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ON A CLASS OF ALGEBRAS

LORENA GIACOBAZZI

Abstract. We introduce the notion of projective gruppal algebra that connects to every
subgroup of order n of PGL (n, K) a n-dimensional algebra over K.

In particular we classify the projective gruppal algebras 4-dimensional over a perfect field
K studying the conjugacy classes of the groups Z» X Z> and Z; in PGL (4, K).

1. INTRODUCTION

Denote by M,,(K) the algebra of the n x n matrices over K and by (E;;|i,j =0,1,...,n—1)
1ts canonical basis.
A = (K",f) 1s the algebra n-dimensional over K defined by a bilinear map (multiplication)

f:K'"x K" — K" f(x,y) = xy.

We will write the elements x € K" as colum matrices (xg Xy ... X,—1) .
In K" we fix the canonical basis B = (¢;[i = 0,1, ..., n— 1).
The matrices, L(x) and R(y), of the endomorphisms of K"

Li:A— A, Lr(y) =Xy

and
R,:A— A R.(y) =yx

are called left and right multiplication matrices respectively (briefly .m.m. and r.m.m.).

Obviously
xy = L(x)y = R(y)x, Vx,y €A, (1)

Then the multiplicative structures of A 1s determinated giving L(x) or R(x). We write
A= (K",L(x))or A = (K", R(y)).

We say that A" = (K", L/(x)) = (K", R'(y)) is d-isotopic to A if there exsists an isotophism
d = (D\, D1, D3) € GL? (n, K) so that

L'(x) = D7 'L(D1(x))D3 (2)

or equivalently
R'(y) = D; 'R(D;(")D:. (3)

Let D be a subgroup of GL(n, K)*. We say that A’ is D-isotopic to A if there exists d € D
so that (2) or (3) 1s satisfied.

Every subgroup D defines in a natural way an equivalence relation in a given set A (n, K)
of n-dimensional K-algebras. The corrispondent partition 1s said D-classification of A (n, K).
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x = (xp X1...X—1)" € Ais a left zero divisor (respectively a right zero divisor) if and
only if P(xg,X;,...,x,—) belongs to the hypersurface ® : det (L(x)) = 0 (respectively
Y : det (R(y)) = 0) in the projective space P, (K), (n — 1)-dimensional over K. From now
on we say that P, instead of x, is a left zero divisor (respectively a right zero divisor).

Remark. An algebra A’ d-isotopic to A, possesses zero divisors if and only if A has some.

Remark. IfA’ is isotopic to A, then the surfaces ' : det (L'(x)) = 0and V' : det (R'(v)) =0
are projectively equivalent to ® and V¥ respectively (ctf. also [1]).

Let be
L(x) = (Lox,Lyx, ..., L,_1x) (4)

and
R(}) — (R[}:“} le’m voaoe oy RI!- |:"'1) (5)

where L;x and R;y are the i-th columns. If L;, R; € GL(n, K) then, as usual, we 1dentity the
linear automorphisms

AP (K)— P, ((K),kx' =Lix,i=0,1,....n—1,ke K =K~-0

and
0i i Pu—1(K) — P, (K), kv =Riv,i=0,1,...,n—1,ke K",

with the images [L;], [R;] of L;, R; in the canonical map

GL(n,K) — PGL(n, K).

Definition 1.1. Let A = (K", L(x)) = (K", R(y)) be a n-dimensional K-algebra whose [.m.m.
and rm.m. are given by (4) and (5) respectively. We say that A is a left projective gruppal
algebra (Lp.g.a.) if TA) = {[L]i=0,1,...,n— 1} isasubgroup of PGL(n, K).
Analogously A is a right projective gruppal algebra (rp.g.a.) if T(A) = {[R;] |i =
=0,1,...,n— 1} is a subgroup of PGL(n, K).
A projective gruppal algebra (p.g.a) is a lLp.g.a. and a rp.g.a.

Let P C GL(n, K) be the subgroup of the matrices having only one element different from
zero in every row and in every column. We put

G = {(A,A,D) € GL(n,K)’|D € P} (6)

The map A +— T(A) from the set of n-dimensional L.p.g.a. A to the set of the subgroups
T(A) C PGL(n,K), card (T(A)) = n, is surjective. Moreover T(A) = T(A") if and only if
dD € P so that A is (I,,, I,,, D)-isotopic to A.

We can easily prove the following

Proposition 1.2. Let A, A" be L.p.g.a. n-dimensional over K. A" is G-isotopic to A if and only
if T(A") is conjugate to T(A) in PGL (n, K).



On a class of algebras 269

An analogous proposition can be enunciate for r.p.g.a. In this case, instead of G, we fix the
group
G = {(A,D,A) € GL(n,K)’|D € P} (7)

isomorphic to G.

In Section 2 we give some general propositions concerning the projective gruppal algebras.
Sections 3 and 4 are devoted to the G-classification of the 1.p.g.a. 4-dimensional over a perfect
field K.

2. PROJECTIVE GRUPPAL ALGEBRAS

Let A be a l.p.g.a. whose l.m.m. 1s given by (4).

The hypothesis that [L;] are elements belonging to the group T(A) can be expressed substi-
tuting the set {0, 1,...,n — 1} for an additive group N isomorphic to 7(A) and assuming that
N — T(A), ¢ — [L.] 1s an 1somorphism.

Consequently we set

L(x) = (Lox, Lax, ..., Lgx),0,a,...,g €N, (8)

B = (e,|g € N), etc.
Comparing
L.x=L{Xx)e, Yaec N, (9)

with (1) we have
L,x = xe, Va € N.

