, ) - —[cf(v““*’ ey + VEd (VHEE

(Ve 25 My) + \/E.:*:‘(v*'f’f--_.-'f-”m))
+ Ve (Ve e by + VeV e g)
+ \/Ec'”'(L‘{.(Vi“?}f"”dh) + \/Eﬂ"f(vfi}““tl*’.-"f )]

+ E(f-'{-'[-'f-ujjll}k + \/E{.{f:-]l-lijan- + \/E":fi’l Cilljkll}n- + ECT Cfl-]:'rrlbﬁ)}}

(24)
where AY®F = 5= ((V)IGE«): ’gu'r‘ . ). K. is the scalar curvature of (M, ¢"), and
R. = RY 2 1 +1 & R%". To further compute the terms in (24), let V¥ = n*(V#) @ Vv~
and S = V™ — V&, The torsion S has the following useful properties.

(D2 <S(X)X2, X3 >+ <T(X),X2), X5 >+ <T(X3,X,), X2 > — <T(X2,X3),X; > =0,

where T(X),X>) = Vi X> — Vi X, — [X), X>] is the torsion of V&,

(i7) S 1s a one-form with values in antisymmetric elements of End(TM). If X € TM , then S(X)
maps 7Z to T"M. If X € T"M, then S(X) maps T"M to TZ.

(i) S(OHU = 0, for U € T"M.

(iv) For U; € THM and X; € TZ,

<SXNXo, Uy > = —<SXOU;,X> >,
<S(UNX,,U> > —<S(UNU», X, > =< SX)U,, U, >.

All other components < 5(-), - > vanish. These numbers are related to w. In Section 2.

(v) < 8(-), - > is independent of the metric on B.

We refer to [B1][BC] tor more details about these facts. Note that 7 takes values in 72 and
T(X,. X>,)=0forX; € TZand T(U,U) = 0 for U € T"M. In view of these facts, we have
the following.

o S ] * 1
vMEEw ?’i"‘?h‘” +5 < S(eie;, eq >\ ec™ + 1 < S(e))eq,es > ecc”,
MEF i . exveal ) . K i3
Vieg.e = Ve(VZ"" + 5 <Slea)ei e3> Vee?),
M E i A T g AT ONT e
Vv.?{ e.E — (v = + S )‘Ff‘,.-:*,- -+ (v + S )E.?[c‘r-}{*,-m
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and
M&EE M=E . g
Veou o =&V LN S

. [ S
AR A (

Here ¢ = ‘?M — V&. We use the convention that (V, -+ Ale,))” = > (Ve + A(eﬂ))f —
(V +A)~ ¢ . where (. ), means an honest square. Then

Lt i t” Cu’

I

| I
ﬂf‘}wﬁ.“ (V?ﬁt !'!'_I_ {:S(f ){:“{:"n:}t!\/i(” +4{S(€ )ﬂn,ff}Eﬂn ,.'_f)

L& E G > N
- vz, g8(e; e > (Z ES(ﬁf)t;) (25)
i
oY DT, l i i 3
-+ (\/E(Vi':—""" + 5 < S(ey)ej, ez >c¢ \/Ea.'“"’f))‘.

By (24) and (25), we obtain the following important Lichnerowicz type formula.

Theorem 2.

2
CE‘

. | | ._
< S(ej)ej, e > Veet + = < Se)eq, €3> e’y

| o ]
ST v{iﬁ.‘lbn N
4{ Ve T 4

2

oy £ , |
+ V%Eimﬂ + 5 < S(S(ej)eej, eq > ¢ vee

I - 32
- (Ve(VEPR + 5 <Sleaei, e3> ¢ Vee))

Kﬁ' 1 .; . b I ¥
] £ PN . . 1 . . PR s IS |
- +- 2{: 'R:(¢;, ¢;) + Vedc“Ro(e;, e,) + 2E( ¢"R:(en,e3) (26)

| : : )
' M W { WRE,
— EI_L"{.‘l.(V{,j_Eé’;)dJ; R \/ELJ{‘V("FLJ_EEH W + t"’cr(Vi,j_;. “Ur))
T \/E'f‘j(:'[-}(WF%E'HHJH) + \/Efn ﬁ'm'(vl’:f #f‘f.-’)ll}f + ec” L'l'(vﬁi+5{?;3)qj.'_%
- \/— ey f(?fwf:‘uf,.ﬂllj ) 4+ E{ {, (vM@,E ”ll) )I

|
b+ et o)

More generally, let z be an auxiliary odd Grassmann variable which anticommutes with all
. 1
other odd Grassmann variables and z- = 0. We want to compute 41C2 — 2zt D. . We have

D.

l . o I . *“':"_r:k . Loy A e M
3 [(m¥ Vf;‘f + m®\e Vi‘f’)' — (n Vf;‘r + m“ \/E'V'f?_f)_]

l
_[_C;vaw ORI \/_‘ nvf‘.ff'f A _+__ - IIIJ n i{nq)u]

{_’1-'-.