In particular
L,e;, = epe,,Va, b e N. (10)

and
X = xep, Vx € A.

Remark. eq is the uniry of A if and only if
EUE” _— EH}V{I E N-,,

hence, from (10), if and only if
L,eq =e,, Va € N. (11)

Now if [L,], [Ly] € T(A), then
L.-::Lf:v — kf!.h!—‘ﬂ+.’hkﬂ.h & K*,Hﬂ',b < N. (12)

Furthermore if we suppose that ¢ is the unity of A, then multipling by ¢, both the sides ot
(12) and comparing with (10) and (11) we obtain

€ty = k{IJ}'E{I-!—!'MVHr beN. (13)
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Proposition 2.1. Let A be a l.p.g.a. with unity ey. Then
a) A is associative;
b) A is commutative if and only if

kﬂ?bfn—}—b — kb._afb—I—m\?‘ﬂ, b = N-

Proof. a) We have
L{"(LJ"JLH) — (LCLh)LfH Hﬂ: b:- C E N'I

and appling (12),
kb,nkf‘,b—}—u — k{.‘,.’}kc'—l—h,m\dﬂm b! ceN.

From (13) we obtain
(Engh)ec' — '(kf:r,ne.*}-}-n)ec — ki:-:nkc*,b-kuen-l-h-ﬂ*

and
Ea(ehfc') — eff(kr',fJE{‘+fJ) — kc*.,.’:akc'-i-f;r,uer-HJr{—n-

Hence
(eqep)e. = eqlepes),Va,b,c € N.

b) follows from (13) and from e, e;, = ¢pe,, Va,b € N.

Proposition 2.2. Let A be alp.g.a. with Lm.m. (8). If eq is the unity of A and if
Kap = L,Va,b € N (cf.(12)),

then A 1s anti-isomorphic to the group algebra of N over K.

Proof. If ¢,,e;, € B, then from (13) we deduce ¢pe, = ¢,+, € B, Va,b € N. Therefore
N — B, a — e, 1s an anti-isomorphism.

Proposition 2.3. Let A be a l.p.g.a. whose L.m.m. is given by (8). Then the group {A;| a € N}

Jfixes the hypersurface
¢ : det(L(x)) = 0.

Proof. det(L(L;x)) = L det(L(x)), Vs € N. Then P € ¢ implies A;(P) € ¢.
It 1s easy to verify that r.p.g.a. satisfy the anologous propositions to 2.1, 2.2 and 2.3.
Proposition 2.4. Let A be a Lp.g.a. with unity ey and suppose that (8) and
R() = (Roy,Ray, ..., Rgy),0,a,...,8 €N,
are its .m.m. and r.m.m. respectively. Then

a)Aisarp.g.a.;
b) group T = {[L,)|a € N} and T' = {[R,]|a € N} are anti-isomorphic.
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Proof. a) From hypothesis and from Proposition 2.1. it follows that (xv)z = x(vz),Vx, v,z € A.
Consequently
L(xy)z = L)L)z

or
L{L(x)y) = L(x)L(y), Vx,y € A.

In particular
L((L(Er){”’x} — L(E}‘)L(Eﬁ')! Vr,s € N.

By virtue of (9) and (10)
Le e, = Lie, = e,e.,Vr,s € N.
Substituting and comparing with (1) we obtain

L(e,es) = R.Rs,Vr,s € N.

From (1) and (13)
L(fr(‘-’x) — k.E.J'L(Ej’-{—I') — k.‘i..?'R.‘i—FJ'"

Hence

RJ"R."E — k.‘i.l'R ,VF', 5§ € N:

54r

or
[R:][Rﬁl — [-R.s'—}—rl:rvra sEN,

b) From this it follows that
h:N—=T s— [R,]

1S an anti-isomorphism. Consequently if
O0:N—=T,c— [L,.],

then
S5~ loh - T — T

1s also an anti-isomorphism.

3. SUBGROUPS OF ORDER 4 IN PGL(4, K).

In this and next Sections we suppose K a perfect field and n = 4.
Let F = K* / K*? be the quotient of the multiplicative group K* of K, char (K) # 2, over
the subgroup K** of the squares.
Putting
[ki]lk2] = [=kik2], VK] k2] € F

we define an abelian group F’ isomorphic to F. In particular if —1 is a square, i.e. if i € K*
and i* = —1, then F' = F.

Gk, k) C Fand G'(ky, k) C F' denote the subgroups generated by [k;] and [k>].

Let H be a ring with unit element, «, char (H) = 2, and let H* be the subgroup of the
invertible elements. Denote by A(/#) C H the subset that contains a given i € H and satisfying
the following conditions:
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(a) A(h)1s invariant under the actionof the mapss: H — H,s(x) =x+wuand g : H — H,
x,xe H—-—H"’
(b) A(/h) 1s minimal respect to the condition (a).

Q(A, B) C PGL (4,K) denote the subgroup generated by [A], [B], and 1somorphic to
quadrinomial group. C(R) € PGL (4, K) denote the cyclic subgroup of order 4 generated by
[R].

The G-classtification of Lp.g.a. (or r.p.g.a.) 4-dimensional over K 1s subordinated to
the determination of the conjugacy classes of the subgroups of order 4 in PGL (4, K) (ct.
Proposition 1.1.). For this reason we prove the following

Proposition 3.1. Every subgroup of PGL(4, K), char (K) # 2, isomorphic to the quadrinomial
group is conjugated to a subgroup Q(A, B) where A, B coincide with one of the following
couples:

A =diag(l,1,1,—1),B =diag(l,1,—1,—1), (14)
K 0 0 k 0O k-1 _
AZAr(kl)':(U K)’K:<I UI),B=B(R'2)=(! “0“),&61’{*,5:132, (15)
K 0
A= A-(k)) = B = B(ky). ]
(k1) (0 B K)’ (k) (16)

Couples A, B belonging to distinct classes (14), (15) and (16) define not conjugated subgro-
Ups.

Q(A(ky), B(k2)) and Q(A(ky), B(k3)) are conjugated if and only if G(ky, k>) = G (k},k3).

Q(Ax(ky), B(ka)) and Q(AL(kY), B(KY)) are conjugated if and only if G’ (ky, k2) = G’ (K}, K5).

Proposition 3.2. Every subgroup of PGL(4, K), char (K) = 2, isomorphic to the guadrinomial
group s conjugated ro a subgroup NA,B) where A, B coincide with one of the following

couples:
(K 0 (0 1 (0 5L
A‘(o K.)’K'_(l 0>’B_<Ig U)‘ (7
B (5L R, B (L R
A—W(Rl)“—"(n IE)+B—W(RE)'—(U fz)’ (18)
with
0 0
U ] SI: ([} ])7‘
1" I ﬂ
RE_SI — (0 U)iRl S =(ﬂ ﬂ)a (Ig}
Se=1(y o) k€K —{1},
or
R = b, R, :REME(K)—{U,IQ}. (20)

Q(W(S1), W(S1)) and Q(W(S;r), W(S))) are conjugated if and only if A(k) = A(K).

Q(W(R), W(I)) and Q(W(R"), W(I»)) are conjugated if and only if 3 Y € GL(2,K) such
that A(Y " 'RY) = A(R").

The other above-mentioned couples of groups are not conjugated.
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Proposition 3.3. Every subgroup of PGL(4, K), char (K) # 2, cyclic of order 4 is conjugated
to the subgroup C(R) generated by one of the following matrices:

0 k
R = R(k) (h 0),“—: 1)
Furthermore:
ifi- = —1,i € K*,
R =diag(l,1,i,r),r=1,—-1,i,—1, (22)
ifi-=—1,i ¢ K*
0O —1 0 0
| O 0 0
R = 0 0 | 0 (23)
O 0 0 1
or
0O =2 0 0
| 2 0 0
R = 0 0 0 -2 |- (24)
0 0O | 2

C(R(k)) and C(R(K")) are conjugated if and only if k' = c¢*k or k' = ¢*k’, ¢ € K*.
The other above-mentioned couples of groups are not conjugated.

Proposition 3.4. Every subgroup of PGL(4, K), char (K) = 2, cyclic of order 4 is conjugated
to the subgroup C(R) generated by one of the following matrices:

0 1
R_R(l)_(h 0) (25)
- I 0 0 O
R=R = /O ] 0\ (26)
S 10 0 1 1
\0 0 0 1/

The matrices (25) and (26) define not conjugated subgroups.

Proof of Propositions. 3.1, 3.2, 3.3 and 3.4 requires some Lemmas.

Let K be the splitting field of the characteristic polynomial of M € GL(4, K). The Jordan
canonical forms of M belong to the group GL(4, K’) and if J(M) and J'(M) are two of them,
then there exists a permutation-matrix £, € Sy, such that

J' (M) = E; (JIM))E,

Briefly we will say that J' (M) is equivalent to J(M) and we will denote by |/J] the image of J
in the natural homomorphism of GL(4, K') over PGL' (4, K"y = GL4,K") / ki, k € K*.
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Lemma 3.5. Let J = JIM),M € GL(4,K). Card {[J]) = 2 if and only if J is equivalent to
one of the following matrices:

J1 = podiag(1,1,=1,=1),p5 =k € K* [K' : K] <2

or
Jr = p{]{ﬁﬂg(l, I,1,—1),po € K}ﬁ,K’, — K

if char (K) # 2; to one of the following:
Jy=rpols + E3;,p € K K' =K

or
Ji=poly +Ei3+Ew,po € K" K' =K

if char (K) = 2.
Card {[J]) = 4 if and only if J is equivalent to one of the following matrices:

Jﬁ = {Hﬂ‘g(p{h plmpzrp3)1p? =k € K:.kmpf ;é pj Vi %I&IK! : K} E 81-

Jo = diag(po, p1,P2,P2),P; =k € K*,pi #p; Yi#j, K K] <2,

J-:" — dfﬂg(pﬂm Po, P2, 92)} p,:l — k = K’*i o :/’é T, [K'" : KJ i 2}

or

JH — {Hag(p[h 21, P21, p])a pf = k S K$} Po 7& ::p]'fo =K
if char (K) # 2, to one of the following:
Jo=pols + Eis + Exz + Ez4,p0 € K' K' =K
or
Jio = pols + Ex3 + Ex,pp €K', K' =K

if char (K) = 2.
Proof. If B, = p,Jy) + Ny, Nivd = 0, p, € K™, | < h(r) < 4, r = 0,1, are the Jordan

blochs of J then
7 .
B! = E " N;,., VnelN %
P - (5) P, fi(r) n ( }

Card{[J])} = 2 if and only if B = klj,, k € K*,r=0,1,.. and [J] # [I;]. By virtue of
(%) these conditions are equivalent to 2N,y = me.} = 0, pf =k, r=20,1,.., apart the case
hiry=1,p,=pp € K*, r = 0,1,..