Let

|'|-|

I ]
\_f"“{‘”+2{5(£ )e,,trl}ﬁ\/—f""%—‘q{lﬂ(f )en, €3> EC r;j
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and l
I)u.i' — \/E(v.iﬁhﬂ + 5- < S(En)ﬁh €3 = (.'f ﬁcﬁ)-

D + =D,
J-uzﬁci 2\/‘ |.&€ 2\/— {j)

[\ (Vi ¢j) + 2¢, V55 5 < Sleper, e > Ve(de — e (28)

\[
<

S(ej)ea,es > EZc'”f'jc{, — c',,(‘?iq)l.

4
D, - . ¢, : ¢, Dq.c — - w(VEV, €4
VARV 2/ )
‘"\/_ B 0 Al T 1 i I (29)
= Zf[ﬂ (V3 eq) + 20 V01 4 — «::S(e'“)::,,,{f;;}\/_’?cc
o {'r( \/E“;":/-;fﬂ € )J .
Hence by (27) — (29), we obtain
(D) ==l + == Dje = —=c(VEe) + Do mrc + =Dy
e 3 it 37 Pie = 37000 i T A 0

ve ¢Pq).

el =2z VID, + : ﬁ( L’L|),—1—

\[

Therefore, we have proved by (26) and (30) the tollowing Lichnerowicz type formula, which
1s useful 1n many situations.

Theorem 3.

~ o |
< S(epej, eq > Ve + 1 < S(epeq,es > ec™c”

e t 3 ] (Y
A+ VST o+ S <S(S(eene; ea > Ve

e fe £ ] :':
— (Ve(VESE Ve < Sleq)ei, ez > ee — c™))?

2 N
K

- - I
| 4" | 5—{":;"'&(6;,(:})—# Ve c“R.o(ej, eq) + ;EU”C'JRE(E”,i:",-j)

— eV e + V(T eanba + (U

+ Vel (V25 "ba) + Ve eV ey + ec® eV cea)bs

4 VB TIEENY) e ed(THENp )]+ 2 (kb + et e bahs)
j -+ \/EE‘”H)“}.

4IC§ — 23.\/}95 — I{_(vfi‘:ﬁ!’f.u +

+ >
(31)
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We now apply the Getzler rescaling G{ N to 4rC>. Namely, we make the following
£f)1 =

changes: V, — (Er)_%‘?gﬁ,cﬂ e ((Ef)_%é’nf\) - (Er)'é‘ L., and ¢ — ¢i'. Then by (26),

i
SO < S(e)en, e > enes)

i 4

l .
3
R(ej,eq) + 5”?” m”Roleq, e3)

1
lim G (4C2) = t{—(VZOE 4

S(ee;, e, > ¢
me 2*"1(;); a >

l K | ' m®
— —(a——R 3X, 3)° - —c'c'Rie;, ¢;)

a4 42 /i
l 2l n ! n i Al
— E[CJ (VM@E b)) + \/—ﬁ (vw 4D, Iﬁ I(V” ulr )]+ *“L C 'LlJ TS

(32)
Here we used the facts that with appropriate local orthonormal bases of TM and 7™M
VM e = E(VME )" (horizontal component) and V .eq = (V¥eq)" + E(‘?”e‘* Y. () is the

vertlcal component. Note that V1 ®*" = lim. _q V’”’ Ea — \gMSE _ pHg — 7Z@Eu 4 7B
where P/ : TM = THM & TZ — THM is the projection. Ro(eq,e3) = R(eq,es)+ RE (e, e3).
Let C, = SN2, N/ 2 ¥/ 2dy1=N/2). Here dj, is the fiberwise adjoint of dy;. Theorem
3.11 [BL]-tﬂgether with (32) proves

 1me

-,'!*1—]3}} G( % (4IC ) = Ci,, T T Cf.(vfn Py)
] 1
_ __R - - HRH e
(a o) 5X3)° + m' 'm”R" (e, e3) -
, l o
- \/C - (a __Rﬁ d"rH)_ -+ _.-‘?Iﬁ.-'“}‘]RH(En-}Ef:f)
¥ 4 ' 2 )
E:f{{f’ B:lf,
where )
me
€= FaVawn, (34)

C’ comes from the term m®c¢' (‘Uﬁ"’r‘é‘“r “Py) = mc(VESEM], + V5 1)) in (32). Note that if
the metric g on E is either locally independent of B or covariantly-constant with respect to
VE, then C' = 0. In particular, if V£ is fiberwise unitary, then C' = 0. This is the case where
the adiabatic limit of n-invariants is discussed [BC].