If char (K) # 2 we deduce

J = diag(po, p1, 02,03), 0 =k, r=0,1,.,

where the scalars p, are not all coincident. Therefore J 1s equivalent to a matrix J; or J5.
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If char (K) = 2 the previous conditions are equivalent to i(r) < 2, p, = pg, F = 0,1, ..,
apart the case i(r) =1, r =0,1,..
Therefore J is equivalent to a matrix J3 or Jy.

Analogously we prove the second part of the thesis.

Observe that if J(M) = Js, then K’ = K][py, i], where py is a root of the polynomial p* = k
and i* = —1.

Lemma 3.6, Let be M € GL4,K),J = JM) € GL(4,K"), K' # K, char (K) # 2 and let
O(A",J) C PGL' (4,K’) be a subgroup isomorphic to the quadrinomial group. If Q, Q> are
subgroups of PGL(4, K) conjugated to Q(A’, J) then they are conjugated in PGL(4, K).
Proof. By hypothesis O; = Q;(A;, B)), A;,B; € GL(4,K), i = 1,2. Moreover there exists
X; € GL (4, K’) such that X;A’X;' = A; and

XJX ' =B;i=1,2. (%)

Card<[J]> = 2 then (c¢f. Lemma 3.5) J = diag(poy, P1, P2, P3), pf = k € K7,
o, € K', r = 0,1.

From (%) it follows that the r-th column of X; is an eigenvector of B; corresponding to the
eigenvalue p,. A K-automorphism, I, of K induces a permutation o on the eigenvalues p, of
A; and the same permutation on the columns of X;, i = 1, 2.

Moreover if E, is the o-permutation matrix, we have I' (X;) = X; E£,, i = 1,2. Hence
[ = (X, X{') =T X)TX) ! = XIX;', Y I and we deduce thﬂt)'(i){;1 c GL4, K).

Analogously we prove the following

Lemma 3.7. Let B € GL4,K),J = J(B) € GL4,K"), K' # K, char (K) # 2, and
Card{[J]) = 4. If C(R), C(R") are cyclic subgroups of PGL(4, K) conjugated to C(J), then
they are conjugated in PGL (4, K).

We will prove Propositions 3.1 and 3.2 using the following scheme.
Fixed J = J(M), M € GL(4, K), such that Card{[J]) = 2, (cf. Lemma 3.5), we determine
the matrices A" € GL (4, K’) such that conditions

(A1) x ([V]) = QA", ) (27)

and
3X € GL(4,K") : XA' X! :A,XJX_I =B e GLHA4,K) (28)

are satisfied. Now we determine conditions of conjugacy among all the groups Q;(A, B).
From Lemma 3.6 every subgroup of PGL(4, K) 1somorphic to the quadrinomial group is
conjugated to a group Q,(A, B).
Moreover observe that if J' is equivalent to J then the groups Oy (A, B) are conjugated to
the previous ones. Therefore it is not limitative to suppose J coincident with J;, /> if char
(K) # 2 or with J3, J4 1f char (K) = 2.
It 1s worth observing that (27) 1s equivalent to condition:

A" € C(J)={U € GL4,K"|[UJ] = [JUL}, Card{A"Y = 2,[A"] # [J]. (29)
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Proof of Proposition 3.1.
STEP 1. Up to conjugation the groups Qy, (A, B) are whose in which the matrices A, B coincide
with (14), (15) or (16).

Proof. C(J,) = C,(J)) U C-(Jy),

1% 7
Ci(J)) =4{U, = ( UI ‘i) Vi e GL(2,K")},

Co(Uy) = {Us = (H[E', W‘)]W € GL(2,K')}.

The matrices A" = (%' ; ) € Ci(Jy) such that Card{|A"]) = 2, |A"] # [J;] are those in
which ]
tr(A;) = 0,det(A) = -k, € K",i= 1,2, ()
or
A; = holy, i € K* det(A) = —hg, tr(A) = 0,i,j = 1,2,i # j. (b)

In case (a) A; and A, have the same eigenvalues £k, € K", [K" : K’] < 2. Then there
exists §; € GL (2, K") such that

]AS f{hﬁg(l —1),i=1,2,

vl - 5D poSD D — 1 Vki
$2D —poS2D ) 1 *“\/H ‘

and 1f we put

easily we can verify that
XA'X™' = A1(k), X1 X~ = B(ky).

We observe that X~!' € GL(4, K’) also when [K" : K’] = 2. In fact if T is the not identic
K’-automorphism of K", then
o [ o0 (Si1)
i Sn T(Sp)
and S$;D € GL(2,K").

In case (b) A’ is diagonalizable and has three eigenvalues coincident with /iy that lies in
K* for satisfy condition (28). Moreover also py € K*. In fact A" and J; commute and their
product has three eigenvalues coincident with £pg/fg. Then there exists S; € GL(2, K) so that

STYAS: = hodiag(1, —1), hy € K*.

If we fix
{ diag(l>, 5:),1 = 2,
X! =

E, diag(l,S)E, Es = O b o)
L 0
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we have XA'X ™! = hodiag(1,1,1,—Dand XJ, X' = J,|.

A matrix
P 0 FI

satisfies condition Card{|A’]) = 2 if and only if F» =k, F; ', k| € K*.