We now come to one of our main results. Let M. be the manifold M with the metric g¥.

Theorem 4. Let dim(B) be even, C' = 0 and H*(Z,E|;) = 0. If Z is even dimensional,
assume further ind,.(Dy) = 0. Then

B RH

d:mer: . R . y .
lim log 7,.(M.  E) = 2 / q:;vz:(B}mv(—7 coth T)E(T”M,f,ji)
= J B

(35)

+ 27 / O LB)YT(T'M, ¢, gF) + / PAB)r . (—2RPe™ R YTU(T M, &7, ¢5),
JB o I3

i1

] .
where L(B) = det2( = ni H{g:} 5) is the stable Hirzebruch L-class of B.
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Proof. Since H*(Z, E|z) = 0, the operator d + dy is invertible. We can apply Proposition
4.41 [BC] to conclude that Dy, 1s 1nvertible for ¢ very close to zero. Thus, Pg..p, = 0.

Hence TFM(NPK{,F;}M) = (. By Proposition 6, this implies

> N It
lir%lﬂg T,.(M:, E) = lim / Tii{(gff(f\/;[)fw{. )){?. (36)

—0 /o

Recall that N is the number operator of B. N' = 1 Zd"“m} cleq)en(eq) + P8 Then

dim(5)
_ B l
N = (N I d”n( ) ~ z ﬂ(ﬂﬂ )': (Eﬂ,

=()

We thus break up (36) into two terms which correspond to the two terms of N. Let us
first consider the term associated to (N d’”;_m ). Let g(x) = (1 + 2x)e'. By the fact that
Vi; . = —C: and (33), we have

ON + dim(B : . 2N +dim(B :
lim 77, 4>SM:EMWEQ):=p%ﬂm( +#m“)gcﬁﬁp4myn
ON + dim(B) 7)

g(—B7))

— T‘E
Pl 1

uniformly for ¢ € [d,T] and cll'bitldl'_\,f d, T >0. (37) also holds uniformly for r € [0, 0].
Indeed by (33), llm;_}{]G (4C ) = B4. The asymptotic expansion of Tr M(W%““{H} (—tG sz

(4C§))) at the origin depend% on the local symbol of the operator Gz (4CE.) and 1ts coefficients

approximate to those in the expansion of 7r},( 2N+“__llim"ﬁ] g(—1B,)) with remainder bounded by
a number independent of €. Hence we obtain

dt T 2N+ dim(B) dt
gﬂfvﬁms))? — / 1ry( 1 8(—34&)?, £ — 0.
()

T :

. 2N + dim(B)

/ Try,( 2 (
0

To estimate the large time contribution of 7r3,(ZES™E o(4:V2, ), we need the assumption

that H*(Z, E|7) = 0. Thus there exists a Ag > 0 such that the eigenvalues of —Vfd_f are greater
than Ag (cf. [BC], Prop. 4.41).

2 | : j
2N + dim(B) Vi) < const.em WM (@Vin)
; < f (33)

A _ dimi &)
W=Dre="3" 1 = 0.

Try(

< COnst.e

Here we used the fact that the metrics g¥ have uniformly bounded geometry with volume
dimi )

growth as ¢~ 72 . Therefore,

—| < const. e 2 e
4 ) [ | 4T\

‘ /"'}G Trif(ZN _|_ dllﬂ(B) E'J”tv df dm_l!{ﬂ} 1 —{-—I-T—I];’k[;'
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By choosing T such that (4T — 1)Ag = <98 I ¢|, we get

<IN 4+ dim(B) .0 dr
/ 73 ( )
T

Similarly, one can prove that as ¢ — 0,

dt
241V, e Vi )= —0.

e P 2N + dim(B)
P 3
7

Note that ] Tr ('N"m"“‘m o(—B. ;))"” — 0 as T — oo (see the proof of Lemma 3.2 [GR]).
Hence, we ﬂhtam