It we put
_ 1> Pola
X = - =
(Fl 'K —poF; 'K)

XA'X"' = Ay(k)) and XJ, X' = B(k).

we have

STEP 2. Up to conjugation the subgroups Qy, (A, B) are those in which A, B coincide with
(14).
Proof. Proceeding as above we observe that the matrices A’ satisfying (17) or (19) with
J = J> are the ones of the type A" = diag M,a), M € GL (3,K),a € K*, M # +al; and
M- = ﬂzf}.

The last condition implies that J(M) 1s diagonal, then there exists S € GL (3, K) such that
SMS—! = tadiag(1,1, —1).

If we put X = diag(S, 1) we have XJoX~! = A and XA’X™! = adAB or XA’X™! = —uB
where A and B indicate the matrices (14).

Let O and S be the set of the subgroups O(A | (k)), B(k>)) € PGL (4, K)and G (k;, k») C F
respectively. Moreover letbe x : O — S, Q(A|(ky), B(k2)) — G (ky, k2).

STEP 3. Q(A(k)), B(k3)) is conjugated to Q(A(ky), B(k2)) if and only if belongs to the inverse
image of G (ky, k») in .

Proof. (> — k), (1> — B*k2)” (" —v*k1k2)?, o, B,y € K* are the characteristic polynomial
of xA(ky), BB(ka), YC(k|, k2) = YA(ky) B(kp) respectively. If Q(A,(k}), B(k3)) is conjugated
to O(A(k;), B(ks)) then characteristic polynomial of each matrix A,(k}), B(k5), C(k|,k5)
coincides with one of the previous ones. Then [k“;_'], Ik;_] are generators of G(ky, k»).

Viceversa if Q(A|(k}), B(k;)) belongs to the inverse image of Q(A,(ky), B(kz)) in ¥, then
obviously [k ], [k5] generate G(ky, k7).

Therefore thesis follows 1f we prove that the groups Q (A, (cc” k1), B(B~ k),
Q (A (k2), B (k1)), O(A, (kik2), (k2)) and Q(A(k,), B(k kz)) are conjugated to Q(A,(k;),
B(ks)), Yk, ks, 0. B € K*.

Easily we prove that

§7 QU (oCk1), BB*2))S = Q(A k1), Bik), S = (B{f E) D= (? )

ST QA (k2), B(k1))S = Q(A;(ky), Bk>)), S = Eyy + E»3 + E32 + Eu;
D !«:gD’)

El

D' D
D = diag(a, b), D" = diag(b,ak; "), a* — kab* # 0;

ST'Q(A | (kika), B(k2))S = Q(A|(ky), B(k»)), S = (

kil 0
ST'O(AI (K1), Blk1K2))S = Q(A (K1), B(k2)), S = ( )’ ;«;)-
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Letbe ' : Q(Aax(k)), B(k2)) — G'(ki, k), Q(Az(ky), B(k2)) € PGL(4,K).

STEP 4. Q(Ax(k)), B(KS)) is conjugated to Q(Ax(k)), B(k2)) if and only if belongs to the
inverse image of G' (ky, k>) in x'.
Proof. It 1s analogous to the one of the Step 3. In particular it fan be verify that:

ST'O(As(ka), B(k)))S = Q(As(k)), B(k2)), S = E|| + E» + Ez3 — Euy;

— L) 2 . . BD () . () E'Ur(l '
S™'0MA ek, B(B*2))S = QAa(kr), Blk2)), S = ( 5 D) D= (, A )

-

D' D
D = diag(a,b),D’ = diag(—b,aky "), a" — kb # 0;

ST QAx(~kika), B(k2))S = Q(As(ky), B(k2)), S = ( o D )

510Utk B—kiko)S = Otk Bk, S = (6 ) ).

The group Q(A, B) with A B given by (14), can not be conjugated neither to a group
Q(A(ky), B(ko))norto a group Q(A>(ky), B(k»)) because A possesses three eigenvalues 1 while
each matrix Ay(k), B(k2), A1 B(k»), A>(k), A»B(k>) has at most two eigenvalues coincident.

Now we suppose by way of contradiction, that O (A, (ky), B (k»)) is conjugated to
Q (A (k)), B (k3)).

From Steps 3 and 4 we deduce that there exists §; € GL(4, K) so that S~ A (kS ]
= [As(k})] and [Sl_1 B(k,) S)] = [B(k3)]. Then k] = ok, ky = Bks, o, B € K*.

But [A> (o k)] = [S5' As (ki) Sal, [B(R?*ho)] = [S5' Bka) S5), S5 ' = (%D g>

10
that 1s impossible.

D= (” ok ) implies [S— Ay(k1) S] = [Aatkp)], (S~ B(ka)S] = [Bka)], S € GL (4, K),

Observe that in some cases 1t is easy to determine the number of the conjugation classes of
the quadrinomial group in PGL(4, K), char (K) # 2.

For example if K = K the groups S and S’ coincide with the trivial group. Then we can fix
ki = k» = 1 in both the cases (15) and (16).

If K =RorK =F, qg=p" p+# 2then S and § are isomorphic to {I,—1}. Both
the groups generated by matrices (14) and (15) respectively, are classified 1n two conjugacy
classes.

Proof of Proposition 3.2.
STEP 1. Up to conjugation the groups Q;.(A, B) are those in which

I, R )
A:W(H‘):(d h),B:W(S,):(% i),&:(g (I}),ReMg(K)—{U,SI}.

Proof. Let
C(J3) = {(a;) € GL (4, K)|ay) = agp = asz = a3 = a3 = 0,a44 = az3 # 0,

ayan — anay # 0}
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A matrix (a;;) € C(J3) satisfies condition I(a,j)?'] = [[4] 1if and only if

iy dz2 a2 ap + as;
ay = t», rank : ) < 2. ()
(hryg 3 ap) + ax )

The conjugation M — X[}_]MXH, Xo = Ejp + Eay + Ezz 4+ Eyy maps Jy into itself and
arr o) 0 {24

a> a0 ay

(a;;) € C(J3) into € C(J3). Then it is not limitative to suppose

(3 A3l d3zz  d3g

1 0 0 0 {33
(yyp Oy 0 Cdlrg

sy Ay 0 dny

, o | , o, |
A = A azy = 0, a1y + a3z = cary, ¢ € Kand [A"] # [J3].
0 0 0 (133
0 poaz;  polhh + az) 0
10 h O 0 r 1
If we put X = P 0 . , h # 0, a>;, we have XJ3X7' =

0 0 0 h + as
L S ry—1 _ I R _ =1 [ Pod3r  Pods4
pﬂ ( 0 !3 ), XA X — 3 ( U fj ' R - ﬂ‘%‘j' (7 4 '

STEP 2. Up to conjugation the groups Qy, (A, B) are those in which A and B coincide with
(17), (18) or (20).

D C

Proof. Let C(Jy) = { ( 0 D

) e My(K)|D € GL(?.,K}}.

A matrix (D ¢

0 D) e (C(J4) satishies condition (D C) = [14] if and only if

0 D

e —

CD =DC tr(D) =0, (%)

It D =dh,d € K*, then we put X = (D{g: P) and we have X/, X' = pg (102 ;2),

dl- C —1 I R — g y 19 14901
X ( 0 fﬂz) X ' =d (0 h)‘ R=d " poC. It D € GL (2,K) is not diagonal, then
I

from (¥) it follows t(C) = O and 3U € GL 2,K): UDU ' =T = (B“ t ) th € K.
0

Consequently t{(C") = 0, UCU~! = C', TC' = C'T and therefore C' = (E E).

0 ¢
[ Polo Po f II
poto O cpo+to polcty +e) Uu o0 - D C\ __,
— ain X X
Put X Sofo Do 0 0 0 U we obtain 0 D

\ oty O CPg polcty ' +e)

K, 0 ) 0 I
:f“<ol Kl)‘mx IZF’”(h 5)
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It is useful observing that the additive subgroup (R, R>) C M>(K), char (K) = 2, generated

by R, R» 1s isomorphic to Q(W(R), W(R»)), W(R;) = (E ff ) i =1, 2.

Easily we verity

STEP 3. Let be Ry = Ry + R2, Ry = R| + R5. Q(W(R)), W(R»)) and Q(W(R}), W(R})) are
conjugated if and only if there exists a permutation o and a matrix X = (X;;) € GL (4, K),

X{j c M, (K) such that R, X>» = X, :T“-]. R X> = X5 R:’Tm =0,ir=1,2,3.
[n particular we deduce
R,y 18 singular if and only if R; 1s singular; (30)

and
if at least one of the matrices R;,i = 1,2, 3, 1s not singular, then

X1, and X»» are not singular and X>; = 0. (31)

STEP 4. A group Q = Q(W(R), W(S)). (cf. Step 1) is conjugated to a group Q(W(R,), W(l>))
with Ry defined in (20) or to a group QO(W(R)), W(S1)) with Ry and S, defined in (19).

Proof. We distinguish two cases.
1) Let us suppose that there exists B = (b;;) € {R,R+ S, }, det(B) # 0.

~]
If b»; = 0 and then by; # 0 # by, we put X, = (([J ;;'3), X>n = (h{'}' {]}>, X1>

= X7 = 0 and we have BX» = X, [, 5] Xoo = X115,. From this and from Step 3 we deduce
that Q 1s conjugated to Q(W(/»), W(S))).
_ 0 1 by.' b det™ (B) |
' : ! — 4 = 21 T 4] = -~ =
It b2y # 0, we put X (I b”hi] ),Xug ( 0 b det" ' (B) Xy =X =0
. _ _ 0 0
( | = " ] 4 =
and we verity that X, " BXo» = 1, X" 51X (0 byt det=" (B)

1s conjugated to Q(W(/»), W(R,)).

) = R;. Consequently O

11) Let us suppose det(R) = det(R + §;) = 0. Hence we have R = (r” f'13) or R =

0 ()
0 rp
0 rn/

N T AT T AT (L B B
IfR—(O [’])!!”#(LWEDU[X”_(O l)X:j—((} rH).Xu—Xj[—U
and we observe that RX>> = X, 5", §,X>» = X1, 5.

IfR = (g ;:iz) 2 # 0, then RX = X118, 51X = Xy §1, Xy = ({]} ;:“ )ﬁXzz
=1, X1» =Xz = 0. -

STEP 5. Q(W(S)), W(S;)) and Q(W(S)), W(Si), k, k' € K* —{1} are conjugated if and only
if A(k) = AL, O(W(L), W(R)) and O(W(l»), W(R")), R, R’ # 0, I are conjugated if and
only if there exists Y € GL(2, K) such that A (Y™ 'RY) = A(R').
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Proof. From Step 3 we deduce that Q(W(S,), W(S;)) and Q(W(S,), W(S,+)) are conjugated 1f
and only if there exists ¢ € K* such that {1, k', k" + 1} = {c, ck, c(k+ 1)}. Then the first part
of thesis follows.