. [ 2N+ dim(B dt > 2N +dim(B dr
im [ 7 DoV G = [ TR @0
=—vJo 0

We now use local index theory techniques (cf. [BGV], Chapter 4) and get

1||:11{H:| -~

lim G_yr 5 (Vi) = Q)T AB) L (e R Y (e Gt VIC),

and

lim G, 17,241V, ey = [det(— 22T yomi(l + 20 "
g—0 £° M M. Hlllh(1+2)h}ﬁ

-2 ot _
. I‘rh({?_{l 1 -.-..}H )F-F (E I":|"'—-.,}|:_[“—|—\,/;( }).]_“‘

On the other hand, by Theorem 3. 15 [BL] and the assumption H*(Z, E|;) = 0, we have

that @Tr'(e™ 4r) 1s an exact form. This together with the proof of Theorem I(v) implies that
eTr{(l — 2C§F)€_Cﬁf) is also exact. Hence, by (40) and C' = 0, we get

[ ON -+ dim(B
lim / 1 (2N AmB)
() 4

]

hm[Hl 3 ( —|— o
+ 1(1 +27)7 7 det( Ner, (e TR (41)
{ sinh(1l + 2 H—

-h-

F(f)/ ()T (Nt +290 f”})f )r=n.]‘"'}(2ﬂ!')_

#(iv/1Dy ))— - / CAB)r (e *YTUTM, g%, gF)
40

g—{)

i f2)

X

X
¥

_ 2 _ __1Iir1:1“ d]lll”ﬁ ] 3 feoy | 3
NUW, SINCE 77 = 0(]—1—2....) I =1- 2z. Let .‘F?(.l) 3 Gg s-'.inh%'h ("‘-) — E[lmtamhﬁ]'

—

(1 +29)%

det ) = expur(h((l + 2z)R”
(ﬂinh“ ey p tr(h(( )R™))
H_H
= exptr(h(R?) + z(1 — ——))
P tanh‘%

RH‘ RH

exp trh(R®)(1 4 ztr(1 — &3 coth ?)).

i ol
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dhimii )

Since ﬁ(B)fr*(e“*E‘]H) = 271 L(B), a computation proves that the second term in the right
hand side of (41) is equal to

| R? R? ,
{ | oL(B)Y—dim(B) — 1 + (1 — 5 coth 7))'3](THM,g‘f,gﬁ)
v L
| h l g 2 ot df chimm( )
+ /‘Pﬁ(B)/ (5)eTr(N(1 + 2(=Cy)e '4*)?}2 :
J B 4 )

. n SR _ S
-2 / QAB)tr (RPe™ ™ YT (T M, g%, ¢").
45

From this we get that the left hand side of (41) 1s equal to the right hand side of (35). Therefore,
by (36) it remains to check

S dim(£) df
lim / Trif(5 D clea)en(eq)el ;5))? = 0.
0 =

g —()
) i=1{}

But this clearly follows from the proots of Theorem 1 (iii) and of (41).
By the above proof, we get the following corollary.

Corollary 1. With the condition of Theorem 4,

im log 7, (M, E) = 2% | oLBIT(T"M, ¢, )
€ 4 B

Proof. By assumption, we have that for T > 0 very small and ¢ — 0,

The result follows from the proof of Theorem 4.

Remark 1. (i) Formula (35) is much more complicated than the formula in Corollary 1. This
is due to the fact that compared to T\(T"M, g%, g%), the analytic torsion form has an extra
term. Up to a constant, the second term of (35) is the invariant 7 s(B, M, E) in Section 2.

(it) The argument above also works for the adiabatic limit of the analytic torsion invariant
of the total space. But for this case one can only see the contribution of the degree zero
component of the analytic torsion form, since the Euler form e(TB, V?) is in the top dimension
dim(B). The formula under the assumption of Theorem 4 is

lim log T(M.,E) = (2mi) T

g —()

/ @e(TB, VEYT (T M, g%, g)
JB

B RI:'-'

+ (271:‘)@ / (pe(TB,VB)rr(—7 coth —)71(T"M, ¢%, ¢%) (42)
JB z

2

+ / PAB)I(—2RPe~ R YT (T M, g7, ¢F).
J B
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Indeed, to apply the proof of Theorem 4 to the situation here, we need only to change the
dimi f) RH

trace Try, to Tr' and ind,,(Dyy) to ind(Dys) and note that ﬁ(B)rr}'.(e_f{H) = (2m)" 7 Pf(—352).
Similar formula to that in Corollary 1 also holds.

(iii) For C' # 0, one needs other forms fo get an adiabatic limir formula. The case where
H*(Z,El|z) # 0 is much more involved, and is considered by Dai-Melrose [DM] and Forman
[Fo] for the analytic torsion invariant. Theorem 4 can be extended to the L*-case.
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