Letusput/, =R, =R/ ,R=R>,R =R, [+ R =Ry, I, + R = R,. If Q(W(I5), W(R))
and Q(W(1»), W(R")) are conjugated then conditions in Step 3 are satisfied with X, X3, not
singular and X,; = 0 (ct. (31)).

f
In particular if o(1) = 1, then X} = X1, X[']] RX11 =R, = {Rfi ; and if o(1) # 1,

then

— 1 ! R! _| R
Xll XE?-: a(l) — R"—{—h *XII RfT"]{IJXE-?:!EtR:T""{I]: R+1,"

X1 Ro—1y X = X' Ro—1n X2 X5 X1 = R

Viceversa let us suppose R € A(Y"'RY). f R = Y"'RY or R" = Y~ ! (R + 1)Y,
then evidently conditions in Step 3 are satisfied. If Y™IRY # R’ # Y~! (R + I,)Y then

!
Y~'"MY =M """ M= { R = { R Consequently, if we put M’ = ZY, we

R+ 1D R’ + />
have ZMY = I>.
Easily we verify that the group generated by matrices (17) is not conjugated to a group
agenerated by a couple of matrices (18).
From (30) it follows that every group defined by a couple of matrices (18), (19) is not
conjugated to a group defined by a couple (18), (20).
By Step 3 we deduce other conditions of conjugation.

We can express condition A(Y"'RY) = AR, Y € GL(2,K) through the eigenvalues x,
x> and x}, x5 of R and R’ respectively. In fact it is equivalent to require that A((xy,x2))
= A((x},x3)) for a suitable ordering of the couples.

To proof Propositions 3.3 and 3.4 the following observation is useful.

Let be J = Js,J¢,J7 or Jg, if char (K) # 2 and let be J = Jy or Jjp 1f char (K) = 2. If we
determine X € GL(4, K') such that X~! JX = R € GL (4, K). then every cyclic subgroup of
PGL (4, K) 1s conjugated to a group Cy(R) = C(X™ 'JX) (cf. Lemma 3.7).

Proof of Proposition 3.3.

(a) Suppose X = (xy), x;; = pi i,j =0,1,2,3. and hence X! J5 X = R, coincident with
(21).

If C(Rgr) 1s conjugated to C(Ry) then the characteristic polynomial of [Ry/] coincides with
the one of a generator of C(R;). Hence &' = ¢*kor k' = ¢*k?, ¢ € K*.

Viceversa if &' = ctkor k' = c¢*k’, c € K¥, then H™'RyH = C™ 'Ry, H =

0 1 0 0 0 0 0 1

B 0 0 ¢ O vimier o , 0 0 (k' 0

- 0 0 0 or ' 'RyH = C 'Ry, H = 0 (k)2 0 0

'kt 0 00 (ck)™* 0 0 0
respectively.

(b) Let us suppose J = Js.
Necessarily p» = p3 = p € K* and at least one of the eigenvalues pg, p coincides with
=+ i, i = —1. Therefore we distinguish two cases:
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(b')i € K. Then py and p, are not conjugated. Consequently Jo = p diag(=+i, i, 1, 1), but
being J’é = p° diag (i, +i, 1, 1), we can suppose Jo = p diag (i,—i,1,1),p € K*. Put X =

0 -1 0 U\
X 0 (i g e L, |1 0o 00
(0 h),X”—(I —f) we have X7 diag (i, —i, 1, 1) X =R = 0o o 1 ol
0 0 0 1/

(b") i € K. Then up to conjugation, R = diag(1,1,i,r),r = —i, —1.

(c) Characteristic polynomial of matrix J7 belongs to K[t]. Hence p, = =ipg and py € K
if and only if i € K.

If i € K, then R = diag (1,1,i,i). If i € K, then py = a + ib, a,b € K and *ipy are
conjugated in K(i). Consequently po = a(l £ 1), J; = adiag (1 + i, 1 +1, 1 —i, 1 —i).

1 1+¢ 0 O
Lastly, put X = ? l[if (1] 1;"! ,weobtain X ' diag (1 +i, 1 +i, 1 —i, 1 =) X =
0 0 11—
0 -2 0 0
12 0 0
10 0 0 -2
0O 0 1 2

(d) In Jg we have p; € K™ and pg = %ip; € K*. Then up to conjugation, A = (1, 1,1, 1).
The groups generated by matrices R correspondent to Js, Jg, J7, Jg respectively, are not
conjugated because they have a different number of distinct eigenvalues.

Proof of Proposition 3.4.

PG 0y PG
(@IfweputX—!' =1 p{?" pg“ 0 ,then X~ 1JoX = poR(1).
. 0 0 0
/ 0? 0O O
(b) If we put X~ ! = g %ﬁ FE:} g , then we have X~ 'J,0X = poR’.

\0 0 0 1
C(R(1)) and C(R’) are not conjugated because rank(R(1) + I3) = rank(R*(1) + ;) = 3,
rank(R' -+ 1) = rank (R + 1) = 2.

G-CLASSIFICATION OF THE 4-DIMENSIONAL LEFT PROJECTIVE
GRUPPAL ALGEBRAS

In Section 3 we have determined the conjugacy classes of the groups Z» x Z, and Z, in
PGL (4,K), fixing an element Q(A, B) or C(R) in every class. In this Section we examine
the main properties of l.p.g.a. which are defined by each of the above-mentioned groups (cf.
Section 1).

If A isthe l.p.g.a. defined by Q(A(k;), B(k»)) (cf. (15)), then
L(x) = (Iyx, Ay (k1) x, B(k2) x, Ay (k))B(k2) x) = xo I +x1A} (k1) +x2 Blka) +x3A) (k1)B(k2) =
= R(y). It follows that .4 is commutative. A is also associative and gruppal because epe; =
= ejep = ¢e;, 1 = 1,2,3 (cf. Propositions 2.1 and 2.4).
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L(eg,e1) = {y = xpep + xje1|x0,x; € K} is a subalgebra in which
E’% = k]é.'[}, (32)

e1ex = €3 (33)
and then we can write every x € A as it follows:

7

X = E Xie; = yoeo + yi€2, Yo = Xp€g + X121, Y1 = X209 + x3¢1 € L(eg, €1).
i=I()

We deduce that 4 is an algebra 2-dimensional over L(ep, ¢;) in which

e3 = kaey. (34)
Put X~ — (g _\/j%’ﬂ), D — (i __%) we have det(L(x)) = det (X~'L(¥)X)

— dﬂt(dlﬂg (fﬂafl }fZ 1f3’5)):~ where

fo = x0 + Vkixy + (2 + Vkixa)vVka, fi = xo — \/EI] + (X2 — \/k_l-’fS)\/k_Ex
fr=x0+ \/k_l-xl — (x2 + \/;{_lx3)\/‘!f_lmf3 = X0 — \/k_il'l — (X2 — \/k_l«‘fs)\/k_z-

Therefore the surfaces ® and ¥ are union of four linearly indipendent planes and their rational
points over K are the zero divisors of A. In particular we deduce that A is a division algebra if
and only 1f §2 —kyand £2 —k, are irreducible in K[&] and in K [E], K; = K (V'ky) respectively.

In this case A = K (Vki, Vk2).
If ky = ko = 1, Ais the group algebra of Z, x Z, over K (cf. (32), (33), (34)).

Comparing (15) with (17) we observe that 1.p.g.a. defined by Q(A, B), whit A and B given

in (17), is the group algebra of Z; x Z; over K, char (K) = 2.
A0 k|.1'1 kzxg —k|kg.r3
- - A1 X0 ng:-, —kg)fg .
L(x) = (l4x,Aax(ki)x, B(ka)x,A2(k1)B(ka)x) = Y —kixs X kix, 1s the

X3 —AX72 X1 X0
l.L.m.m. of Lp.g.a. defined by the group Q(As(k;), B(ks2)) (cfr. (16)) and then it 1s the

generalized quaternion algebra (k';‘“) over K (cf. [2]).

det(L(x)) = det(R(x)) = [(x3 — k1x?) — ka(x3 — —k1x3)]?. Hence (%) is a division

algebra if and only if quadric surface ® : x} — kjx? —kox3 +k; kg;x:% = (0 has not rational points
over K.

Now suppose A the l.p.g.a. defined by cyclic group C(R(k)), R(k) as in (21). Then
L(x) = (I4x, R(k)x, R(k)*x, R(k)’x) = xols + x| R(k)+ x2 R(k)* +x3R(k)’ = R(x) and therefore
A is a gruppal algebra commutative with unity e.

Put X = (xp),x; = ph,p? = ki,j = 0,...,3, we have det(L(x)) = det(XL(x)X~")
= det(diag (fo,f1,/2,/3)), fi = Zf:u x;ipi,i = 0,...,3. Therefore surfaces ¢ and ¥ are union
of four linearly indipendent planes.
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Such planes have not rational points over K if and only if £* — k is irreducible in K[£]. In
this case .A = K(p), p* = k.

If Xk = 1 we obtain the group algebra of Z; over K. When char (K) = 2 we obtain such
group algebra from C(R(1)), R(1) as in (25).

L.p.g.a. defined by groups Q(A, B) with A, B as in (14), or by C(R), with R as in (22),
are particular examples of L.p.g.a. A whose .Lm.m. is given by L(x) = (Lox, L\x, Lax, Lix),
L,‘ = df{e’g (f’,‘[}, f“, fﬂ, !;3) c GL (4,K) Then ey = ;’_ﬁ €, !,j = 0, e ,3.

We deduce that A 1s not commutative, not associative and every x € A is a left zero divisor.
Moreover we observe that every subspace L(e;) = ke, is a left ideal of .4 isomorphic to K.

Easily we verify that l.p.g.a. A defined by remaining groups in Propositions 3.2, 3.3 and
3.4, are not commutative and not associative. Moreover every x € A is a left zero divisor.

Also l.p.g.a. A defined by groups Q(A, B),A, B as in (18), (19) or in (18), (20) are not
commutative, not associative and every element x € A 1s a left zero divisor.

L(eg, e, e>) and L(eg, e;, €3) are left ideals of A and their intersection 1s an associative ideal.
Moreover L(ey, e, €5) is associative when R, = S, and R) = S or R; = S, (cf. (19)).

L.p.g.a. A defined by C(R),R as in (23) or in (24) and by C(R"), R’ as in (26) are not
commutative, not associative and every element x € A is a left zero divisor.

If R 1s (23) then L(eg, €)) is a left ideal isomorphic to K(i) and L(e»), L(e3) are left ideals
1somorphic to K.

If R 1s (24) then L(eg, e) and L(e», e3) are left ideals isomorphic to K(1 + /). In fact we
observe that K(1 + i) — L(es,e3), x + (1 +1i) y — x (e» — e3) —e3y is an isomorphic of
algebras.

If R 15 (26) then L(e,, e>) and L(e;, e>, e3) are left ideals and L(eg) is a left ideal isomorphic
to K.
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